Imaging and Monitoring with Seismic Coda Waves

L. Margerin

IRAP, CNRS, Toulouse

Mini-Colloque 19

Content

Observation of seismic coda waves

2 Green function reconstruction

Monitoring the Earth with coda waves

Content

Observation of seismic coda waves

2 Green function reconstruction

Monitoring the Earth with coda waves

Crustal Coda Waves

Space and Time Scales

- Frequency > 1 Hz
- ullet Wavelength \sim tens of meters to kilometers
- Model: radiative transfer
- Mean free path 0.1–1000 kms

Earthquakes in Japan

Inner Core Coda Waves

Vidale and Earle, Nature (2000)

Content

Observation of seismic coda waves

② Green function reconstruction

Monitoring the Earth with coda waves

Experimental Set-Up

Cross-correlation of coda waves

- $C_{ij}(\mathbf{x}_a, \mathbf{x}_b, \tau) = \int u_i(\mathbf{x}_a, t \tau/2) u_j(\mathbf{x}_b, t + \tau/2) dt$
- Source average
- Reconstruction of Rayleigh and Love waves fundamental mode
- Temporal asymmetry

Underlying physics: Transport theory in random media

Asymptotic solution of Bethe-Salpeter equation

Correlation of two Green functions:

$$\Gamma(\mathbf{x},\mathbf{r};t,\tau) = \langle G(\mathbf{x}+\mathbf{r}/2,t+\tau/2)G(\mathbf{x}-\mathbf{r}/2,t-\tau/2)^* \rangle$$

Fourier transform over τ :

$$C(\mathbf{x}, \mathbf{r}; t, \omega) = \int \Gamma(\mathbf{x}, \mathbf{r}; t, \tau) e^{i\omega\tau} d\omega$$

Asymptotic result $t \to \infty$

$$C(\mathbf{x}, \mathbf{r}; t, \omega) \sim \frac{\mathrm{e}^{-x^2/4Dt - \omega t/Q_i}}{(Dt)^{3/2}} \operatorname{Im} \langle G(\mathbf{r}, \omega) \rangle$$

Barabanenkov & Ozrin, Phys Lett. A, 1991

Understanding the temporal asymmetry

$$E(\mathbf{x},t)\left[G(\mathbf{r},\tau)-G(\mathbf{r},-\tau)\right]-3J(\mathbf{x},t)\cdot\nabla_{\mathbf{r}}\left[G(\mathbf{r},\tau)-G(\mathbf{r},-\tau)\right]$$

(B.V.T., PRL, 2003; Paul et al., J.G.R., 2005)

Role of multiple scattering and Equipartition

 $Imperfect\ Source\ Distribution\ +\ Late\ Coda$

GF reconstruction from ambient noise

Comparison of 'ground truth' Green's function and cross-correlation of noise wavefields recorded at 3 seismic stations

(Shapiro et al., Science, 2005)

Noise-based Tomography

Group velocity maps at 5-10s and 10-20s

GF reconstruction with the coda of noise based GF

Stehly et al., J.G.R., 2008

Content

Observation of seismic coda waves

2 Green function reconstruction

Monitoring the Earth with coda waves

Earthquake doublets

Mwwwwwwwww.MMM/www.AA

|www.hvvn-wvn.hrvn.hvvn-vv_/n/p~~~~~\/.x~~

Marian marian

| 17: 6:14.797| 17: 6:16.078| 17: 6:17.355| 17: 6:18.637| 17: 6:19.918

- Same location
- Same mechanism
- Nearly identical waveforms
- Drawback: no continuous monitoring

4P03 V2

4P02 VZ

4P01 V2

Repeated shots recorded on Merapi Volcano

- No changes on the first arrival
- \bullet Increasing delay time in the coda Stretching of the signal \approx tiny velocity change in the medium
- Active source experiments are expensive

Monitoring with seismic noise

Example on Piton de la Fournaise

 Green function obtained from cross-correlation of seismic noise

 Measurement of stretching parameter in the coda

"Passive image interferometry" (Sens-Schoenfelder and Wegler, GJI, 2006; Brenguier et al., Nature Geoscience, 2008; Brenguier et al., Science, 2008)

Application to fault zones

Brenguier et al., Science, 2008

Phase Statistics

- Phase of the analytic signal
- Easy with seismic waves: spatial and temporal resolution
- Free from effect of absorption
- Simplifying assumptions:
 Analyze the phase field of vertical components
 Wavefield obeys Circular Gaussian Statistics:

Data from California

Field and Intensity

2-Point Statistics

 $\Delta \phi$: Phase difference $\in (-2\pi, 2\pi]$

 $\Delta\phi_u$: Unwrapped phase difference $\in (-\pi,\pi]$

Higher Phase Derivatives

Fitting Parameters:

Coefficients of Taylor series of field correlation function Universal behavior for n^{th} derivative: slope = -(1 + 2/n)

Phase Difference Correlation

Correlation function $\approx \frac{1}{r}e^{-r/2\ell}$

Van Tiggelen et al., EPL, 2006; Anache et al., P.R.L., 2009