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Abstract The dynamics of earthquake occurrences is controlled both by fault in-
teraction processes and by long-term, tectonic loading of the faults. In addition, tran-
sient loading can be caused by aseismic deformation episodes, for example during
crustal fluid migration or slow slip events. These forcing transients are best revealed
by geodetic measurements. However, this type of instrumentation is not always avail-
able, or is not always sensitive enough to detect significant anomalies. In such cases,
one is better off exploiting the seismicity signature of these transients in order to char-
acterize them. We here explore different ways to do so. Interearthquake time statistics
are found to be prone to damping out fluctuations in forcing rate. A more accurate
method is developed by comparing the data with a triggering model that accounts for
earthquake interactions. The changes in fault loading rates are then well recovered,
both in duration and in intensity.

Introduction

Earthquakes are caused by stress build-up on the ruptur-
ing fault. This loading can stem from two distinct contribu-
tions: (1) aseismic forcing such as tectonic loading, more
rapidly time-varying processes such as fluid or magma in-
trusions, or aseismic transients such as slow earthquakes;
and (2) elastic loading by stress transfer from previous earth-
quakes. These two contributions differ by the fact that (1) is
aseismic. It can vary quickly in time, in which case its inten-
sity is difficult to evaluate, most notably when no geodetic
information is available.

If we define the earthquake population as the system of
interest, then contribution (1) is external, while (2) is internal.
When studying large tectonic areas, the main external forcing
is tectonic loading. Separating the two contributions then
amounts to finding so-called mainshocks and their related
aftershocks, which is equivalent to declustering the earth-
quake catalog (Gardner and Knopoff, 1974; Reasenberg,
1985; Zhuang et al., 2002). However, the rate of mainshock
occurrences, hereafter called the forcing (or background)
rate, can exhibit large fluctuations in time. This is more par-
ticularly the case when investigating small zones character-
ized by bursts of activity, for example, in the case of volcanic
or fluid-induced earthquake swarms. Then the forcing rate
typically evolves through rapid, transient changes, forcing
the system to switch from low to high seismic activities. Such
swarms generally have no clear mainshock–aftershock se-
quences. Moreover, they are sometimes characterized by hy-
pocenter migration or diffusion, thought to be a signature of
fluid movement (Aoyama et al., 2002; Hainzl, 2004; Vidale
and Shearer, 2006; Jenatton et al., 2007; Pacchiani and Lyon-
Caen, 2010; Daniel et al., 2011). Other examples include

swarms related to slow earthquakes (Wolfe et al., 2007)
that can also exhibit hypocenter migration (Lohman and
McGuire, 2007).

The goal of this paper is to discuss and propose statis-
tical methods for estimating time-varying forcing rates due
to fluid/magma intrusions or aseismic deformation transi-
ents, by only using earthquake time series in the absence of
complementary deformation monitoring based on geodetic
measurements (Global Positioning System [GPS], strain or
tiltmeters, Interferometric Synthetic Aperture Radar [InSAR]).
While the latter can directly reveal and allow characterizing
aseismic transients, they either have limited resolution (GPS,
InSAR) or are difficult to interpret due to their sensitivity to
other, unrelated, possibly very local phenomena (strain and
tiltmeters). Moreover, seismicity is by far the most abundant
type of data to constrain changes in crustal stress, and it must
therefore be accounted for when searching for transient de-
formation episodes.

We postulate that the rate of earthquakes λ�t� � μ�t� �
ν�t� is the sum of the two contributions mentioned earlier:
the aseismic forcing μ�t� and the forcing ν�t� due to inter-
actions between earthquakes. To separate between μ and ν is
a difficult problem: An earthquake time series can always be
modeled by assuming there are no interactions between
earthquakes, that is, ν�t� � 0, as suggested by Traversa and
Grasso (2010) for seismicity swarms triggered by dyke
intrusions, so that it results solely from a forcing μ�t� that
exactly mimics the earthquake rate λ�t�.

The case of aftershock sequences serves here as a good
illustration. While most models invoke coseismic stress
transfer from the mainshock to the aftershock foci in order
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to explain the occurrences of the latter (e.g., Dieterich, 1994),
so that the term ν�t� dominates during these sequences, other
models instead assume that aftershocks are caused by after-
slip, hence a dominant μ�t� exists (Perfettini and Avouac,
2007). How to distinguish between these two mechanisms
of aftershock triggering is still a matter of debate (Helmstet-
ter and Shaw, 2009).

Earlier works have used the epidemic-type aftershock
sequence (ETAS) model (Kagan and Knopoff, 1981; Ogata,
1988) for estimating the time-varying forcing rates ν�t� dur-
ing swarms. In all these studies, the swarm is divided into
separate time intervals, and the forcing ν�t� is then estimated
individually for these intervals. The forcing is generally
assumed to be constant over each individual time interval
(Hainzl and Ogata, 2005; Lombardi, Marzocchi, and Selva,
2006; Lombardi, Cocco, and Marzocchi, 2010) although
more sophisticated forms have been tested by Matsu’ura and
Karakama (2005) to model the Matsushiro swarm. Because
a model with ν�t� � 0 is always a possible candidate, the
tendency of these earlier studies to find anomalously low
interaction terms, most notably low productivity α-values
(see equation 5 for the definition of α) raise the question as
to their robustness: these methods are possibly not efficient
in determining μ�t�.

Recently, studies on the distribution of waiting times be-
tween consecutive earthquakes have shown that the forcing
rate could be simply estimated with nonparametric methods.
Corral (2004) proposed that the probability density function
of interearthquake times δt (here not normalized by the
mean) can be expressed as

f�δt� � Ce−μδtδt−n; (1)

with C a normalization constant, μ the forcing rate, and n a
model parameter. Hainzl et al. (2006), based on an argument
by Molchan (2005), further showed that μ can then be esti-
mated from the first two sample moments of δt as

μ � Efδtg
varδt

; (2)

where Ef:g denotes the mean and var is the variance. Further-
more, the exponent n is given by

n � 1 − μEfδtg: (3)

The n value then theoretically corresponds to the frac-
tion of triggered events among all seismic events and is
called the branching ratio (Helmstetter and Sornette, 2003),
while μ is the forcing rate (Hainzl et al., 2006). However, the
estimated μ of equation (2) can be shown to overestimate
the real rate, sometimes by several orders of magnitude,
when the analyzed time period is dominated by aftershocks
(see the Synthetic Datasets section). Moreover, ensemble-
averaged (rather than sample-averaged) distributions with
different branching ratios n were shown by Sornette et al.
(2008) to be very similar, questioning the use of interevent
times for performing the estimation of μ�t�. We address these
issues in this paper.

We first describe how we generate synthetic datasets
used to test the methods. We then detail the limitations of
exploiting interearthquake time statistics as defined in equa-
tion (2), for example, to deduce the time-varying forcing. An
improved method that attempts to avoid periods dominated
by aftershocks is shown to generally damp the real fluctua-
tions of the forcing rate. A proper account of aftershock trig-
gering is thus required, allowing for a robust and accurate
estimation of the contribution of aseismic processes in earth-
quake time series.

Synthetic Datasets

Seismicity Model

In our simulations, earthquakes are characterized by
their time of occurrence t and their magnitude m. The latter
is constrained to verify the Gutenberg–Richter law (Guten-
berg and Richter, 1944), which gives the probability density
f�m� of magnitude m. We only consider positive magni-
tudes, so that f�m� � βe−βm. There is no upper cutoff in
magnitude. The b-value of the Gutenberg–Richter law is
b � β= log 10.

The time series of earthquake occurrences is modeled as
an inhomogeneous Poisson process with rate λ�t� depending
on time. We use ETAS models for generating our synthetic
datasets (Kagan and Knopoff, 1981; Ogata, 1988). In these
models, the rate is a function of the past history of earthquake
occurrences, to simulate mechanical interactions between
faults that are responsible for correlations in seismicity
dynamics. Namely, the rate is

λ�t� � μ�t� � ν�t�; (4)

with

ν�t� �
X
ti<t

Aeαmi�t� c − ti�−p; (5)

where the sum is on all earthquakes i of magnitudes mi that
occurred before t, that is, at times ti < t. The first term on the
right side of equation (4) is the forcing rate, which gives the
rate of background earthquakes. In the absence of any inter-
actions between earthquakes, for A � 0, only background
earthquakes occur and λ�t� � μ�t�. We describe in the fol-
lowing text how μ�t� is chosen in our simulations.

We take A � 0:0059, α � 2, p � 1:2, c � 10−3, and a
b-value equal to 1. These parameters give a branching ratio n
of 0.9; the branching ratio is the average number of direct
aftershocks triggered by a mainshock, when averaging over
all mainshock magnitudes. It also controls the proportion
1 − n of background earthquakes in the overall earthquake
population (Helmstetter and Sornette, 2003; Hainzl et al.,
2006; Sornette et al., 2008), in the limit of infinitely long
time series. These values are in the typical range that has
been found when estimating ETAS parameters on real data
including seismic swarms (Hainzl and Ogata, 2005; Lom-
bardi, Marzocchi, and Selva, 2006; Daniel et al., 2011).

170 D. Marsan, E. Prono, and A. Helmstetter



Synthetic Dataset D1: Control Catalog

The first synthetic catalog is a control catalog so that
μ�t� is constant over the whole duration T of the dataset.
A constant forcing rate is meant to represent the simple case
of a fault system subject to a constant tectonic loading rate.
We here take μ�t� � 0:4 and simulate earthquakes from t �
0 up to T � 1000, assuming there was no earthquake for
t < 0. Catalog D1 contains N � 1034 earthquakes with
magnitudes ranging from just above 0 to 3.64 (see Fig. 1).

Synthetic Dataset D2: Swarmlike Seismicity with
Sudden Onset

Earthquake swarms are often characterized by a rapid
transition from very low to very high activity (Zollo et al.,
2002; Jenatton et al., 2007; Lohman and McGuire, 2007;
Pacchiani and Lyon-Caen, 2010). For example, fluid- or
magma-induced activity in volcanoes, geothermal areas, or
fault systems dominated by crustal extension occurs in
sudden bursts of earthquakes that can last several days to
months. This rapid onset of activity is generally attributed to
aseismic processes (e.g., fluid-pulse migration or slow earth-
quakes), because there is no large magnitude shock at the
start of the sequence that could explain it.

This type of activity is here modeled by a sharply in-
creasing and then decaying μ�t�. We simulate it from the
control catalog D1 by simply changing the magnitude of
the largest shock: the six hundred and fourth earthquake of
D1, with magnitude m0 3:64, occurring at time t0 � 823:83,
in D2 is given the new magnitude value m0

0 � 1
log 10 � 0:43,

which corresponds to the mean magnitude for the Guten-
berg–Richter law with a b-value of 1.

This change implies that the forcing rate of D2 is μ�t� �
0:4 for t < t0 and becomes μ�t� � 0:4� Afeαm0−
eαm

0
0g�t� c − t0�−p for t > t0, see Figure 1.
Catalogs for D1 and D2 only differ by one magnitude

value. The remaining 1034 occurrence times and 1033 mag-
nitudes are the same for both catalogs. Despite this strong
similarity, the forcing rates are very different, for t > t0. This
shows that the methods developed here cannot solely rely on
the earthquake occurrence times, but they must also make
good use of the magnitude information.

Synthetic Dataset D3: Slow Transient Deformation
with Gradual Onset

The last synthetic catalog has a smoother forcing rate
compared with D2. It is thought of as simulating a seismic
swarm that would originate from a slow transient deforma-
tion. As an example, the swarms related to silent slip on the
south flank of the Kilauea volcano do not have the very sud-
den, sharp increase in activity and the Omori-type relaxation
as modeled with D2 (Montgomery-Brown et al., 2009). Here
we take μ�t� � μ0 � �μ1 − μ0�e−�t−t0�2=2σ2

with μ0 � 0:1,
μ1 � 2, t0 � 500, and σ � 100. This gives a pulse of activ-
ity with the shape of a Gauss curve culminating in a 20-fold
increase in the forcing rate (see Fig. 1). We obtain N � 879

earthquakes, with a maximum magnitude of 2.29 over the
total duration T � 1000 of the catalog.

Using Interearthquake Times to Estimate
the Forcing Rate

Background Rate Estimators

Estimators for Gamma-Distributed Interearthquake
Times. The possibility of using the distribution of inter-
earthquake times to estimate the forcing rate was proposed
and tested by Hainzl et al. (2006). The forcing rate was
then computed as in equation (2), which uses the method
of moments estimators and the first two moments to estimate
μ. As is well known in statistical mathematics, this estimate
of μ for a Gamma law as expressed in equation (1) is less
efficient (Fisher, 1922) than the maximum likelihood esti-
mate (MLE), denoted μ̂MLE, which amounts to maximizing

ℓ�μ; n� � �1 − n� logμ − logΓ�1 − n� − μEfδtg
− nEflog δtg: (6)

This maximization implies that μ̂MLE � 1−n
Efδtg, and that
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Figure 1. The three synthetic catalogs D1, D2, and D3, from
top to bottom (a,c,e): magnitude versus time of occurrence. The
only difference between catalogs D1 and D2 is the magnitude
value of the earthquake pointed out in the graph (a): this shock
has the largest magnitude of all in D1 (m � 3:64), and has only
magnitude m � 0:43 in D2. (b,d,f) forcing rate μ�t�. In D2, this
rate jumps from 0.4 to 3:40 × 104 per unit time, before decaying.
The color version of this figure is available only in the electronic
edition.
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ℓ�n� � �n log �n − �n − logΓ� �n� (7)

be maximized, where �n � 1 − n. The n parameter that max-
imizes ℓ�n� is numerically easy to find because 0 < n < 1.
In the following sections, we will, however, show that μ̂H

of Hainzl et al. (2006) is better suited for the current appli-
cation of finding the background rate out of an earthquake
time series.

Bias toward Small Rates. The estimators μ̂H of Hainzl et al.
(2006) and μ̂MLE in most but not all cases, for example,
during aftershock sequences, correctly find the forcing rate,
because it is strongly constrained by the minimum instanta-
neous rate over the investigated time period. We recall that
the earthquake rate λ�t� is the sum of the background rate μ,
plus triggered rates ν caused by previous earthquakes. Thus,
λ�t� ≥ μ, but λ�t�≃ μ�t� during periods devoid of large
shocks. This suggests that the estimation of μ is equivalent
to searching for the minimum value λ�t� can take.

We now consider the oversimplistic but illustrative ex-
ample where a time series is made of a Poisson process with
constant rate λ1 for 0 < t < 1, followed by another Poisson
process with constant rate λ2 ≥ λ1 for 1 < t < 1� λ1

λ2
. By

construction, both time windows contain on average the
same number of earthquakes. We run the estimator μ̂H of
Hainzl et al. (2006) on the whole time period 0 < t < 1�
λ1
λ2
at once, that is, considering the two time intervals 0 < t <

1 and 1 < t < 1� λ1
λ2

together rather than separately. This
mimics an oversimplifed case when one tries to estimate
the minimum rate mintλ�t� in a nonhomogeneous Poisson
time series with a time-varying rate λ�t�. On ensemble average,

μ̂H � 2λ1λ2�λ1 � λ2�
�λ2 − λ1�2 � 2�λ21 � λ22�

: (8)

For λ1 � λ2, this gives μ̂H � λ1, as expected. For
λ2 ≫ λ1, it yields μ̂H � 2

3
λ1; hence, the very high rate λ2

is somewhat ignored, and the estimator instead finds a value
very close to the minimum rate λ1. Similarly, μ̂MLE is mostly
controlled by λ1 when λ2 ≫ λ1 (see Fig. 2a).

We can make the model slightly more complex by
changing the duration of the second time window that now
extends from 1 to 1� x

y, with y � λ2
λ1
, so that x is the ratio of

the average number of earthquakes in the second time
window to the average number of earthquakes in the first
time window (x � 1 was assumed so far). We then find that,
on average,

μ̂H � λ1
�1� x� ×

�
1� x

y

�
�
1 − x

y

�
2

� 2x
�
1� 1

y2

� : (9)

As an example, the curve μ̂H versus y � λ2
λ1
is shown in

Figure 2 for both x � 1 and x � 103. In the latter case,
although the second time window has 103 times more earth-

quakes, the estimator μ̂H still has a mean value close to the
minimum rate λ1, when λ2 ≫ λ1.

The fact that μ̂H is strongly biased toward the minimum
rate λ1 in this simple model is indeed a desirable feature: the
estimator is well designed to find the forcing (hence, mini-
mum) rate out of an inhomogeneous Poisson process.

As a comparison, the simple statistic λ̂ � 1=Efδtg, which
is the mean rate, is on average, for our model

λ̂ � λ1
1� x
1� x

y

: (10)

Figure 2 shows that this λ̂ rapidly departs from λ1 when
x ≫ 1 and y ≫ 1, unlike μ̂H. Also, the same departure is
observed for μ̂MLE when assuming Gamma-distributed inter-
earthquake times: this mixture of two very different Poisson
processes (at x ≫ 1 and y ≫ 1) causes the actual distribu-
tion of δt to strongly differ from a Gamma law, hence this
departure.

Moving from this academic example to one directly
related to earthquake time series, we now consider a syn-
thetic dataset D obtained by running the ETAS model with
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Figure 2. Estimated rate versus y � λ2
λ1

for our simple
model with two nonoverlapping homogeneous Poisson processes
(see the Bias toward Small Rates section). The rate λ1, that is,
for the first time window, is equal to 1. We compare the estimator
μ̂H of Hainzl et al. (2006), see equation (9), to the MLE estimator
μ̂MLE for Gamma-distributed interearthquake times. The mean
rate of equation (10) is also shown. All three rates are computed
by taking the two time windows as a whole. (a) x � 1, hence
the two time windows have on average the same number of earth-
quakes. (b) x � 103, so there are on average 1000 times more earth-
quakes in the second window. The estimator of Hainzl et al. (2006)
approximates λ1 even when λ2 ≫ λ1 so that there is only a small
portion of the earthquakes generated with rate λ1. The color version
of this figure is available only in the electronic edition.
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parameters as for D1, except that the background rate is here
set to μ�t� � 1. We zoom in on its largest shock of magni-
tude m � 4:8. We select n1 (varying between 0 and 60)
earthquakes before, and n2 � 1000 earthquakes after this
mainshock. We then apply both the estimators μ̂H and
μ̂MLE to these subsets.

As shown in Figure 3, the estimated rate is very high
(>104) for n1 � 0 for both estimators. The first 1000 earth-
quakes after the large shock are mostly aftershocks, occur-
ring at a high rate that masks the background rate. As a
matter of fact, these 1000 earthquakes occur within a time
equal to 0.0215 after the mainshock, implying that the prob-
ability of having at least one background earthquake among
those 1000 events is very small (2.15%). However, as soon as
we add one earthquake prior to the mainshock (n1 � 1) to
our subset, μ̂H drops to less than 10. It is remarkable
that such an estimate is found, because the subset is made
of 1000 earthquakes occurring at an average rate of
4:6 × 104 events per unit time, plus only 2 (the earthquake
prior to, and the mainshock itself) events occurring at the
background rate of 1. The background rate is eventually cor-
rectly estimated when n1 > 50. A similar behavior, although
less pronounced, is also observed with μ̂MLE.

We have shown that the two estimators μ̂H and μ̂MLE,
when applied to a time window with fluctuating instantane-
ous rate λ�t�, yield estimated rates close to the minimum of
λ�t� over this time window. Thus, if the time window con-
tains background earthquakes, then the estimated rate is the
background rate. However, if the time window only contains
aftershocks of previous earthquakes, then both μ̂H and μ̂MLE

will overestimate the background rate, the more so as the rate
of aftershocks is high. These features can explain the nega-
tive results of Sornette et al. (2008) regarding the use of
μ̂H for estimating the forcing rate. Thus, it is necessary to
first evaluate whether the analyzed time window could be
made of only aftershocks, in which case this time window

must be made longer in order to also contain background
earthquakes. We now describe an attempt at achieving so.

Description of the Method

The rationale is to find, for any time t, the smallest time
window centered on t that is not made only of aftershocks.
We first compute μ̂H for sliding windows. The estimator μ̂H

is here preferred to μ̂MLE for its better capacity to estimate the
minimum rate (see the Bias toward Small Rates section. For
each earthquake i, μ̂�1�

H is estimated for the window extending
from event i − ρ to event i, and μ̂�2�

H from i to i� ρ. Both
windows thus contain ρ interevent times. A measure of the
relative change in rate is given by

Δμ � �μ̂�2�
H − μ̂�1�

H � ×
�

1

μ̂�1�
H

� 1

μ̂�2�
H

�
: (11)

When the variation is greater in absolute value than a
threshold parameter ξ, we examine whether this effectively
amounts to a change in the forcing rate. We consider the set
of all times T 0 � ft01; t02;…g when jΔμj > ξ, so that �t0n; t0n�1�
contains at least ρ events. We recompute μ̂H for the windows
extending between two consecutive t0. Such windows corre-
spond to time intervals with no strong changes in estimated
rates. A change at t0n is assumed to be either due to the oc-
currence of a large shock and the triggering of its aftershocks
or to a real change in the forcing rate.

If no large shock is found within a window �t0n; t0n�1�, that
is, all the earthquakes in this window have magnitudes less
than a threshold magnitude MS, we consider that the varia-
tion is really caused by a change in the forcing rate, and we
keep this window and corresponding rate μ̂H as they are. On
the contrary, if there is a large shock with magnitude
m > MS, then the time window is likely to contain only after-
shocks. In that case, we remove t0n�1 from the subset of times
T 0 and merge this time window with the next one, hence
defining an extended, new window �t0n; t0n�2�. We sub-
sequently go on merging this new time window �t0n; t0n�2�
with the next ones �t0n�2; t

0
n�3;…�, as long as μ̂H obtained

for �t0n�2; t
0
n�3;…� is greater than μ̂H obtained just prior to

the large shock, hence for �t0n−1; t0n�. The rationale is simply
to select a time window longer than the duration of the after-
shock sequence of a large shock.

Finally, we remove the time windows that contain too
few events, as natural randomness of the statistics μ̂H can
give birth to short time windows even in the absence of varia-
tion of the forcing rate. Namely, if the number of events in a
window is lower than a threshold parameter ρ2, we remove t0n
from the subset of time T 0, and this window is merged with
the previous one. To do this correction, we start with the
window characterized by the highest forcing rate, and then
proceed to the second largest and so on, rather than in chro-
nological order as we did previously. If a time window before
a real variation in the forcing rate is too small, it will merge
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Figure 3. Estimated rate for a time window containing n1 earth-
quakes before and 1000 earthquakes after the largest shock of data-
setD using the MLE estimator μMLE and the estimator μH. The color
version of this figure is available only in the electronic edition.
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with the previous window rather than with the next one, and
we thus preserve the onset of the change in forcing.

Parameterization

Four parameters are used in this algorithm. First, ρ is the
number of events in the initial time windows used to compute
μ̂�1�
H and μ̂�2�

H . Second, ρ2 is the minimal number of events in
the final time windows. The time windows used to compute
μ̂�1�
H and μ̂�2�

H must contain enough events to be statistically
significant, but must be short enough to show variations in
the forcing rate. As a trade off, we limit the total number of
windows for the entire dataset to 50, that is, ρ2 � N=50
events, with N the total number of events, and take ρ2 � 2ρ
with a minimum of 10 interevent times in order to reach a
statistically significant estimate.

Third, ξ is the threshold parameter to detect significant
changes in the forcing rate, when jΔμj > ξ. Considering a
Poisson process with a constant rate β, the time t to observe
ρ successive events has the probability density function fol-
lowing a Gamma law f�t� � βρ tρ−1

�ρ−1�! e
−βt. The sample rate

μ̂ � ρ
t thus has the probability density function

f�μ̂� � 1

μ̂�ρ − 1�!

�
βρ
μ̂

�ρ
e−βρ=μ̂: (12)

For ρ ≫ 1, μ̂ tends to a normal law N �β; β= ���ρp � with
mean β and standard deviation β��ρp . Then μ̂�1� − μ̂�2� tends to

N �0; β
��
2
ρ

q
� and Δμ to N �0; 2

��
2
ρ

q
�. The statistics Δμ does

not depend on the initial rate β anymore. The probability
ofΔμ being lower than the threshold parameter ξ is therefore

P�Δμ ≤ ξ� � 1

2

�
1� er f

�
ξ ���ρp
4

��
; (13)

where er f is the error function. Thus, the probability P that
jΔμj is greater than ξ is

P � P�jΔμj > ξ� � 1 − er f
�
ξ ���ρp
4

�
: (14)

Given a value of P, the threshold parameter ξ is chosen
as ξ � 4��ρp er f−1�1 − P�. In the following, we take P � 10%.

Finally, MS is the threshold magnitude over which an
event is considered as a large shock. To constrain this param-
eter, we use a Monte Carlo test with 64 synthetic datasets
based on the background rate μ�t� as in the synthetic D2,
that is, we run 64 independent realizations of the same ETAS
model. Parameters ρ, ρ2, and ξ are fixed as described previ-
ously. We run our algorithm withMS varying fromMmax − 0

to Mmax − 1:0, with Mmax representing the highest magni-
tude. We measure the quality of the estimated background
rate by computing the error

E � Ef�log10�μ� − log10�μ̂H��2g; (15)

that is, the departure of the estimated μ̂H�t� from the true μ�t�
in logarithmic scale. The mean and median of E for each

tested value of MS are shown in Figure 4. Our favored value
of MS is Mmax − 0:5, although the quality of the estimate
does not vary much as long asMS is greater thanMmax − 0:9.

We performed the same test with datasets D1 and D3

(see Fig. 5). ForD1, the result is the same for all tested values
of MS. For D3, the best result is obtained for parameter MS

between Mmax − 0:4 and Mmax − 0:6. Thus, we conclude
that MS is optimally taken close to Mmax − 0:5� 0:1. In the
following, we fix MS as MS � Mmax − 0:4.

Results

The results for datasets D1, D2, and D3 are shown in
Figures 4 and 5. For all three datasets, the variations of
μ̂H�t� reproduce well the actual variations of μ�t�, with rel-
ative departure typically within a ratio of 1=2 to 2. However,
the estimate is clearly too low for several realizations of the
model D2 (see Fig. 6). Indeed, our estimator is conservative
because it cannot account for variations of μ�t� during an
aftershock sequence. This happens for several realizations
of D2, for which the algorithm defines a unique time
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Figure 4. (a) Mean (upper curve) and median (lower curve)
value of the error E defined by (15) for 64 realizations of D2 for
MS � Mmax − δmwith δm varying from 0 to 1.0. (b) Corresponding
estimated forcing rates, only shown for several values of δm. The
curves show the median estimates for MS � Mmax − δm. The color
version of this figure is available only in the electronic edition.
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window extending from the jump in the forcing rate until the
end of the dataset.

Thus, we conclude that interearthquake time statistics
can be used to estimate the time-varying forcing rate,
although it is necessary to adjust the lengths of the time win-
dows to avoid probing only aftershocks. When high rates of
aftershocks dominate the time series, these lengths must be
increased, and potentially important fluctuations in the
forcing rate are then damped. This clearly limits the use of
these statistics for detecting short-lived forcing transients,
especially if such transients occur in conjunction with suffi-
ciently large earthquakes. The aftershocks triggered by the
latter then are likely to mask the forcing transients, because
the use of the interearthquake time statistics then require time
windows potentially too long compared with the durations of
the transients.

Method Based on Triggering Models

We nowdevelop amore sophisticated algorithm, inspired
from Zhuang et al. (2002), but here recast it for a purely tem-

poral dataset. The rationale is to estimate both contributions
μ�t� and ν�t� to the observed rate λ�t�. The interaction term
ν�t� is heremodeled using ETAS, although othermodels could
also be exploited. Its parameters fA;α; p; cg (equation 5), are
inverted, and the forcing rate μ�t� is then deduced.We assume
that only μ can vary with time, while the parameters A, α, p,
and c are constant. This amount neglects possible changes in
the processes involved in earthquake nucleation and trigger-
ing that govern earthquake interactions, in comparison with a
time-varying stress loading by aseismic processes that can
freely, and possibly wildly, fluctuate in time. More specifi-
cally, the method consists of:

1. initially assuming a constant forcing rate μ�t� � μ, using
either estimators μ̂H or μ̂MLE, this gives the first esti-
mate μ�1��t�;

2. computing the MLE ETAS parameters θ�1� �
fA�1�;α�1�; p�1�; c�1�g knowing μ�1��t�;

3. updating the estimate of the forcing rate based on these
parameters, this yields μ�2��t�;

4. computing θ�k� knowing μ�k��t�, and computing μ�k�1��t�
knowing θ�k�, for k ≥ 2, until convergence of both the
ETAS parameters and the forcing rate is reached.

The second step consists of maximizing the (log-)like-
lihood ℓ of the ETAS model, given the data and the current
estimate μ�t�:

ℓ�θjμ�t�� � −
Z

T

0

dtλ�t� �
XN
i�1

lnλ�ti�; (16)

where the integral is computed on the duration 0 ≤ t ≤ T of
the dataset, and the sum is performed on all N earthquakes
i in this dataset. Here we use equations (4) and (5) that
define λ�t�.
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Figure 5. (a) Same as Figure 4 for the synthetic datasetsD1 and
(b) D3. Note that we plot the rate as a function of time in graph (b),
while it is function of the cumulative number of earthquakes in
graph (a) and in Figure 4b. The color version of this figure is avail-
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The third step first requires the computation of the prob-
ability ωi that earthquake i is a background earthquake, for
all i. This probability is defined as

ωi �
μ�ti�

μ�ti� � ν�ti�
: (17)

The forcing rate is then obtained by smoothing these
probabilities over time:

μ�t� � 1

tb − ta

Xb
i�a

ωi; (18)

where indices a and b are the indices of the earthquakes such
that there are ne=2 earthquakes in between t − ta and t and
ne=2 earthquakes in between t and t� tb. This defines a win-
dow of ne events centered on t.

The resulting μ�t� obtained after convergence strongly
depends on the smoothing parameter ne. This is illustrated
in Figure 7, where the estimated μ�t� is shown for dataset
D1 and ne � 4, 10, and 1000, and in Figure 8 for dataset
D2 and ne � 4, 40, and 350. For small values of ne, the esti-
mated μ�t� is allowed to vary quickly, and the solution where
ν ≪ μ is obtained: the observed rate of earthquakes is ex-
plained by an ad hoc time-varying forcing rate and very little
interactions between earthquakes. The vanishingly small
ETAS parameter A at ne → 1 indeed causes the interaction
term ν to be negligible compared with μ. On the contrary,
for large ne, the estimated μ�t� tends toward a constant rate,
with a value very close to μ̂H and μ̂MLE computed using the
whole dataset.

Zhuang et al. (2002) suggest to choose the best ne as the
parameter that minimizes the discrepancy between the num-
bers N1 and N2 of triggered earthquakes defined as:

N1 �
XN
i�1

1 − ωi; (19)

and

N2 �
XN
i�1

Aeαmi
�T � c − ti�1−p − c1−p

1 − p
: (20)

However, in our method, both numbers always remain
very close to each other, whatever ne, as shown in Figure 9.
This is a consequence of updating μ�t� with equation (18),
which forces the total number of background earthquakes to
equal the time integral of the forcing rate.

To select the appropriate smoothing parameter ne, we
instead propose to search for the minimum of the Akaike
Information Criterion (AIC):

AIC�ne� � −ℓ� N
ne

; (21)

where ℓ is the log-likelihood of equation (16), and N is the
number of earthquakes in the dataset. The second term is
a proxy for the number of free parameters in μ�t� and penal-
izes models with low ne values that allow μ�t� to vary too
quickly. We then obtain the minimum AIC for ne � 1000 and
ne � 40 for catalogsD1 andD2, respectively (Figs. 7 and 8).
The selected μ�t� is seen to well approximate the real forcing
rate, shown with the black curve.

For dataset D2, we compute the Kullback–Leibler dis-
crepancyΔKL, that measures how close the solution obtained
for a given ne is from the true μ�t�. Here we can compute this
discrepancy because we know the true forcing rate by con-
struction. We use the same 64 independent realizations of the
model that generated D2, and each time run our inversion of
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θ and μ�t� as explained previously, for a set of values for the
smoothing parameter ne. Then all 64 solutions are tested
against all 64 synthetic datasets: namely, we compute the
log-likelihood ℓi;j of the ETAS parameters and the forcing
rate inverted for the ith dataset, given the data of the jth data-
set. The Kullback–Leibler discrepancy is finally given by
ΔKL � −Efℓg, the average being taken over the 642 pair
combinations �i; j�.

Figure 10 shows that the minimum is found for ne � 30,
hence close to the ne � 40 value found with the AIC (see
Fig. 7). This shows that the AIC is indeed a good criterion
for selecting the smoothing parameter ne.
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We also run this method on the synthetic D3 (Fig. 11).
Again, a good approximation of the real μ�t� is found, here
for ne � 70. We thus conclude that this method is able to
correctly estimate the real forcing rate in all situations: con-
stant rate, rapidly varying rate, and slowly varying rate. It
provides a better estimate than methods based on interearth-
quake time statistics, at the cost of a more involved compu-
tation, in particular during the second step, which requires
inverting the ETAS parameters.

Previous methods for estimating μ�t� based on the ETAS
model failed to consider the dependence of the estimated
model parameters (A, α, p, and c) on the estimated μ�t�.
For example, Lombardi, Marzocchi, and Selva (2006) and
Lombardi, Cocco, and Marzocchi (2010) estimate these
parameters by imposing a constant μ, and then update μ�t�
with a piecewise uniform background model. However,
the optimized ETAS parameters are different if using this up-
dated μ�t�, so that an iterative procedure as proposed here
must be run. Similarly, Llenos and McGuire (2011) assume
a priori ETAS parameter values without considering the
possible dependence of their estimates on μ�t�.

The division in independent time intervals, for which
the ETAS parameters and the (locally constant) background
rate are inverted (Hainzl and Ogata, 2005) can also yield mis-
leading estimates if the durations of these time intervals are
not optimized. In particular, low α-values are typically found

for swarm seismicity with these methods. For example,
Hainzl and Ogata (2005) found α � 0:73 for the Vogtland
swarm and mention that this value “is similar to previous
findings for Japanese earthquake swarm activity, where the
α-value has been found to scatter in the range [0.35,0.85], in
contrast to nonswarm activity which is characterized by
higher values, namely, α∈�1:2; 3:1�”. As shown in Figure 8,
underestimation of α is indeed a signature of a badly opti-
mized smoothing parameter: actual fluctuations of μ�t�
cannot be explained by the model unless too strong a weight
is given to the triggering by small earthquakes, hence a low
α-value.

Conclusions

Determining the changes in the forcing rate that best
characterize the evolution of seismicity is a delicate issue.
A simple way to model any earthquake time series is to as-
sume the absence of triggering between earthquakes, so that
the time series is only explained by ad hoc changes in the
forcing rate. To explore other possible, more realistic models,
some smoothing of the rates has to be performed, and, more
importantly, this smoothing has to be optimized. We have
shown that this smoothing corresponds to adequately choos-
ing the duration of the time windows when using interearth-
quake time statistics. Unfortunately, this can damp real and
important changes in the forcing rate. Such fluctuations are
well estimated with the methods based on triggering models,
for which the smoothing parameter is selected according to
an information criterion.

The use of these methods for anaylzing earthquake data-
sets is particularly appropriate when considering swarms,
either in extensional or in volcanic zones, but also to detect
and characterize aseismic forcing transients that impact the
seismicity dynamics, for example, in subduction zones.
Other applications that will be further explored in subsequent
works relate to dynamic triggering: seismic activity can be
first initiated by the passage of waves radiated by remote,
large mainshocks; this activity then continues past the wave
train because of local earthquake interactions (Brodsky,
2006). For example, this type of pattern was proposed for
the Yalova region in Turkey following the 1999 Düzce earth-
quake (Daniel et al., 2006). The present methods then allow
us to characterize the transient initial forcing, both in dura-
tion and in intensity. Finally, the specific triggering caused
by a specific earthquake can be extracted from the earth-
quake time series thanks to such methods: as we did with
our synthetic datasets D1 and D2, the specific event to be
analyzed can be artifically removed from the catalog. Any
change in the estimated forcing, as compared with that
obtained with the full catalog, can then be attributed to this
specific event. This type of analysis can be used to explore
the departures of the triggering caused by individual main-
shocks from the mean-field laws provided by stochastic trig-
gering models.
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