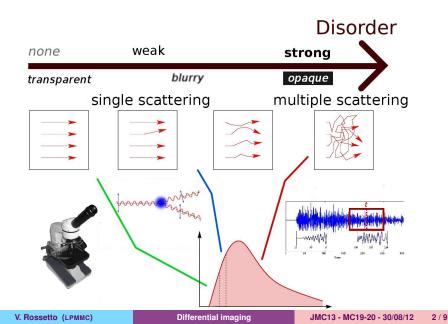
Differential imaging in heterogeneous media

Thomas Planès, ISTerre Grenoble Éric Larose, ISTerre Grenoble <u>Vincent Rossetto</u>, LPMMC Grenoble Ludovic Margerin, Obs. Midi-Pyrénées, Toulouse

IOSEPH FOURIER

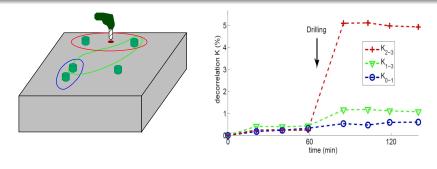

ISTerre

CINER

FINANCE PAR

JMC13 30 août 2012

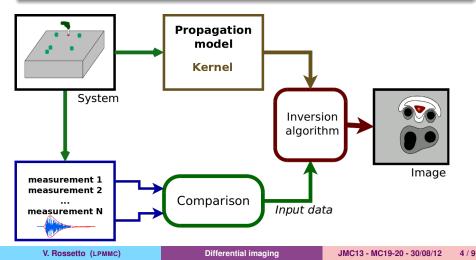
Classical imaging techniques



Sensitivity to small changes

Sensitivity depends on location

Setup


- Five transducers (operated as source or receiver)
- Correlations are computed from the codas of the signals at time t and time 0.
- ► A little hole (Ø 3 mm, depth 4 cm) is drilled during the experiment.

Imaging small changes : differential imaging

Principle of differential imaging

In strong disorder, small details cannot be distinguished from their surroundings \Rightarrow make an image of the *changes*

Broadness of differential imaging

Comparisons

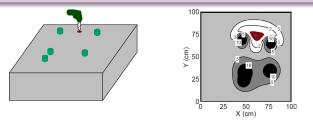
- Travel time change (velocity change)
- Correlations (scattering change)
- Intensity ratio (absorption change)

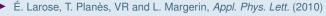
Propagation models

- Pure diffusion / radiative transfer / ...
- Boundary conditions

Inversion algorithms

- χ^2 optimization, local χ^2
- Error minimization (Tarantola-Valette)
- Compressive sensing algorithms (OM, PPPA,...)


Total variation Displacement of edges


Examples of differential images

Holes in a concrete block

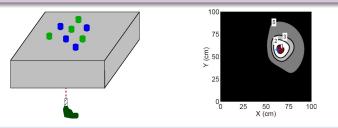
Diffusion - χ^2 inversion

- Diffusion model with reflecting boundary conditions
- χ^2 algorithm : for each **x**
 - Suppose there is a *unique* change in *x*
 - Compute expected correlation losses
 - Compute the mismatch between model and data

VR, L. Margerin, T. Planès and É. Larose, J. Appl. Phys. (2011)

V. Rossetto (LPMMC)

Differential imaging


10

Examples of differential images

Holes in a concrete block

Diffusion - χ^2 inversion

- Diffusion model with reflecting boundary conditions
- χ^2 algorithm : for each **x**
 - Suppose there is a *unique* change in *x*
 - Compute expected correlation losses
 - Compute the mismatch between model and data

É. Larose, T. Planès, VR and L. Margerin, Appl. Phys. Lett. (2010)

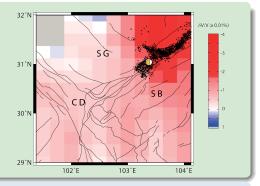
VR, L. Margerin, T. Planès and É. Larose, J. Appl. Phys. (2011)

V. Rossetto (LPMMC)

Differential imaging

JMC13 - MC19-20 - 30/08/12 6 / 9

Examples of differential images


Wenchuan earthquake (May 12th, 2008)

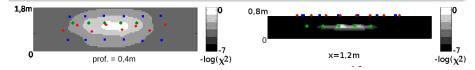
Travel time change - Tarantola-Valette algorithm

- Ballistic wave propagation
- Tarantola-Valette error minimization algorithm

Travel time change

- Continuous measure of ambient noise
- Reconstruction of Green's function (stacking)
- Maximize correlations by time stretching

Cheng, Froment, Liu & Campillo, Geophys. Res. Lett. 37 2010

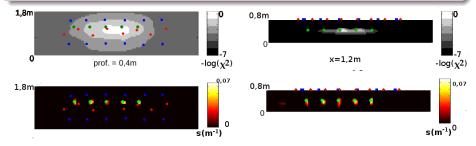

V. Rossetto (LPMMC)

Examples of differential imaging

Simulation of 5 aligned changes

Compressive sensing algorithm (PPPA)

- Input data : 50 numbers
- Unknows : 80,000 voxels



Examples of differential imaging

Simulation of 5 aligned changes

Compressive sensing algorithm (PPPA)

- Input data : 50 numbers
- Unknows : 80,000 voxels

► PPPA algorithm can locate up to ~ N/2 changes from N input measurements

V. Rossetto (LPMMC)

Outlook

Improvements in progress

- Radiative transfer in 3D (Paaschens formula)
- Extract more information from the coda
- Extended scattering changes

Future improvements

- Improve pre-processing
- Identify the best algorithm for a given problem
- Monitor edge displacement

Applications

- Study damaging or ageing of materials
- Monitoring of concrete structures (bridges, dams...)
- Observational or preventive seismology, volcanology

Differential imaging