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Convection experiments in nuids whose viscosity depends on temperature were carried out. Ratios of the top viscosity 
over the bottom viscosity up to 10 5 have been studied. Horizontally-averaged temperature versus depth profiles are 
presented, as well as accurate Nusselt number measurements and temperature isogradient cell pattern for Rayleigh 
numbers ( R) in the moderate range. The difference between the actual interior temperature and the mean of the top 
and bottom temperatures increases with the viscosity ratio. This difference reaches 25% of the overall temperature drop 
for a viscosity ratio of 10 5• As previously reported, the Nusselt number ( Nu) first decreases when the viscosity ratio 
increases, as compared to the constant viscosity case, provided the Rayleigh number is defined using the viscosity at the 
mean of the top and bottom temperatures. However, the trend is reversed for viscosity ratios larger than -5000. This is 
consistent with an Nu-R relationship based on the critical Rayleigh number. 

All planetary thermal evolution models using the parameterized convection approach divide the convective planet 
into a conductive lid and a convective region of constant viscosity underneath. Due to the lack of knowledge about 
convection in a temperature-dependent viscosity nuid, assumptions have to be made in order to define the cut-off 
between the two regions. The most commonly made assumptions are not supported by our experiments. Our 
experimental results can be used for extrapolating to situations of geophysical interest and for answering basic questions 
such as: what is the interior temperature of the convective system as a function of the rheological law and heat nux. and. 
what is the thickness of the lid? 

1. Introduction expected to be regulated by the coupled action of 
convection and temperature-dependent rheology. 
Tozer has developed and defended this argument 
in a number of papers (e.g. Tozer, 1965, 1967, 
1972). The point has been accepted and most 
thermal evolution models from that time on take 
the regulating effect into account. Often in these 
models, convection takes place under a rigid lid, 
i.e. the lithosphere. Tozer's argument is applied to 
the convective region but, in order to get a com
plete thermal model, it is then necessary to choose 
a criterion for defining the lid. This criterion varies 
widely from author to author and rests upon as-

It has long been recognized that the thermal 
evolution of the planets is critically regulated by 
the rheological behavior of their interiors. In
deed, the efficiency of convection in removing heat 
from a planetary body depends on the viscosity, 
which in turn is a strong function of its tempera
ture. Thus, the internal temperature of a planet is 
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sumptions which are still to be tested. Indeed, 
while a large number of such parameterized mod
els have appeared in the literature, little work has 
been done to increase our basic knowledge and 
physical understanding of convection in a temper
ature-dependent viscosity fluid. After the early 
numerical results of Foster (1969) and Torrance 
and Turcotte (1971), interest was renewed in the 
subject by the experiments of Booker (1976) and 
their interpretation by Booker and Stengel (1978). 
The relationship between Nusselt and Rayleigh 
numbers (Nu, ~) derived from their experiments 
has been widely used, and it is only recently that 
other aspects of convection in variable viscosity 
fluids have been investigated. This includes studies 
of the planform of convection (Richter, 1978; 
White, 1982) and calculations for the onset of 
convection for a variety of viscosity laws (Jaupart 
and Parsons, 1982). The finite-amplitude range has 
been addressed by several numerical experiments 
(i.e. Torrance and Turcotte, 1971; Houston and 
De Bremaecker, 1975; Hsui, 1978). A more sys
tematic study of the physics of convection with 
temperature-dependent viscosity is now develop
ing (Daly, 1978, 1980a, b; Ivins et al., 1982; 
Kenyon and Turcotte, 1981; Fowler, 1981; Morris, 
1981). The experiments described here are mainly 
aimed at a better understanding of the physical 
aspect of convection with temperature-dependent 
viscosity. At the same time, we summarize ap
proaches used in planetary thermal evolution mod
eling and show how our experiments can be used 
to test some of these. In section 2 we present a 
summary of these models and stress the assump
tions they are based on, and formulate simple 
questions that ultimately we want to answer using 
our experimental data and related theoretical con
siderations. In section 3 the experimental set-up is 
briefly described, emphasizing the thermal struc
ture of the convective state. This includes accurate 
measurements of the Nusselt number, profiles of 
the horizontally-averaged temperature versus de
pth, and interferometric photographs of the cells' 
temperature structure. Results for viscosity ratios 
up to 10 5 in the moderate Rayleigh number range 
are presented in section 4. Our Nusselt number 
measurements are in fair agreement with previous 
ones (Booker, 1976; Booker and Stengel, 1978) 
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and the empirical law found by these authors can 
be extended to higher viscosity ratios. However, 
we issue a warning against the misuse of this law 
in geophysical situations. In section 5, we suggest a 
simple method for extrapolating our results to 
much higher viscosity ratios. The study of convec
tion in a temperature-dependent viscosity fluid is 
only one (important) step towards a clearer picture 
of the thermal state of the planets and some of the 
limitations and desirable extensions are pointed 
out. 

2. Thermal evolution models for the planets 

An abundant geophysical literature has built up 
in recent decades which uses a parameterized con
vection approach to construct thermal evolution 
models. Such models have proved useful in ad
dressing and answering questions such as the inter
nal temperature of the planets (Tozer, 1972), 
tectonic regimes in the past (McKenzie and Weiss, 
1975), balance between heat production and heat 
flux (Daly, 1978; Daly and Richter, 1978; Schu
bert et al., 1980), heat sources distribution and the 
depth of convection (Sharpe and Peltier, 1978; 
Richter and McKenzie, 198lb; Schubert and 
Spohn, 1981 ), to quote only a few. Instead of 
solving the complete set of equations which govern 
convection, parameterized convection uses the re
lationship which relates the Nusselt number to the 
Rayleigh number independent of the actual details 
of the convective structure. The Nusselt number 
describes the efficiency of convection in transport
ing heat: it is the ratio of the convective heat flux 
over the heat flux one would get if heat was 
conducted across the layer, or alternatively it is the 
vertical temperature difference required to conduct 
a quantity of heat across the layer divided by the 
(smaller) temperature difference required py con
vection to carry the same amount of heat. In the 
constant viscosity case and with isothermal 
boundaries, the Rayleigh number is an external 
parameter defined as 

(1) 

where a is the coefficient of thermal expansion, g 
is the acceleration due to gravity, dis the depth of 
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the fluid layer, !lT is the temperature drop across 
it, " is the thermal diffusivity and v is the kine
matic viscosity. The Rayleigh number describes 
the propensity pf the fluid to convect: the larger 
the number, the more vigorous is the convection. 
Similar Rayleigh numbers can be defined for dif
ferent conditions (internal heating, constant heat 
flux, etc.) by using other externally-given parame
ters (heat production, heat flux, etc.). The relation
ship 

Nu =a( Rj RJP (2) 

where /3 is between 1/4 and lj3, and Rc is the 
critical Rayleigh number, gives good results for 
quite a variety of conditions (see Rossby, 1969; 
Turcotte and Oxburgh, 1967; Sharpe and Peltier, 
1978; Schubert, 1979; Richter and McKenzie, 
l98la). The existence of such a simple relationship 
is basically due to the way convection 'works': 
convective motions are organized in cells whose 
typical dimensions are of the same order as the 
depth of the convective layer; heat is conducted 
through a boundary layer at the bottom, advected 
in plumes around an isothermal core to the upper 
boundary layer which conducts it to the top 
surface. However, when there is a very large 
viscosity variation across the layer, one expects a 
thick rigid lid to develop on top of the convective 
region where Nu-R relationship applies. The prob
lem is then to determine the thickness of the 'lid' 
or the temperature drop across it. In other words, 
one has to define where the cut-off between a 
more or less rigid and conducting lid and the 
convective regime takes place. This cut-off pre
sumably depends on the viscosity law and on the 
vigor of convection (i.e. the Rayleigh number). 

The central issue, be it in the laboratory or in 
nature, is simply stated. Suppose we know the 
rheology, the heat flux at the surface and other 
'external' parameters such as conductivity, depth. 
What then is the internal temperature, what is the 
temperature at the base of the layer, and what is 
the thickness of the 'lithosphere'? At present, the 
physics of temperature-dependent viscosity con
vection is not known well enough to give an answer 
to these questions of geophysical interest. Reflect
ing the incomplete knowledge in this domain, dif-

ferent answers have been given to the cut-off ques
tion. The answers, which are necessary for a com
plete thermal model, rest on 'reasonable' assump
tions that vary from author to author. In his 
original approach, Tozer (1972) takes the viscosity 
at the base of the lid to calculate the Rayleigh 
number and the parameterized Nusselt number for 
the convective region beneath the lid, and then 
assumes that the lid thickness is the one which 
minimizes the bottom temperature (i.e. maximizes 
the overall Nusselt number). Sometimes a constant 
lid thickness is assumed: for lunar models, Turcotte 
et al. (1972) choose 300 km whereas Turcotte et al. 
(1979) take 200 km. However, most authors favor 
the constant viscosity cut-off assumption: a partic
ular value of the viscosity is used to define the 
base of the lid. Quite a variety. of values can be 
found in the literature. McKenzie and Weiss (1975) 
choose 10 21 poise in their model for the upper 
mantle of the Earth; Sharpe and Peltier ( 1978) 
choose 10 25 poise under continents in a whole 
mantle model; Schubert et al. (1980) take 10 27 

poise in their lunar model; 10 25 poise is chosen by 
Turcotte et al. ( 1979) for Venus and Earth models. 
In all these models, the Rayleigh number used in 
the parameterization is defined with the viscosity 
in the interior of the convective region. Note that 
when the surface rigid lid actually participates in 
convection (the oceanic plates on Earth), then the 
argument developed above of a conductive lid 
breaks down as the convective boundary layer 
then extends to the surface. Although the convec
tive behavior is even more complicated and poorly 
understood in that case, boundary layer arguments 
suggest that the simple Nu a R 113 relationship 
might hold for the system as a whole (Olson and 
Corcos, 1980). Thermal models of this latter type 
for the Earth often have no 'lid', and have a free 
surface instead (Sharpe and Peltier, 1978; Turcotte 
et al., 1979; Davies, 1980; Schubert et al., 1980). 
Clearly, experiments with rigid boundaries are not 
designed to deal with this problem. On the other 
hand, such experiments can help us in getting a 
better understanding of convection in a tempera
ture-dependent viscosity fluid and testing some of 
the assumptions used in the thermal models with a 
lid. 



3. Experimental set-up 

In our experiments, attention was directed to
wards the thermal structure of the convective fluid. 
Three techniques were used: 

(1) a differential interferometry technique which 
gives an instantaneous global picture of the verti
cal or horizontal gradient of temperature in the 
fluid seen in a vertical cross-section, thereby ob
taining quantitative information on the structure 
of cells and the within-cell convection; 

(2) a platinum wire resistance technique by 
which horizontally-averaged temperature can be 
measured as a function of depth; 

(3) a heat flux measuring method which enables 
us to obtain accurate Nusselt number measure
ments. 

The convective fluid is contained in a box whose 
horizontal boundaries are thick copper plates kept 
at uniform temperature, and the vertical ones are 1 
em-thick insulating lucite walls. L-100 polybutene 

-30 0 30 60 90 
TEMPERATURE (•c) 

Fig. I. Kinematic viscosity of L-100 polybutene and Golden 
Syrup (GS) as a function of temperature. Viscosity ratios up to 
2X 10 5 were achieved in our experiments. 
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or Tate and Lyle's Golden Syrup were used as 
working fluids depending on the degree of viscos
ity variation desired. Figure I shows the kinematic 
viscosity of these two fluids as a function of tem
perature. Temperatures are set from - 20 to 
+ 80°C. Viscosity ratios (viscosity at the top over 
viscosity at the bottom) from 10 to 103 are ob
tained with the polybutene and from 10 3 to 105 

with the Golden Syrup. 
The experimental set-up for differential inter

ferometry is very similar to the one described in 
Nataf et al. (1981). For this set-up, the internal 
dimensions of the frame which contains the fluia 
are: 1 em X 2 em X 20 em. The width is only twice 
the depth so that a reasonable number of isogradi
ent fringes is obtained. However, all the tempera
ture profiles and Nusselt number measurements 
are performed in a larger, otherwise similar, tank 
in order to decrease the influence of the lateral 
boundaries. The horizontal dimensions are then 10 
em X 20 em and the depth is either 1 or 2.4 em. 

The horizontally-averaged temperature was ob
tained by measuring the electrical resistance of 
several platinum wires which run in a horizontal 
plane within the fluid. The accuracy was - 0.1 °C. 
Temperature versus depth profiles were obtained 
by changing the depth of the measuring plane 
from the top plate to the bottom one. The depth of 
the wires is controlled by two verniers with an 
accuracy of - 0.1 mm. The Nusselt number mea
surements were done by monitoring the electrical 
dissipation in resistance wires within the bottom 
copper plate whose temperature was measured by 
thermocouples. In order to minimize heat losses 
other than to the fluid, the bottom plate was 
placed in a lucite box which was itself contained in 
an aluminum guard heater whose temperature was 
set as nearly as possible equal to the temperature 
of the copper plate in contact with the fluid. The 
heat loss correction was then less than 2%. 

Further details of the experimental set-up and 
procedure are given in Richter et al. (1982). 

4. Results 

In the following, unless otherwise specified, the 
viscosity at the mean of the top and bottom tern-
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peratures is used to define the Rayleigh number 
(as in Torrance and Turcotte, 1971; Booker, 1976). 
The interferometric photographs show quite a 
variety of patterns depending on the viscosity ratio 
and the Rayleigh number. Figure 2 gives a few 
examples. One striking feature is the very small 
wavelength which characterizes experiments with 
high viscosity ratio, especially when the Rayleigh 
number is large. This is due to the concentration 
of the motion towards the bottom where the 
viscosity is lowest. However, one should keep in 
mind that for these runs the width of the tank is 
only twice its depth. The motion in the highly 
viscous top part might thus be made even more 
difficult. The 'eyes pattern' in the horizontal iso
gradient photographs correspond to uprising cur
rents when they are close to the bottom and to 
downwelling currents when near the top (see Nataf 
et al., 1981 ). A marked asymmetry between the 
uprising and downwelling currents is shown by the 
isogradient photographs. The horizontal gradient 
is larger in the downwelling currents than in the 
uprising ones. 

The existence of a lid (the very viscous region at 
the top) where the heat transfer is mainly by 
conduction is best seen on the horizontally-aver
aged temperature versus depth profiles. Figure 3 
shows some of these profiles. Most remarkable is 
the increase of the interior temperature when the 
viscosity ratio is increased. In a temperature-de
pendent viscosity fluid, convection 'chooses' an 
interior temperature much higher than the mean of 
the top and bottom temperatures (which is the 
interior temperature for a constant viscosity fluid). 
We define the 'offset' £ as the difference between 
the actual interior temperature :Tint and the mean 
of the top and bottom temperatures T, normalized 
by the total temperature difference AT. For a 
given viscosity ratio, the offset is independent of 
the Rayleigh number (see Fig. 3) provided the 
Rayleigh number is large enough. Actually, the 
offset, as we define it, is zero for any viscosity 
ratio at the convection threshold. However, for a 
given viscosity ratio, it reaches an equilibrium 
value for a Rayleigh number of -6000. For a 
Rayleigh number of -30000, another transition 

Fig. 2. Vertical (left) and horizontal (right) isogradients of temperature. Convection cells are seen as in a vertical cross-section. The 
difference in gradient between two adjacent black fringes is 13°C cm- 1• Plate temperatures are (in °C) as follows. Top: (a) 20.0; (b) 
9.6; (c) 0.0; (d) -16.7; (e) -14.7. Base: (a) 60.1; (b) 49.8; (c) 80.0; (d) 46.9; (e) 14.8. Viscosity ratios: (a) 12; (b) 18; (c) 180; (d) 360; 
(e) 980. Rayleigh numbers: (a) 20000; (b) 9800; (c) 39500; (d) 5000; (e) 22000. Note the asymmetry between uprising and 
downwelling currents, the decrease of the wavelength for high viscosity ratios, and the shift of the center of the fringe patterns towards 
the bottom. 
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Fig. 3. Horizontally-averaged temperature versus depth profiles. On the left, experimentally measured profiles are shown for 
increasing viscosity ratios. The profile labeled 0 is for silicon oil with a viscosity ratio of 2 and a Rayleigh number of 1.2X 10 5. The 
three other profiles have the same Rayleigh number 1.2X 10 4 and increasing viscosity ratios: (I) 460; (2) 4150; (3) 49000. Note the 
increase of the interior temperature with increasing viscosity ratio. On the right, all profiles correspond to the same viscosity ratio of 
180. The Rayleigh numbers are: (I) 2.35X 10 4 (2) 2.05X 10 5 (3) 5.90X 10 5• They all give almost the same value of the interior 
temperature. 
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Fig. 4. Offset of the interior temperature versus viscosity ratio. 
The offset £ is defined as the difference between the interior 
temperature and the mean of the top and bottom temperatures, 
normalized with the total temperature drop across the layer. 
Full dots are for Rayleigh numbers larger than 30000. Circles 
are for Rayleigh numbers less than 30000. The two sets of data 
roughly define two curves (dashed lines). 
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seems to occur which brings the offset to a higher 
equilibrium value. As shown in Fig. 4, the offset 
values thus roughly define two curves when plotted 
against the viscosity ratio. Numerical experiments 
using the mean field approach (see Daly, 1980b) 
also show that the offset reaches an equilibrium 
value when the Rayleigh number is increased. In 
these numerical experiments, the sub-transition is 
not seen however, and the offset values fall on the 
upper curve of the laboratory results (S.F. Daly, 
personal communication, 1981 ). It is therefore 
likely that this transition corresponds to a change 
in the pattern of convection, presumably the ap
pearance of the spoke regime (D.B. White, per
sonal communication, 1981). 

The Nusselt number describes the efficiency of 
convective heat transport. It has been noted that 
the Nusselt number decreases when the viscosity 
ratio is increased and the Rayleigh number kept 
constant (Torrance and Turcotte, 1971; Booker, 
1976). This is when the Rayleigh number is defined 
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using the viscosity at the mean of the top and 
bottom temperatures. For a constant viscosity 
fluid, the relationship Nu 0 = 0.184 R0

·
281 describes 

very well the experimental results when R is 
larger than 4000 (Rossby, 1969). Booker (1976) 
reports Nusselt number measurements for L-8 
polybutene in the viscosity ratio range 1 to 300 
and Rayleigh numbers between 1.5 X 10 4 and 4 X 
10 5

• Using Rossby's (1969) relationship as a refer
ence, Booker (1976) shows that the NujNu 0 ratio 
decreases when the viscosity ratio increases (Nu is 
the measured Nusselt number for the considered 
viscosity ratio and Nu 0 is the Nusselt number 
given by Rossby's relationship at the same Rayleigh 
number). Using the same data set, Booker and 
Stengel ( 1978) find that the decrease of the Nu / Nu 0 

ratio can be entirely accounted for by the increase 
of the critical Rayleigh number Rc with the viscos
ity ratio. Indeed these authors claim that the rela
tionship Nu = 1.49 (R/Rc)0

·
281

, where Rc is the 
critical Rayleigh number for the considered viscos
ity ratio, fits all their data. We performed accurate 
measurements of the Nusselt number for viscosity 
ratio up to 2X 10 5

• FigureS shows the NujNu 0 

values we find together with Booker's results and 
Booker and Stengel's empirical relationship. For a 
given viscosity ratio, Rc is actually very sensitive to 

~------
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Fig. 5. NujNu0 versus viscosity ratio. The Nusselt number is 
normalized using Nu 0 the Nusselt number for a constant 
viscosity fluid at the same Rayleigh number. Full squares are 
Booker's (1976) data. The curve is the empirical relationship of 
Booker and Stengel (1978): Nu(p.)/ Nu 0 =(1707.7 / Rc(p.))0·281 

calculated from the critical Rayleigh numbers Rc we computed 
for L-100 polybutene at a mean temperature of 25°C. Triangles 
are our results for L-100 polybutene and circles are for Golden 
Syrup. 

the chosen viscosity law. The curve shown on 
Fig. 5 is for L-100 polybutene at a mean tempera
ture of 25°C. However, curves for the Rc values 
computed by Booker and Stengel (1978) for their 
experiments fall within 1% of the chosen curve. 

Qualitatively, our experiments are in agreement 
with Booker and Stengel's idea. In particular, the 
NujNu 0 ratio is found to increase after the viscos-

. ity ratio reaches a value of -5000. This is pre
cisely what we would expect as the critical Rayleigh 
number is shown to decrease after such a value is 
reached (Richter et al., 1982). However, the two 
investigations do not give the exact same results in 
the viscosity ratio domain where they overlap. This 
is due in part to uncertainties in the material 
properties of the fluids used which can produce an 
almost uniform offset in NujNu0 • This is the most 
likely explanation of the difference but it should 
be noticed that our experiments are at lower values 
of the Rayleigh number (from 10 4 to 3 X 104

). 

At this point, we return to the planetary evolu
tion models and see how well the assumptions they 
use work in terms of our experiments. Booker and 
Stengel's ( 1978) paper, as Schubert's ( 1979) review 
and Davies' (1980) paper among others, implies 
that the relationship in eq. 2 can be applied in 
thermal evolution models. However, Booker and 
Stengel's relationship applies when the Rayleigh 
number is defined with the viscosity at the mean 
of the top and bottom temperatures, whereas most 

10.-~~~--~~--------.--,--------~--. 

B 

6 

Nu 
4 

. 
D 

0 D Pv 
D o B 

0 10-101 . 10'-10' 
0 0 10'-10' 

0 10'-10' 

Ra1n1 
0 10'-10' 

10 10 10 

Fig. 6. Nusselt number versus the Rayleigh number used in 
most thermal evolution parameterized models: the 'interior' 
Rayleigh number (see text). Our data points fall increasingly 
below the constant viscosity curve when the viscosity ratio 
increases. 
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thermal models use a Rayleigh number based on 
the viscosity in the interior or the viscosity corre
sponding to the average temperature of the layer. 
As pointed out by Daly (1978, 1980a), these two 
quantities are very different due to the 'offset' of 
the interior temperature we described above. In 
Fig. 6, we plot our Nusselt number measurements 
against the Rayleigh number usually used in ther
mal evolution models, that is 

R . = agd4q 
mt kKPint 

(3) 

where q is the heat flux and Pint is the viscosity 
corresponding to the interior temperature. The 
latter is readily deduced from our horizontally
averaged temperature profiles. When the viscosity 
ratio increases, the Nusselt number values fall 
increasingly down below the constant viscosity 
curve, and errors as large as a factor of 2 will be 
made by using the constant viscosity relationship. 

The viscosity cut-off assumption can also be 
tested in our experiments once we define a 'lid'. It 
is tempting to choose the transition temperature as 
that above which an approximately symmetrical 
temperature profile is achieved. The horizontally
averaged temperature profile is then divided into 
two portions: a lid at the top between dimension
less temperatures 0 (top) and 2t:, and a convective 
region from 2t: to 1 (bottom). The offset t: and the 
thickness l) of the lid thus defined can be measured 
from the temperature profiles. These show a con
stant temperature gradient in the 'lid' so that the 
assumption of a conductive lid seems reasonable. 
However, if we define a reduced Rayleigh number 
and a reduced Nusselt number for the convective 
sublayer using the t:, l> and v int values measured, 
the reduced Nusselt number is up to 15% higher 
than the one predicted by the constant viscosity 
Nu-R relationship for the reduced Rayleigh num
ber. This suggests that the convective velocity in 
the lid, although very small, contributes to the heat 
transport by a non-negligible amount. It is likely 
that the use of a strain-averaged viscosity in the 
sense of Parmentier et al. (1976) would give a 
result closer to the constant viscosity case (S.F. 
Daly, personal communication, 1981; see also 
Jaupart and Parsons, 1982). This cannot be done 
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for our experiments, however, as we did not mea
sure velocities. 

With our definition of the lid, it is simple to 
show that the assumption of a cut-off viscosity at 
its base does not hold for our experiments. Imag
ine the following experiment : for a fixed upper 
temperature (taken to be zero) and for a given 
fluid, the temperature drop !::t.T is increased across 
the fluid. The temperature at the base of the lid is 
2t: !::t.T. The viscosity ratio P. increases with !::t.T so 
that t: increases with !::t.T as well. Thus, the temper
ature at the base of the lid increases yielding a 
decrease of the viscosity at the base of the lid. The 
only way to keep the latter constant would be to 
have the offset decreasing when the viscosity ratio 
increases. This is clearly not the case in our experi
ments. 

5. Discussion 

The demonstration of the inadequacy of some 
widely used assumptions when applied to our ex
periments need not imply that these are equally 
inadequate when applied to the planets. In many 
respects our experiments are in a transitional 
parameter range which is not directly relevant to 
the discussion of planetary evolution. However, 
the problem of large viscosity variations has to be 
properly addressed and experiments of the kind 
shown here can hopefully guide us in this task. 
Indeed a simple argument, namely that when the 
top part of the convective layer is really behaving 
rigidly one can add some more rigid material on 
the top without changing the circulation under
neath, shows that results in the transitional viscos
ity ratio range can be extrapolated to very large 
viscosity ratios (Richter et al., 1982). Ultimately, 
the understanding of convection in a fluid with 
temperature-dependent viscosity and its para
meterization must be based on careful laboratory 
and numerical experiments if the results are to be 
believed. 

One obvious drawback of our approach when 
looking at the Earth is that for the Earth the rigid 
top layer can play an active role in convection, this 
being the case at least in the oceanic regions. 
Clearly the results of our experiments and extrapo-
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lations where the lid behaves as a rigid conductive 
passive top will not apply to all parts of the Earth. 
Even with free boundaries, convection takes place 
under a rigid lid when the viscosity ratio is large 
enough (Torrance and Turcotte, 1971; Daly, 1980a; 
Jaupart and Parsons, 1982) and thus it appears 
that the type of 'plate tectonics convection' the 
Earth exhibits is very peculiar. It might be possible 
to account for it when zones of weakness are 
present in the rigid lid (Kopitzke, 1979; Jacoby 
and Schmeling, 1982). Even so, we are far from 
having a consistent parameterized scheme to use in 
that case. The horizontal dimensions of the plates 
might play a critical role (Daly, 1980a). Further
more, a third of the surface of the Earth is covered 
with continental lithosphere which does not par
ticipate actively in convection. Therefore, the two 
kinds of regime (with and without a passive lid) 
tend to be present on Earth and interactions be
tween the two modes might be very important for 
the total thermal balance (Sharpe and Peltier, 1978; 
Rabinowicz et al., 1980; Nataf et al., 1981). 

Thermal convection in planets with a rigid outer 
shell is certainly easier to handle and lies more 
within the scope of this paper. The results we have 
presented here and previous authors' work begin 
to address some of the basic questions in this 
domain. 

Acknowledgments 

Steve Daly has been associated with many dis
cussions throughout this research and we are inde
bted to him for many helpful suggestions. We 
thank Claude Jaupart for providing us with an 
unpublished manuscript of his work with Barry 
Parsons. We are grateful to William Moloznick 
who has made the experimental aspects of this 
work possible by his exquisite technical skill. We 
thank Maurice Fran<ron for lending us the dif
ferential interferometer and Dave White for com
municating unpublished data on the properties of 
Golden Syrup and the convection planforms real
ized at high values of viscosity variation. This 
work was supported by the National Science 
Foundation grant NSF-EAR 79-26482. 

References 

Booker, J.R., 1976. Thermal convection with strongly tempera
ture-dependent viscosity, J. Fluid Mech., 76; 741-754. 

Booker, J.R. and Stengel, K.C., 1978. Further thoughts on 
convective heat transport in a variable-viscosity fluid. J. 
Fluid Mech., 86: 289-291. 

Daly, S.F., 1978. Convection with decaying heat sources and 
the thermal evolution of the mantle. Ph.D. dissertation, 
Univ. Chicago, IL. 

Daly, S.F., 1980a. The vagaries of variable viscosity convection. 
Geophys. Res. Lett., 7: 841-844. 

Daly, S.F., 1980b. A Green's function approach to infinite 
Prandtl number convection with large viscosity variations. 
Int. Conf. Mathematical Problems of the Thermal and 
Dynamic State of the Earth, Lake Arrowhead, CA (abstr.). 

Daly, S.F. and Richter, F.M., 1978. Convection with decaying 
heat sources: a simple thermal evolution model. Lunar 
Planet. Sci. Conf., 9: 213 (abstr.). 

Davies, G.F., 1980. Thermal histories of convective Earth mod
els and constraints on radiogenic heat production in the 
Earth. J. Geophys. Res., 85 : 2517-2530. 

Foster, T.D., 1969. Convection in a variable viscosity fluid 
heated from within. J. Geophys. Res., 74: 685-693. 

Fowler, A.C., 1981. Implications of scaling and non-di
mensionalisation for mantle convection. EOS, Trans. Am. 
Geophys. Union, 62 : 383 (abstr.). 

Houston, M.H. and De Bremaecker, J.-C., 1975. Numerical 
models of convection in the upper mantle. J. Geophys. Res., 
80: 742-75 I. 

Hsui, A.T., 1978. Numerical simulation of finite-amplitude 
thermal convection with large viscosity variation in axisym
metric spherical geometry: effect of mechanical boundary 
conditions. Tectonophysics, 50: 147-162. 

Ivins, E.R., Morton, J.B. and Phillips, R.J., 1982. Mean field 
numerical solutions for heat transport and vertical viscosity 
structure for large scale mantle convection. Geophys. J. R. 
Astron. Soc. (in press). 

Jacoby, W.R. and Schmeling, H., 1982. Convection in the 
mantle and its boundary layers. Phys. Earth Planet. Inter., 
29: 305-319. 

Jaupart, C. and Parsons, B., 1982. Convective instabilities in a 
variable viscosity fluid cooled from above (unpublished 
manuscript). 

Kenyon, P. and Turcotte, D.L., 1981. Parameterized convection 
in an internally heated fluid layer with a strongly tempera
ture-dependent viscosity EOS, Trans. Am. Geophys. Un
ion, 62: 383 (abstr.). 

Kopitzke, U., 1979. Finite element convection models: com
parison of shallow and deep mantle convection, and tem
perature in the mantle. J. Geophys., 46: 97-12 I. 

McKenzie, D.P. and Weiss, N.O., 1975. Speculations on the 
thermal and tectonic history of the Earth. Geophys. J.R. 
Astron. Soc., 42: 131-174. 

Morris, S., 198 I. Analytical models for thermal convection with 
strongly temperature-dependent viscosity. EOS, Trans. Am. 
Geophys. Union, 62: 382 (abstr.). 



t. 

Nataf, H.-C., Froidevaux, C., Levrat, J.-L. and Rabinowicz, M., 
1981. Laboratory convection experiments: effect of lateral 
cooling and generation of instabilities in the horizontal 
boundary layers. J. Geophys. Res., 86: 6143-6154. 

Olson, P. and Corcos, G.M., 1980. A boundary layer model for 
mantle convection with surface plates. Geophys. J.R. As
Iron. Soc., 62: 195-219. 

Parmentier, E.M., Tur•;otte, D.L. and Torrance, K.E., 1976. 
Studies of finite amplitude non-Newtonian thermal convec
tion with application to convection in the Earth's mantle. J. 
Geophys. Res., 81: 1839- 1846. 

Rabinowicz, M., Lago, B. and Froidevaux, C., 1980. Thermal 
transfer between the co.ntinental asthenosphere and the 
oceanic subducting lithosphere: its effect on subcontinental 
convection. J. Geophys. Res., 85: 1839-1853. 

Richter, F.M., 1978. Experiments on the stability of convection 
rolls in fluids whose viscosity depends on temperature. J. 
Fluid Mech. 89: 553-560. 

Richter, F.M. and McKenzie, D.P., 1981a. Parameterizations 
for the horizontally-averaged temperature of infinite Prandtl 
number convection. J. Geophys. Res., 86: 1738-1744. 

Richter, F.M. and McKenzie, D.P., 1981 b. On some conse
quences and possible causes of layered mantle convection. 
J. Geophys. Res., 86: 6133-6142. 

Richter, F.M., Nataf, H .C. and Daly, S.F., 1982. Heat transfer 
and horizontally-averaged temperature of convection with 
large viscosity variations. J. Fluid Mech. (submitted for 
publication). 

Rossby, H.T., 1969. A study of Benard convection with and 
without rotation. J. Fluid Mech., 36: 309-335. 

Schubert, G., 1979. Subsolidus convection in the mantles of 

329 

terrestrial planets. Annu. Rev. Earth Planet. Sci., 7: 289-342. 
Schubert, G. and Spohn, T., 1981. Two-layer mantle convection 

and the depletion of radioactive elements in the lower 
mantle. Geophys. Res. Lett., 8: 951-954. 

Schubert, G., Stevenson, D. and Cassen, P., 1980. Whole planet 
cooling and the radiogenic heat source contents of the Earth 
and Moon. J. Geophys. Res., 85 : 2531-2538. 

Sharpe, H.N. and Peltier, W.R., 1978. Parameterized mantle 
convection and the Earth's thermal history. Geophys. Res. 
Lett., 5: 737-740. 

Torrance, K.E. and Turcotte, D.L., 1971. Thermal convection 
with large viscosity variations. J. Fluid Mech., 47: 113-125. 

Tozer, D.C., 1965. Heat transfer and convection currents. Philos. 
Trans. R. Soc. London, Ser. A, 258 : 252-271. 

Tozer, D.C., 1967. Towards a theory of thermal convection in 
the mantle. In: T.F. Gaskell (Editor), The Earth's Mantle. 
Academic Press, New York, pp. 325-353. 

Tozer, D.C., 1972. The present thermal state of the terrestrial 
planets. Phys. Earth Planet. Inter., 6: 182-197. 

Turcotte, D.L. and Oxburgh, E.R., 1967. Finite amplitude 
convection cells and continental drift. J. Fluid Mech., 28: 
29-42. 

Turcotte, D.L., Hsui, A.T., Torrance, K.E. and Oxburgh, E.R., 
1972. Thermal structure of the Moon. J. Geophys. Res., 77 : 
6931-6939. 

Turcotte, D.L., Cooke, F.A. and Willeman, R.J., 1979. Para
meterized convection within the Moon and the terrestrial 
planets. Proc. Lunar Planet. Sci. Conf., 10: 2375-2392. 

White, D.B., 1982. Experiments with convection in a variable 
viscosity fluid. Ph.D. Thesis, Cambridge University. 




