
• 

178 Earth and Planetary Science Leiters, 60 ( 1982) 178-194 
Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

A parameterized model for the evolution of isotopic 
heterogeneities in a convecting system 

Frank M. Richter 1
, Stephen F. Daly 2 and Henri-Claude N ataf 3 

1 Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (U.S.A.) 
1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 9ll09 (U.S.A.) 
3 Seismological Laboratory, California Institute of Technology, Pasadena, CA 9ll25 (U.S.A.) 

Received December 22, 1981 
Revised version received May 24, 1982 

Laboratory experiments are used to illustrate how steady convective flows, while efficient at stirring an initial 
heterogeneity within a single cell, do not produce dispersal of heterogeneous material over scales large compared to the 
depth. Long-range dispersal requires that the flow be time dependent on a time scale comparable to the overturn time. 
Convection in an internally heated layer has this property and numerical solutions are used to study the way in which it 
disperses a set of neutrally buoyant particles that were initially confined to a small space. The horizontal dispersal of 
these particles is reasonably well represented by an effective diffusivity of 0.3 cm2js for a Rayleigh number of 106. The 
concept of an effective diffusivity is then applied to the isotopic evolution of the Sm-Nd and Rb-Sr systems with spatial 
variations generated by horizontal variations in degree of melting 1.8X 10 9 years ago. The present-day average£ value 
one would measure in such a system depends on the average degree of melting, the amplitude and length scale of 
variations in partial melt, and the effective diffusivity assumed. Especially in the case of Nd the differences in average£ 
value between a uniform and a spatially variable (but with the same average) melting case can be significant. The range 
of£ values about the average is controlled by the competing effects of generation by the differences in enrichment factor 
and decay due to the effective diffusivity. 

[6] 

1. Introduction fsr• which measure departures of the isotopic ratios 
from a reference state taken as chondritic for 
Sm-Nd. Considerable progress has been made in recent 

years in characterizing the source material of mid
ocean ridge basalts (MORB). Because of their 
pervasiveness, these basalts are generally believed 
to provide the best measure of the chemical prop
erties of the upper mantle, especially in the case of 
its isotopic composition. The isotopic composition 
of Nd is central to most recent chemical evolution 
arguments because of the greater confidence with 
which the bulk earth parent to daughter ratio can 
be assumed. Also the observed correlation of 
143 Ndj 144 Nd with 87Srj 86Sr [1-4] gives hope that 
the isotopic systems are not complicated beyond 
successful modelling. Fig. I shows this remarkable 
correlation (the mantle array) in terms of £Nd and 

Some aspects of the Nd and Sr isotopic data 
have received much attention. The average isotopic 
composition of MORB (€Nu- 10, fsr- -27) is 
most often explained as resulting from the extrac
tion by partial melting of the continental crust 
from some or all of the mantle, leaving a depleted 
residual mantle that will yield the MORB values 
upon remelting. Jacobsen and Wasserburg [5] for 
example modelled such a situation and found that 
the volume of mantle involved is about I /3 the 
total and that the mean age of extraction (mean 
age of the continents) is 1.8 X 10 9 years. The em
phasis in such models is to explain the average £ 

values in terms of the average properties of the 
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Fig. I. Correlation of £Nd with £ 5, for oceanic basalts taken 
from DePaolo and Wasserburg (22). The circles are MORB and 
the triangles are ocean island basalts. 

various geochemical reservoirs assumed to be in
volved. We show below that the average of a set of 
£ values has different interpretations depending on 
the heterogeneity of the system and the efficiency 
of convective stirring. 

The mantle array can be explained in terms of 
mixing depleted mantle (upper mantle) with man
tle material that was not involved in the generation 
of the continental crust (6]. Alternatively the man
tle array could have been generated by the evolu
tion of the continental crust through time if a 
nearly uniform ratio of the enrichment factors of 
Sm-N d to Rb-Sr is left behind. DePaolo [7] and 
Allegre et al. (8] point out some of the special 
requirements such an explanation places on the 
melting process, further special circumstances are 
required in order that MORB always represent an 
extreme composition along the mantle array. In 
the case of the mantle array, the emphasis is on 
processes that yield a linear or almost linear corre
lation and little attention is given to the scatter of 
the data, which is small but somewhat larger than 
analytical errors. It could be argued that the scatter 
is small due to efficient stirring by mantle convec
tion but this idea needs quantitative study lest it 
lead also to the "homogenization" of the points 
along the mantle array. 
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Little besides heuristic arguments exist as to the 
effect of thermal convection on the evolution of 
isotopic heterogeneities in a system such as the 
mantle. Convection can be ignored only when 
modelling the averaged properties of mantle res
ervoirs and even then some statement regarding 
the convective processes is required to predict the 
average £ values that would be measured. The 
scaling arguments in Richter and Ribe [9] suggest 
that convection becomes a crucial process once the 
velocities exceed a few millimeters per year, and 
velocities considerably in excess of this are gener
ally believed to exist in the mantle. The stirring of 
passive chemical heterogeneities (those that do not 
affect density) was discussed by Richter and Ribe 
[9] in the special case of two-dimensional, steady 
convection cells. Under these restricted conditions 
any original heterogeneity of finite size will with 
time take the shape of an increasingly tightly 
wound spiral, but no material is exchanged be
tween cells. We illustrate this behavior by means 
of laboratory experiments described in the next 
section. In a general way one can characterize such 
stirring as efficient on the scale of individual cells 
but incapable of producing dispersal over larger 
horizontal scales. Dispersal of a passive tracer over 
horizontal scales large compared to the cells them
selves requires time dependence, which we demon
strate first with a system in which closed cells 
migrate with a prescribed phase speed and then 
with a numerical example of internally heated 
convection. The dispersal seen in the latter case 
can be represented in terms of an effective diffu
sivity (- 0.3 cm2 js), a concept we then use in a 
simple model for the evolution of isotopic varia
tions in a parameterized convecting system. 

2. Stirring by steady convective flows 

Laboratory experiments were carried out in 
which neutrally buoyant dye was injected into a 
layer of convecting silicone oil contained between 
horizontal, isothermal glass boundaries that allow 
the dispersal of the dye to be observed. The sim
plest cases are those at low Rayleigh number ( < 2 
X 10 4 ) in which the flow is two-dimensional rolls. 
Fig. 2 shows the evolution of dye in such a situa-
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Fig. 2. Evolution of dye, appearing white in this photograph, in 
the case of convection rolls. The dye was introduced by a thin 
tube into the upwelling sheat. The photographs are looking 
downwards at 45° and along the axis of the (unseen initially) 
roll to the right of the one containing most of the dye. 

tion. The camera is looking downwards at 45° 
along the axis of the unseen roll immediately to 
the right of the cell containing most of the dye. 
The dye was injected at the base of the upwelling 
and by the time of picture (a) it has risen to the 
top boundary and begun to move horizontally. By 
(d) the first overturn is complete and a second 
sheet of dye is beginning to develop in a way 
similar to that described in Richter and Ribe [9]. A 
small amount of dye is by this time spreading 
along the cell on the right but the velocities are 
much slower because the dye is along streamlines 
close to the stationary upper boundary. The point 
of these photographs is that they illustrate how an 
originally more or less spherical "heterogeneity" 
becomes stretched out into spiral sheets. Some 
experiments included an imposed shear along the 
axis of the cells representing a possible mantle 
situation with rolls aligned in the direction of the 
return flow under a moving lithospheric plate as 
suggested by Richter [10] and Richter and Parsons 
[11]. In such cases, the dye streaks become quite 
complicated but in general can be characterized as 
cork screw patterns with axis in the direction of 
shear. With time, the dye streaks are contained in 
a band one cell width wide and down stream of 
the original point of injection. 

At the higher Rayleigh numbers characteristic 
of the mantle (Ra > 106

) the platform of convec
tion is the spoke pattern shown by means of a 
shadowgraph in Fig. 3d. The cells are irregular 
polygons with rising (sinking) sheets radiating out 
of a central upwelling (downwelling) and the char
acteristic scale is of the order of the depth of the 
layer. Photographs (a), (b) and (c) show both the 
shadowgraph and the actual dye which is in a 
layer about 5 em above the plane of the shadow
graph. The relationship between the dyed layer 
and the shadowgraph is best seen in (a) where dye 
is being injected through a thin tube into the 
central upwelling of a cell. In (b) the dye has risen 
to the top of the cell and perfectly outlines its 
horizontal extent. By (c) dye is sinking along the 
sides. Eventually the dye pattern is a large number 
of filaments within a single cell and radiating out 
of the central upwelling. Photograph (d) is a 
shadowgraph alone taken at a later time. The cell 
of the preceding photographs can be seen and also 



another cell in which the dye remains confined to 
a wedge-shaped sector of a polygonal cell. These 
experiments show how a "heterogeneity" will be
come drawn out but for the most part remains 
within a single cell or portion of a cell, even at 
high Rayleigh number. 

In general, steady convective flows can be effec
tive at dispersing an original "heterogeneity" 
throughout the depth of the layer and on a hori
zontal scale comparable to the depth. If shear is 
added, dispersal in the direction of the shear takes 
place but the cross-shear dispersal is still limited. 
The dispersal of a "heterogeneity" over scales large 
compared to the depth requires time dependence, 
which is the subject taken up in the next two 
sections. 

3. The effect of time dependence 

The effect of time dependence on the dispersal 
of passive tracers can be illustrated by considering 
the trajectories of marked particles in a simple 
two-dimensional flow with closed streamlines that 
migrates with time. The velocity field l;!(x,z,t) 
assumed for this purpose is: 

u = alj;{_ alj;k (I) 
- az ax 

where { and k are unit vectors in the X and Z 

direction and the stream function 1/;(x, z, t) is given 
by: 

1/; =A sinwz sin(mx- at) (2) 

The streamlines are closed cells at any instant in 
time regardless of a which controls the phase. The 
trajectory (X( t ), Z( t )) of a particle originally at 
(x0 , z0 ) is found by integrating: 

~~ = ~~ lx.z (3) 

(4) 

Analytic solutions of (3) and ( 4) are not generally 
obtainable because the right-hand side needs to be 
evaluated at the unknown position X(t), Z(t); but 
limiting cases and numerical solutions of sufficient 
accuracy are easily obtained. 
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Case a lm ..... 0. This limit represents the steady 
case studied by Richter and Ribe [9] and the 
trajectories are along streamlines. Since the 
streamlines are closed, material within a cell never 
leaves it. An original heterogeneity will with time 
become drawn out into a spiral since (2) does not 
represent rigid body rotation. Examples of the 
relative motion of particles in this limit but with 
more realistic streamlines obtained from numerical 
solutions of the convective equations can be found 
in work by McKenzie [12]. 

Case aim ..... oo. This limit of very rapid transla
tion of the streamline pattern has an approximate 
solution: 

X(t) = x 0 + Aw coswz0 { cos(mx
0

- at) 
a 

-cos(mx0 )} (5) 

Z(t) = z0 +A; sinwz0 { sin(mx0 - at)- sin(mx0 )} 

(6) 

The trajectories are ellipses with axis of order 1 I a, 
therefore particles do not disperse since they re
main very close to their original position. O'Con
nell and Hager [13] have argued that the rapid 
migration of ridges can result in a relatively iso
lated lower mantle, a suggestion related to the 
limit discussed here where sufficiently fast time 
dependence inhibits dispersal. Their argument is 
kinematically sound given sufficient time depen
dence but dynamically unlikely because the iso
lated material will warm up, become less dense 
and finally rise ending its isolation. The point is 
that kinematic arguments can serve only as guides 
and realistic models of convective stirring must 
include the buoyancy forces maintaining the flow. 

Case aIm =A. This regime of phase speed com
parable to the convective velocity does lead to 
dispersal over distances large compared to the size 
of individual cells. Fig. 4 is an example of the 
dispersal of two particles, initially in the same cell, 
when a 1m =A. The streamlines at three different 
times are shown together with the trajectory of 
each particle. The position of the two particles at 
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each time is marked by a + on the trajectory. A 
stationary observer sees the two particles moving 
in opposite directions from which he concludes 

that a "heterogeneity" of sufficient size would be 
stretched out over large distances. 

In general, long-range dispersal will occur when 



183 

Fig. 3. Dye pattern and shadowgraph of spoke convection. The dye is injected into the central upwelling of a cell through a thin tube 
that can be seen in (a). The shadowgraph, in which cold sinking regions appear as dark lines and rising regions are the fainter light 
lines, is in a plane about 5 em below the actual fluid layer. Photograph (d) is a shadowgraph alone showing more of the cells and how 
dye (light colored) is pretty much confined to single cells. The almost pentagonal cell to the right of the white rectangle (whose long 
dimension is equal to the depth of the layer) is the one shown in detail in the other photographs. The more or less triangular region of 
dye in the cell below it, is from an earlier experiment and the dye is seen to be very confined even after about 30 turnover times. 
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Fig. 4. Streamlines and the trajectories of two particles in the case o / m =A. The dark line is the trajectory and the cross is the 
position along the trajectory of the two particles at the three times given. Time is in units A-t. 

the phase speed of a convective pattern is com
parable to the convective velocities themselves. Put 
differently, the condition is that the characteristic 
time scale associated with the time dependence 
should be comparable to the overturn time, a 
requirement met by the numerical solutions for 
convection in internally heated fluids [14,15]. 

4. Stirring by internally heated convection 

Numerical solutions for two-dimensional inter
nally heated convection become time dependent at 
Rayleigh numbers comparable to those expected 
for the upper mantle and we use these to illustrate 
the dispersal of a set of marked particles over 



distances large compared to the depth of the sys
tem. At least for this particular type of convection 
the observed dispersal can be parameterized in 
terms of a horizontal effective diffusivity, which in 
turn leads to a description of how isotopic het
erogeneities will evolve in a gross sense. A more 
realistic upper mantle convection model would be 
one in which the separate lower mantle is inter
nally heated while the upper mantle is depleted of 
heat producing elements and thus driven almost 
entirely by the flux of heat from below [16]. In 
such a layered system the flow is also time depen
dent [ 17] and a similar result in terms of effective 
dispersal would be found. 

The streamlines and temperature field at vari
ous times for a numerical calculation of internally 
heated convection in an 8 X I box are shown in 
Fig. 5. Time is measured in units of d 2jK and 
distance in terms of the depth d, where K is the 
thermal diffusivity. The numerical method is de
scribed by Richter [18] and is used here for an 
internally heated, non-rotating, uniform viscosity, 
infinite Prandtl number fluid with boundary con
ditions: 

T= 0, 1/J and a2 1jljaz 2 = 0 on z = 1 (top) (7) 

aT a;= 0,"' and a 2 1jlj az 2 = 0 on z = 0 (bottom) (8) 

The Rayleigh number Ra = gaHd 5jkKv is the only 
parameter in the problem and the value used, 
1.4 X 10 6 corresponds to upper mantle convection 
with an average heat flux out of the system of 
5.85 X 10- 2 W m 2 [14]. g is the acceleration of 
gravity, a is the coefficient of thermal expansion, 
H is the volumetric heating rate, d is the depth, k 
is the thermal conductivity, K is the thermal diffu
sivity and v is the viscosity. 

Fig. 6 shows the dispersal with time of 399 
particles originally uniformly distributed over a 
region one depth scale wide. The horizontal posi
tion of these particles as a function of time is 
shown in Fig. 7 and gives the impression of a 
diffusive process. The simplest parameterization of 
this process is obtained by assuming randomness 
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for which [19]: 

(10) 

where a is the second moment of the distribution 
about its mean position X. Fig. 8 shows both X (in 
units of d) and a 2 (in units of d 2 ) as a function of 
time (in units of d 2/K). The effective diffusivity Ke 

is estimated from the average slope of a 2 vs. t 
giving: 

(11) 

which corresponds to a dimensional value Ke- 0.3 
cm2js (K is typically estimated to be about 0.01 
cm2 js). 

The effective diffusivity of many geophysical 
systems varies with scale and the value obtained 
depends on the separation of the particles used to 
determine it. In the atmosphere for example, par
ticles a few meters apart might be seen to separate 
at rates giving an effective diffusivity of about 10 4 

cm2 js while those separated by several thousand 
kilometers would produce an estimate of the order 
of 10 11 cm2 js [20]. The relative motion of parsnip 
floating in the sea was found by Richardson and 
Stommel [21] to suggest a diffusivity that depends 
on their separation I as / 1

.4. The earth's mantle is 
potentially as complicated as the ocean or atmo
sphere in so far as the dispersal of heterogeneities 
is concerned, but in what follows we parameterize 
the process in terms of a scale-independent effec
tive diffusivity. We did test the effective diffusivity 
of the internally heated case using Richardson's 
[20] distance-neighbor method, and found no sig
nificant variation with scale. Apparently, the de
tachment of cold plumes from the upper boundary 
layer is sufficiently random to produce a reasona
bly uniform effective diffusivity, which could be 
used to describe the stirring of passive chemical 
species in the interior of a planetary body without 
plate tectonics. 

However, our interest is really the earth and so 
the exercise that follows should be seen as the first 
of a hierarchy of models that may eventually con
tribute to a rational basis for discussing the evolu
tion of chemical heterogeneities in the earth's man
tle. 
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Fig. 6. Position of 399 particles advected by the now shown in Fig. 5. From top to bottom times are from 0 to 0.1 in increments of 
0.02 d 2j K. 
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of the second moment gives the effective diffusivity in units of the thermal diffusivity. 



5. Isotopic evolution in a convecting layer 

The essentials of the model problem are as 
follows. An initially uniform reservoir (UR) suffers 
a single melting event at time 1. The degree of 
melting, F(x), varies spatially about a mean F0 , 

which was chosen such that in the absence of 
spatial variations it would produce good agree
ment with the average observed isotopic composi
tion of MORB. F(x) produces horizontal varia
tions in each chemical specie but initially there is 
no variability in the isotopic ratios. However, since 
the parent to daughter ratios are not spatially 
uniform, variations in the isotopic ratios do de
velop with time. The magnitude of this variation 
as a function of time depends on the competing 
effect of production by decay opposed by the 
stirring effect of convection, which we para
meterize as an eddy diffusivity. 

This model problem, which is based on Jacob
sen and Wasserburg's [5] model I, involves several 
levels of abstraction. To begin with the melting 
and removal of melt from the mantle is not meant 
to represent any particular real process and is used 
simply as a way of specifying elemental fluxes out 
of the mantle such that the residual mantle and 
continental crust have the desired concentrations 
and subsequent isotopic evolution. We are there
fore using an effective degree of melting and effec
tive partition coefficients that we hope embody the 
consequences but not the process of extracting the 
continental crust. This is taken a step further by 
assuming that the effective degree of melting is 
spatially variable, but in fact we could have just as 
well specified variations in the elemental con
centrations directly. The use of a melting function 
is simply to produce variations for the different 
elements that are correlated in a way justified by 
the existing geochemical data. Finally we have 
assumed that the extraction of the continental 
crust occurs at a single time equal to the mean age 
of the continents even though a continuous evolu
tion is much more realistic. The simpler single-stage 
model is sufficient for our present purpose, which 
is to illustrate some general effects of convectively 
stirring an isotopically evolving system. 

UR has concentration C;o (Table I) of each 
specie and a corresponding number of atoms N; 0 
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per unit volume. The subscript i = s represents a 
stable reference isotope, i = r represents a radioac
tive parent with decay constant.\, and i = d repre
sents the daughter of r of the same element as s. 

The evolution of UR is given by: 

( 
Ndo) = ( Ndo) + ( Nro) (I_ e->.1 ) (l 2) 
Nso , Nso o Nso o 

and : 

( ~: ), = ( ~: L e ->.t ( 13) 

where the assumed initial ratios for the Sm-Nd 
and Rb-Sr systems are given in Table I. 

At 10 = 2.75 X 10 9 years (1 0 = 2.75 X 10 9 years 
and F0 = 1.78% are based on Jacobsen and 
Wasserburg's [5] model I) UR is partially melted 
according to: 

F(x)=Fo[I+2y ~ I sin{(2n+l)?Tx}] 
1T

11
= 1 (2n+I) L 

( 14) 

This corresponds to a square wave with mean F0 , 

range yF0 and wavelength 2L. Fig. 9 shows the 
melting function for y = 0.5, the value used below. 
Assuming equilibrium partial melting the con
centrations in the residual mantle are: 

C 0 D c ( ) I I 

i X = F( X) + D; { I - F( X)} 
(15) 

The values used for the partition coefficients D
1 

are given in Table I. From (15) and knowing the 
isotopic composition of UR at I, the atomic con
centration N,(x) can be found. Both C;(x) and 
N;(x) are square waves and we can write: 

( 
_ 2D.N ~ I 

N; x,10 )=N;---~ ~ ( ) 
1T n=O 2n + I 

X. { (2n+ J)?TX} 
sm L ( I6) 

where fi1, and D.N, are the average and range of 
N;(x) which are given in Table2 for the Sm-Nd 
and Rb-Sr systems. 

The equations governing the evolution of 
N;(x, I) in a deforming system are: 

aN 
af+~·\JN,=-.\1 Nr (17) 
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TABLE I 

Values used in calculations • 

C;o D; A, (Ndo / N,o)o (N.o / N,o)o ( Ndo/ N,o)4.55 (N.o/N,o)4.55 

Rb 0.645 0.0013 
H7Rb 0.0142 

} 0.0882 } 0.08268 Sr 22 0.043 
B6Sr 

) 0.698982 )07~5 
B7Sr 

Sm 0.41 0.065 
147Sm 0.00654 

} 0.19945 } 0.1936 Nd 1.26 0.032 
144Nd 

) 0.50599 ) 0.5118" 
143Nd 

• A is in aeons- 1. ( Ndo! N,0)0 and ( N.o/ N,0)0 are daughter to stable and radioactive parent to stable ratios 4.55 X 10 9 years ago 
(t =0). (Ndo! N,0 )4.55 and (N.o/ N,0)4_55 are the corresponding present-day values. Values based on Jacobsen and Wasserburg [5). 

15.---------------,---------------, 

0 L 2L 

F :[- - - j --~ -l 
0 L 2L 

Fig. 9. The percent melt with mean F0 and total range yF0 is 
shown in the lower graph. The resulting •Nd values of the 
residual material 1.8 X 10 9 years after extraction of melt for 
different values of K 0 are shown in the upper panel. The square 

where: 

{ 

I i = r 
i\= -l'i=d 

I ' 

0, i = s 

and u is the Eulerian velocity field. Based on the 
results of the previous section we replace the ad
vection term by a diffusion term with diffusivity 
Ke. Thus (17) becomes: 

aN a2
N ( ) -a I= Ke--,~- i\;Nr 18 

t ax-
subject to the initial conditions given by (16). 
Solutions are: 

( ) 
_ - -;\T 2/lNr ~ I 

Nr x,t -Nre --- ,(,., ( ) 
'TT n=O 2n +I 

X . { (2n + l)'TTX} -<[> T 

sm L e " (I9) 

( ) 
_ 2/lN, ~ 1 

N, x,t =N,--- ,(,., ( ) 
'TT n=O 2n +I 

X . { (2n + l)'TTX} -<[> T 

sm L e " (20) 

wave results when K
0 

=0 and has an average • value of£. £
00 

is 
the value for K 0 = oo representing complete mixing. The almost 
sinusoidal variation is for K

0 
=0.3 cm2js and a length scale L 

of 4000 km. •o is the value obtained if a uniform F = F0 is used. 

• 
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TABLE2 

Results of the calculations with F0 = 1.78%, 1' =0.5 • 

Nimin N;max N, I:!.N, /min /max 1 fo 

87Rb 0.005505 0.0151105 O.Q103078 0.0096054 -0.926 -0.847 -0.880 -0.905 
86Sr 0.875753 1.165329 1.020541 0.289576 (-28.1) (-25.7) (-26.8) (-27.5) 
87Sr 0.615096 0.818482 0.716789 0.203386 
J47Sm 0.217740 0.267165 0.242452 0.049425 0.306 0.125 0.200 0.225 
144Nd 0.851066 1.212118 1.031592 0.361052 (13.7) (5.6) (8.9) (10.0) 
14JNd 0.433656 0.617628 0.525642 0.183972 

• The atomic abundances have been normalized such that N1 for 86 Sr and 144 Nd are one when F(x)= F0 • f is the enrichment factor 
for the minimum, maximum, and mean atomic concentrations. The value in parentheses is the corresponding present-day £ value. 

Nd(x,t)=~+fi.(1-e->.T) 

-~{~Nd+~N.(1-e- XT)} ~ ( 
1 

) 
7T n = O 2n + 1 

, {(2n+1)7TX} - <?T Xsm L e • (21) 

where 'T=t-t0 and <f>n=(2n+ 1)27T 2
KeiL

2
• The 

results are most usefully given in terms of E units 
defined as: 

In evaluating expressions (19) to (21) for finite Ke 

we will neglect all terms in the summation other 
than the first. This approximation is acceptably 
accurate when: 

(23) 

Fig. 9 shows the results for present-day ENd 
when Lis 4000 km, t 0 is 2.75 X 10 9 years and Ke is 
0, co, or 0.3 cm2j s. The dashed line marked Eo is 
the E value for uniform partial melting given by 
model I of Jacobsen and Wasserburg [5]. The case 
Ke = 0 involves no stirring by convection and re
sults in a square wave with average i ( * E0 ). 

Ke = co is the limit of very efficient stirring for 
which all variations are suppressed (after 1.8 X 10 9 

years) and produces a constant t: value E00 , which is 
significantly lower than E0 • The results for Esr are 
comparable but of much smaller amplitude. The 
various mean values of ENd and Esr are given in 
Table2. 

The difference between E00 and Eo shows that a 
model with spatial variations and efficient stirring 
is not equivalent to a uniform model with the same 
average degree of melting. The exact meaning of 
the average observed E value is seen to be some
what complicated even in the present case when all 
the melt is extracted at a single time. Models in 
which the continental crust accumulates through 
time will be the subject of a separate paper. 

The total range of E values as a function of time 
for different choices of Lis given in Figs. 10 and 
11. A simple but accurate approximation for E

00 

and ~E is given by: 

Eoo = qj(!- e-XT) 

and 

where ~E is the total variation of E and: 

(24) 

(25) 

q = 104 ( N.o ) I ( Ndo ) (26) 
N,o N,o 

/= ( i'i) I ( ~o) - I (27) 
N, sO 

2yF0 ( 8,- 8.) 
~j= fmax- /min= 2 2 {28) 

(FoB.+ 1) - ( yFA) 

I- D, I- D. ( ) 
8s = ---;s-; 8r = -D- 29 

s r 

Equation (24) is commonly used [5] while (25) 
shows that ~E is simply the total possible range of 
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t- t 0 

Fig. I 0. The total variation ( .6.( Nd) of ( Nd as a function of time 
since melting (in 10 9 years) for different choices of length scale 
L and "• =0.3 cm2j s. The first value by each curve is L in 
kilometers. The second number is ., 2 ~e. jL2 , which is the real 
quantity controlling the evolution of .6-(Nd· 

t: (from the difference between the maximum and 
minimum enrichment factors fmux and /min) times 
an exponentially decaying term representing the 
effect of the effective diffusivity. The 4/17 comes 
from the first term in the sine series of a square 
wave. 

Fig. II. Same as Fig. 10 but for Sr. 

10 

5 

s 1.8 ........ 
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-30 -20 E:.sr -10 0 

Fig. 12. (Nd vs. (sr at different times in units of 109 years. The 
heavy almost vertical lines show the range of ( values at each 
time when L =4000 km and "• is 0.3 cm2 js. The straight line is 
the evolution curve for (

00 
and the dashed curves give the 

envelope of the ( variations. 

The results given in Figs. 10 and II are for the 
evolution of a periodic heterogeneity of wave
length 2L which should not be confused with the 
evolution of a localized heterogeneity. The local
ized case requires first decomposing the variations 
in the enrichment factor f into its Fourier compo
nents/( m ), where m is the wavenumber. For each 
wavenumber there is then an equation like (25): 

(30) 

where i( m) is the Fourier transform of the varia
tions in t: at time 7'. The effective diffusivity acts as 
a spectral attenuator damping only the large wave
number (short wavelength) components oft:. 

Fig. 12 gives the range of t:Nd and t:sr at three 
different times, and also illustrates how t:"' will 
move along the correlation line (for appropriate 
values of the enrichment factors) but that the 
variations in t: are along trends different from the 
correlation line. This is due to the fact that equi
librium partial melting models with reasonable 
partition coefficients do not produce changes in t: 

(due to variations in F) that lie on the correlation 
line [7]. 

6. Summary and discussion 

We began with examples of the stlrnng of a 
passive tracer by steady convection to illustrate the 



need for time dependence if dispersal is to be over 
scales large compared to the individual cells. We 
chose as a reasonable model for the required time 
dependence the case of internally heated convec
tion, which can be generalized to be representative 
of flows in which the position of the cells changes 
on a time scale comparable to the turnover time. 
Such a flow disperses an initially concentrated set 
of particles in a way that we characterized as 
diffusive and for Rayleigh number I 06 we obtain a 
coefficient of effective diffusivity of 0.3 cm2 js. 

The use of a diffusivity, be it molecular or 
effective, implies a willingness to sacrifice a certain 
amount of detail for the sake of an economical 
description. There is always an implicit length 
scale below which the representation breaks down, 
and thus, its usefulness can only be judged in the 
context of a particular problem. In the case of 
isotopic variations in the mantle, the relevance of 
an effective diffusivity will depend on the initial 
conditions, the statistical properties of the convec
tive flow and most importantly on the size of the 
region providing melt that eventually is erupted at 
the surface. The draining of melt from a volume of 
partially melted source is an averaging process 
that will result in lavas whose isotopic composition 
reflects the properties of the entire source volume, 
a volume that may be sufficiently large to justify 
the diffusive representation. The numerical experi
ment using internally heated convection suggests 
that the system will appear diffusive after 2 X 109 

years if the volume sampled has dimensions of 
about one tenth the layer depth. If sampled on a 
smaller scale, the full range of isotopic composi
tions could still be observed since convection re
distributes but does not erase the variations. 
Ultimately, the question of whether the evolution 
of chemical heterogeneities in the mantle can be 
sensibly discussed in terms of an effective diffu
sivity will only be determined from the isotopic 
data itself once a sufficiently large number of 
samples have been analysed. For the moment, one 
can say that the diffusive representation is more 
likely to be useful if the relevant convective flow is 
restricted to the upper mantle where the sampling 
volume will have to be of the order of 50 I 00 km 
in typical dimensions and for mid-ocean ridge 
data where the zone drained of partial melt could 
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easily be of sufficiently large size. 
We used an effective diffusivity to represent the 

dispersal of chemical heterogeneities caused by the 
extraction of the "continental crust" from a primi
tive uniform "mantle". The model is a variation on 
Jacobsen and Wasserburg's model I, the main 
difference being that the degree of melting is now 
spatially variable (around a mean value that alone 
would produce the results of model 1). The aver
aged f values measured in such a system depend 
not only on the average degree of melting but also 
on the variation in partial melt and thoroughness 
of convective stirring, and are always different 
than the result of model I. This is due to the 
non-linear dependence of the residual concentra
tion on the degree of melting and the fact that if 
there is no mixing the averaged f value is a simple 
average while after mixing the system has a uni
form f value that is a concentration weighted 
average. In general, models assuming a uniform 
degree of melting are not applicable to a situation 
with variable melting and subsequent homogeniza
tion by convection. 

The evolution of variations Llf around the mean 
£

00 
depends on the range of enrichment factors, 

which provide an upper bound for Llf, and an 
exponential decay (e- "

2
K•T/ L\ which determines 

what fraction of the bound is achieved. The depen
dence of this decay on the characteristic length 
scale associated with the initial heterogeneity is 
possibly the most serious limiting factor in answer
ing the question of whether variations associated 
with continental extraction should still be seen in 
present data. On the other hand, such a decay 
suggests that the spatial spectrum of Llf, which 
becomes increasingly biased towards long wave
lengths, might provide a test of the concept of an 
effective diffusivity when applied to the mantle. 
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