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Experiments with fluids whose viscosity depends strongly on temperature are used 
to study the effect of viscosity variations in the range 10-105 on the heat transfer and 
horizontally averaged temperature of a convecting layer between horizontal 
isothermal boundaries. At large viscosity variations (3 x 103 and 105

) and Rayleigh 
numbers less than the critical value given by linear theory, the system can be either 
conductive or convective depending on whether the Rayleigh number is increased 
from an earlier conductive state or decreased from a preexisting convective state. At 
higher Rayleigh numbers and for the entire range of viscosity variation studied the 
heat transfer differs little ( < 20%) from that of a uniform-viscosity fluid when the 
Rayleigh number is defined in terms of the viscosity corresponding to a temperature 
equal to the average ofthe boundary temperatures. The relationship between Nusselt 
number and supercriticality (Ra/ Rc) is even more remarkable being independent of 
viscosity variation and indistinguishable from that of a uniform-viscosity fluid with 
appropriate Prandtl number. The horizontally averaged temperature becomes 
increasingly asymmetrical with increasing viscosity variation due to the relatively 
large temperature change across the cold, more-viscous boundary layer, and results 
in an isothermal interior temperature significantly hotter than the average of the 
boundary temperatures. The measured temperature and convective heat transfer as 
a function of depth show that for viscosity variations greater than about 100 most 
of the viscosity change occurs within a stagnant conductive layer that develops above 
the actively convecting part of the system. 

1. Introduction 
The understanding of convection in large-Prandtl-number Boussinesq fluids with 

uniform properties and contained in simple geometries is virtually complete. Analytic 
methods (Malkus & Veronis 1958; Kuo 1961; Busse 1967 a), laboratory experiments 
(Ross by 1969; Krishnamurti 1970; Busse & Whitehead 1971) and numerical solutions 
(e.g. McKenzie, Roberts & Weiss 1974) provide a thorough description of the flow 
and thermal structure, the heat-transfer efficiency and the planform of such 
convection. Present efforts are typically directed towards relaxing some of the 
original assumptions by going to lower Prand tl number, more com plica ted geometries, 
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FIGURE 1. Kinematic viscosity in stokes as a function of temperature in °C for silicone oil (smallest 
viscosity), L-100 (intermediate viscosity), and golden syrup (which has the largest viscosity). 

variable material properties, or introducing new dynamical processes such as the 
Lorentz forces. 

The experiments described in this paper address the effect on convection of relaxing 
the assumption of a uniform viscosity. The material properties of all real fluids depend 
to some extent on their thermodynamic state, and in the case of viscosity it can vary 
by many orders of magnitude; the most notable example of this being convection 
in a planetary interior where the deformation is due to thermally activated solid-state 
creep. In the case of the Earth, plate tectonics and its corollary of a deformable 
mantle are clear evidence of the importance of convection for the structure and 
evolution of its thermal state, but a central feature of such convection, that the 
viscosity (or effective viscosity in the case of a nonlinear rheology) varies by about 
an order of magnitude for each change of 100 °C, has received very little attention. 
At present the enormous viscosity variations associated with convection in a 
planetary interior are dealt with by assuming a two-layer representation of an 
effectively isoviscous flow under a high-viscosity conductive lid (e.g. Richter & 
McKenzie 1981 ). This approach, while producing some rationalization of the geological 
estimates of temperatures at depth in the Earth, does depend on an assertion about 
the behaviour of variable-viscosity fluids which as yet has little if any theoretical or 
experimental basis. The reason for this situation is not lack of effort, but the 
inadequacy of most existing methods for covering a sufficiently large range of the 
relevant parameters. Analytic method~; (Busse 1967 b) are restricted to small viscosity 
variations and small amplitude. Numerical methods (Torrance & Turcotte 1971; Daly 



Convection with large viscosity variations 175 

1978) serve mainly to bring out qualitative features (the development of a cold, 
stagnant, high-viscosity region near the surface and a thinning of the upwelling 
regions compared to the downwellings) since they develop severe resolution problems 
once either the Hay leigh number or the viscosity variation becomes large. This leaves 
for the moment laboratory experiments as the most promising tool, especially since 
readily available fluids such as Tate & Lyle's golden syrup and polybutene oil have 
viscosities that vary by many orders of magnitude for the temperature changes 
achieved in the laboratory (figure 1). 

The experiments reported here were designed to measure both the horizontally 
averaged temperature as a function of depth and the heat transfer of convection over 
a range of viscosity variations up to 105

• The- heat-transfer results, parametrized in 
terms of a Nusselt-number-Hayleigh-number relation, relate the temperature drop 
across the layer to the mean heat flux and therefore are useful for estimating 
temperatures at depth from heat-flow measurements made at the surface of a natural 
system whose viscosity depends on temperature. For uniform-viscosity fluids the 
surface temperature together with the Nusselt number are sufficient to determine a 
reasonably accurate and complete temperature profile by extending the temperature 
gradients at the boundaries until they intersect the interior temperature, which is 
close to isothermal and equal to the mean of the boundary temperatures. The 
situation is more complicated in a variable-viscosity fluid because the interior 
temperature structure while still approximately isothermal is no longer equal to the 
mean of the boundaries. This is demonstrated by the measured horizontally averaged 
temperature profiles, which are also needed to determine the viscosity structure 
associated with the convective state. 

As to the planforms of the convective state in our experiments, we refer the reader 
to the work of White (1982), which is an important complementary study to our own. 
In general the cells are three-dimenstional: hexagons, squares or imperfect polygons, 
with typical dimensions equal to or slightly smaller than the layer depth. 

2. Linear theory 
The linear stability of various variable-viscosity fluids is discussed in detail by 

Stengel, Oliver & Booker (1982), and thus we limit ourselves here to those aspects 
that are useful for understanding or normalizing the experimental results. The linear 
theory is relevant in several important ways. H is needed in connection with the 
experiments for the onset of convection with large viscosity variation, which 
demonstrate that the process is one of finite-amplitude instability occurring at 
Hay leigh numbers below the critical value. Despite this the critical Hay leigh number 
provides a simple way of incorporating the effect of variations in viscosity when 
parametrizing the heat transfer in terms of the Rayleigh number. Finally the 
eigenfunctions of the linear problem suggest that once the viscosity variations are 
sufficiently large the system can be usefully represented as a convective layer below 
a conductive lid. 

The critical Rayleigh number of three different viscosity laws for a non-rotating 
Boussinesq layer of fluid between rigid isothermal boundaries is given in figure 2. The 
definition of Rayleigh number used is 

R = ga!l.Td3 

a KVl ' 
(1) 

2 

where g is the acceleration due to gravity, a is the coefficient of thermal expansion, 
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FIG liRE 2. Critical Rayleigh number as a function of the total viscosity variation for an exponential 
fluid (solid curve on the left), L-100 with mean temperature of 25 °C (dashed) and golden syrup 
with bottom temperature of 82 °C. ~v is the ratio of the maximum to minimum viscosity in the 
system. The heavy horizontal line at ~I'= 100 gives the range of critical Rayleigh numbers for L-100 
with mean temperature between 15 °C and 40 °C. The heavy line at ~'' = 4 x 103 gives the range 
of critical Rayleigh numbers for golden syrup with bottom temperature between 60 °C and 82 °C. 

!lT is the vertical temperature change, d is the depth, K is the thermal diffusivity 
and v! is the kinematic viscosity corresponding to a temperature equal to the mean 
of the two boundary temperatures. The exponential fluid has a viscosity structure 

v = V1 ec<z-i> c = In !lv, 
(Z) 2 • ' (2) 

where z has been non-dimensionalized using the depth, and !lv is ratio of maximum 
to minimum viscosity in the system, which occur at the boundaries. L-100 and golden 
syrup have dimensional viscosity laws (see figure 1) that are accurately represented 
by a relation of the form 

lfr(T) = aexp{be-Tic}, (3) 

with a= 0·02985, b = 7·55, c = 68·8 °C for L-100 and a= 0·1138, b = 12·3, 
c = 51·3 °C for golden syrup. The curve for L-100 in figure 2 assumes that"! is the 
viscosity at 25 °C, while the golden syrup curve is for a fixed bottom temperature 
of 82 °C. A fixed mean or boundary temperature is needed in the ease of superexpo­
nential viscosities for a smooth curve of critical Rayleigh number vs. viscosity 
ratio Ill'. 

The critical-Rayleigh-number curve for the exponential fluid is the same as found 
by Stengel et al. (1982) and shows how the critical Rayleigh number is increased above 
that of a layer with uniform viscosity "!for Ill' < 104

. At larger viscosity variations 
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FIGURE 3. Vertical velocity eigenfunctions (normalized to a maximum value of unity) for an 
exponential viscosity law (on the left) and golden syrup (on the right) as a function of a stretched 
vertical coordinate as described in the text. Three different viscosity ratios are plotted in each case: 
~v = 104 («D), 106 (II) and 108 (*)· 

the critical Rayleigh number becomes smaller because convection begins in a 
low-viscosity sublayer. The situation with the superexponential fluids is similar but 
the increase in critical Rayleigh numbers is more pronounced. The experiments for 
the onset of convection in golden syrup show that convection exists at Rayleigh 
numbers significantly lower than the critical value given in figure 2. 

The confinement of convection to a low-viscosity sublayer can be illustrated using 
the vertical velocity eigenfunctions of cases with large viscosity variation. In the case 
of the exponential fluid a sublayer Rayleigh number can be defined: 

R = ga!1Tz4 

a , 
KVz/2 

(4) 

where Vz;z is the viscosity at the midpoint of the sublayer of depth z. For large 
viscosity variations ( > 3 x 103 ) this Rayleigh number is always maximized by the 
sublayer that has a viscosity variation of exactly e8 , corresponding to a sublayer 
thickness of 8/ln !1v. If convection is confined to this sublayer, the vertical velocity 
eigenfunctions as a function of a new stretched coordinate z = kz In !1v should be the 
same for all !1v and vanish at z ;:::; 1. That this is the case for large viscosity variations 
is shown in figure 3. Similar arguments for L-100 and golden syrup result m a 

stretched coordinate , [ In !1v J 
z = zln 1 +beTic , (5) 

where b and c are the constants associated with the viscosity law and T is the 
temperature at the bottom of the layer. The vertical velocity eigenfunctions for 
golden syrup with a bottom temperature of 82 °C in terms of z are shown in figure 
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FIGURE 4. Schematic diagrams of the various elements that can be combined to make a convection 
apparatus. (a) Side view of the isothermal top including the platinum wires stretched between nylon 
spacers attached to the shaft of calipers. The position of thermocouples within the copper block 
is indicated by the small black circles. The copper block and pipes carrying thermostated water 
are surrounded by Plexiglas backed by an aluminium plate machined to be parallel to the exposed 
copper surface. (b) Plexiglas frame used to contain the fluid. The walls are 1 em thick and have 
two openings used for filling the tank once it is assembled. (c) Isothermal copper block similar to 
(a) but without the platinum wires, which can be used as an isothermal base or top. (d) Electrically 
heated copper base with guard heaters. The nichrome heating wires are indicated by open circles. 
The heated copper block is surrounded by Plexiglas backed by aluminium plates whose temperature 
is controlled by separate heating wires. These guard heaters are covered by additional Plexiglas. 
The temperature of the copper bloek and surrounding Plexiglas is measured by thermocouples at 
the places indicated by the black circles. (e) Plan view of the top copper block showing the platinum 
wires, the position of the thermocouples, and the six copper tubes through which thermostated 
water flows in the direction indicated by the arrows. All diagrams are drawn to the same scale. 
The dimensions of the isothermal copper blocks are 20 em x 10 em x 1·25 em. 

3. The general result, at least for the marginal state, is that convection is confined 
to a sub layer with a fixed viscosity variation across it of e8 (2981) for an exponential 
fluid and about 500 for golden syrup. The finite-amplitude state seen in the 
experiments can be similarly characterized, but the variation of viscosity across the 
convecting region is considerably smaller. 

3. Experimental apparatus and fluids 
The experiments, designed to measure the horizontally averaged temperature and 

convective heat transfer with an accuracy of about one percent, involve four fluids: 
water and silicone oil for comparison with the earlier results of Ross by ( 1969); L-100 
polybutene oil and golden syrup for their strongly temperature-dependent viscosity. 

Depending on the object of a particular set of experiments, various of the elements 
shown in figure 4 are combined. What we call the horizontally averaged temperature 
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is measured by the electrical resistance of three platinum wires stretched between 
nylon spacers attached to the shaft of calipers that accurately control the position 
ofthe wires. The calipers are mounted on a 20 x 10 x 1·25 em copper block used as the 
upper isothermal boundary for the fluid layer. The temperature of this block, and 
that of a similar copper block used as a bottom boundary, is measured in five places 
by thermocouples and controlled by thermostated water flowing through copper 
tubing welded into channels cut in the back of each block. The water flow is in 
opposite directions in adjacent tubes to minimize horizontal temperature gradients 
due to heat transfer into or out of the fluid layer. The fluid is contained by a Plexiglas 
frame cemented with a silicone adhesive to the copper boundaries. Each of the copper 
blocks is surrounded (except for their front surface) with Plexiglas backed by an 
aluminium plate machined to be perfectly parallel to the front surface of copper. These 
aluminium plates allow the assembled tank to be levelled and are also used to measure 
the depth of the fluid layer, which is always slightly greater than the height of the 
containing frame because of the silicone cement. 

The thermocouples measuring the temperature of the copper boundaries have their 
reference junction in a bath whose temperature is known to better than ±0·01 °0. 
The thermojunction voltage is measured with a Keithley 191 digital multimeter with 
ljt V resolution. Each thermocouple is stable to ± 1 f1 V (;:::;:; 0·025 °0} and the greatest 
difference between any two thermocouples within a single block was 2 jiV. This 
difference is always the same and therefore is probably due to differences between 
the thermocouples themselves and not horizontal temperature gradients. The initial 
calibration and the uniformity among the five thermocouples suggests that the 
temperature of the boundaries is maintained and known to better than 0·1 °0. 

A potential source of error is the depth the fluid layer. The Plexiglas frames 
are carefully machined but the silicone cement used to assemble the apparatus 
increases the depth by a small but significant amount. The separation of the 
aluminium plates provides one measure of the fluid-layer depth and shows that the 
cement adds 0·04 ± 0·02 em to that of the frame, which is 1·00 or 2·35 em depending 
on which fluid is used. A second way of measuring the depth is to extrapolate a 
conductive temperature gradient measured with the platinum wires until it intersects 
the known boundary temperature. Both methods of measuring the depth indicate 
that the depth is uniform and known to within 0·02 em. 

The resistance of the platinum wires is measured with the same Keithley 
instrument, which has a resolution of 1 mn (;:::;:; 0·02 °0). The calibration of resistance 
in terms of temperature is first carried out under isothermal conditions to determine 
the effect of moving the wires up and down in the fluid layer. The resistance measured 
at intervals of 0·02 em varies slightly with depth, which we attribute to changes in 
tension. The changes in measured resistance are greatest near the upper boundary 
where the difference is equivalent to 1 °0 over the first 0·1 em but only 0·1 °0 per 
centimetre below this depth. The rapid change in resistance near the upper boundary 
seems to be associated with stretching of the wires when the nylon spacers are drawn 
into spaces cut into the boundary that allow them to be raised far enough so that 
the platinum wires can be brought very close to the upper boundary. The isothermal 
calibrations were carried out over a range of temperatures and the effect of changing 
depth remained the same; therefore a simple correction can be made. 

A second set of calibrations using stable conductive gradients was carried out to 
determine the accuracy of the position of the wires, and also as mentioned above, 
to provide an estimate of the total layer depth. The two sets of calibrations result 
in an estimated accuracy of ±0·1 °C for the horizontally averaged temperature. The 
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vertical temperature gradient derived from temperature measurements at closely 
spaced depth intervals is accurate to better than 5% except very close to the 
boundaries where the effect of changing tension reduces the accuracy. 

The problems of accurately measuring the temperature gradient at the boundaries 
makes it necessary to use a different system for determining the rate of heat transfer 
across the layer. A copper block containing a direct-current nichrome heating element 
replaces the isothermal base. The power input to the heater is determined by 
separately measuring the voltage across the heater and across a precision resistor 
placed in series that gives the current. The heated copper block is surrounded by 
1 inch Plexiglas backed by aluminium plates containing independently controlled 
guard heaters that reduce the temperature gradient and associated heat loss across 
the Plexiglas to a negligible amount. The advantage of guard heaters over heavy 
thermal insulation is in the much-shorter time constant for the system as a whole 
to reach thermal equilibrium. The thermostated copper block without the platinum 
wires is now used for the top boundary and as before the fluid is contained with a 
Plexiglas frame. 

The main source of error in the heat transfer measurements is due to conduction 
by the Plexiglas frame. To correct for this the apparatus is first calibrated by turning 
it upside down and running stable conductive experiments. The heat transfer by the 
sidewalls H 8 w is then the difference between the power input to the heater Hand that 
transmitted conductively across the fluid layer of area A, depth d, thermal con­
ductivity K and temperature difference !l.T. If necessary, correction for heat loss 
from the main heater to the sides H 8 and to the bottom Hb can be made, and these 
are never greater than 1% and typically 0·1% of H. The heat carried by the frame 
containing the fluid is 

(6) 

Repeated experiments with different power inputs showed that Hsw! !l.T is quite 
constant for a given assembled tank and fluid, and can be used as a correction for 
the convective-heat-transfer experiments. For a typical case the heat carried by the 
sidewalls is of order 1 % of the total heat input in the case of water and 5% for the 
other fluids. An important imponderable is that the correction is obtained from a 
conductive situation and applied to convective cases having larger heat flux and no 
longer the same temperature structure as the sidewalls. Furthermore the correction 
requires an independent estimate of K, a quantity that is in some cases poorly known. 
Partly because of the uncertainties introduced by the sidewalls, we decided to include 
the experiments using water and silicone oil, which when compared to the results of 
Rossby (1969) serve to some extent as an additional calibration of the experimental 
design and procedure. The accuracy with which we believe we are measuring the heat 
transfer varies from fluid to fluid and therefore we will discuss it later together with 
the actual results. 

The properties of the four fluids used in the experiments are given in table 1. Of 
these fluids water is the most common and accordingly its properties are the least 
uncertain. The values listed for water are the standard ones used by the Hydrodynamics 
Laboratory at the University of Chicago (Dave Fultz, private communication) and 
are not significantly different from those used by Ross by (1969). In the case of silicone 
oil (20 eSt Dow Corning 200 Fluid) we measured its viscosity, using a Haake falling­
ball viscometer accurate to better than 1 %, its density and thermal expansion; the 
other listed properties being those given by the manufacturer. 

The material properties for L-100 (a polybutene oil manufactured by AMOCO) 
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Property at 
20 oc Water Silicone oil L-100 Golden syrup Units 

Density (p) 0·9983 0·9534 0·8655 1·438 g cm-3 

dp/dT -2·00 X 10-3 -1·02 X 10-3 -5·9 X 10-4 6·22 x w-4 g cm-3 oc-1 
Thermal 5·87 X 10-3 1·41 X 10-3 1·085 X 10-3 3·17 X 10-3 w cm-1 oc-1 

conductivity (K) (3-53 X 10-3) 
dKjdT 1·65 X 10-5 0 1·0 X 10-6 1·0 X 10-5 w cm-1 oc-2 

(1·84 X 10-5) 

Specific 4·1819 1-447 1·942 2·02 J g-1 oc-1 
heat cp 

dCPjdT 6·0 X 10-4 0 4·05 X 10-3 0 J g-1 oc-2 
Kinematic 1·01 X 10-2 2·34 x w-1 8·40 4·75 X 102 cm2 s-1 
viscosity v 

Prandtl 7'16 2·29 X 102 1·30x104 4·35 X 105 

number v/K (3·91 X 105) 

TABLE 1. Material properties 

listed in table 1 are a mixture of our own measurements, values given by the 
manufacturer, and an independent measurement of the thermal conductivity made 
by Dynatech Research and Development Co. on a sample we provided. We measured 
the density and thermal expansion because Booker (1976) and Liang & Acrivos (1970) 
disagreed on the exact value of the thermal expansion of a similar polybutene oil (no. 
8, Oronite Division of Standard Oil of California). Our value for the thermal expansion 
of L-100 is within 2% of Booker's for no. 8. In the case of thermal conductivity we 
began by using the value given by the manufacturer, which is the same as the value 
adopted by Booker (1976) and Liang & Acrivos (1970). With this value of K we found 
a negative sidewall heat-transfer correction (Hsw! I:!.T < 0), which is impossible if the 
equipment is working correctly. The apparatus was taken apart, checked, reassem­
bled, and filled first with water for a new measurement of Hsw! I:!.T. Without taking 
the apparatus apart, it was drained of water, dried, and refilled with L-100. Assuming 
that the H8w/ I:!.T found with water applied also to L-100, a value for K was 
determined and found to be 23% lower than the value given by the manufacturer. 
For fear of assuming too much, a sample of L-100 was sent to Dynatech for an 
independent set of measurements. The value of K given in table 1 is from the 
Dynatech report (quoted accuracy of ± 2%). It is 3% larger than our own estimate 
using the calibration with water, but 20% lower than the manufacturer's value. The 
viscosity of L-100 (figure 1) was measured over the range of temperatures relevant 
to the experiments. The remaining properties listed in table 1 are those given by the 
manufacturer. 

The situation for golden syrup is somewhat similar to that of L-100. The main 
source of concern is the thermal conductivity and its temperature dependence. Two 
values are given in table 1; the first is our own estimate using the water calibration 
procedure described above; the value in parentheses is from Wray (1974), which was 
measured at the National Physical Laboratory with a reported accuracy of ± 2%. 
While we prefer our own estimate, the results for golden syrup will be given using 
both values to illustrate the effect of uncertainties in K on the heat-transfer results. 
The viscosity of golden syrup (figure 1) was measured at various temperatures and 
agrees with measurements made by White (1982). Because of the very high 
temperatures of some of the cases, the viscosity was remeasured at the end of the 
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experiments, and despite a distinctly darker colour of the syrup the remeasured 
viscosity was never more than 2·4% from the original measured value. The density 
was also measured and agrees with the values reported by Wray (1974). The thermal 
expansion and specific heat are taken from Wray (1974). 

The design of the experiments was based on a desire to achieve an accuracy of about 
1 % when measuring either the horizontally averaged temperature as a function of 
depth or the rate of heat transfer. We believe this standard was achieved for the 
temperature measurements and for the relative changes in heat transfer associated 
with Hayleigh numbers and viscosity variation for each individual fluid. The absolute 
rate of heat transfer is less accurate in all cases except water because of the 
uncertainties of the material properties, especially the thermal conductivity. 

4. Heat transfer 
The non-dimensional heat flux or Nusselt number Nu can be defined in terms of 

the ratio of the temperature change across the layer needed to transport conductively 
a given quantity of heat to the convective temperature drop required for the same 
amount of heat. Thus 

Nu = LlTcond 
Ll1'conv' 

Hrd 
LlTcond = KA , 

Hsw Ll H Hr = H- LlT 1'conv±Hs± b· 

(7) 

(8) 

(9) 

Hr is the heat flux through the fluid determined by correcting the total power input 
H for heat carried by the Plexiglas sidewalls ( (Hsw/ ilT) il1'conv) and heat lost or 
gained by conduction in the Plexiglas surrounding the main heater (H8 and Hb). 
LlTconv' H and the temperature difference between the main heater and the guard 
heaters are measured, the thermal conductivity K is evaluated at the mean of the 
boundary temperatures, and H 8w/ il'l', the depth d and the area A are constant for 
a set of runs using the same fluid and apparatus. The Hayleigh number of each 
experiment is determined using the fluid properties evaluated at the mean temperature 
of the boundaries. 

5. Results for water and silicone oil 
The experiments using water or silicone oil were run for comparison with the earlier 

results of Hossby (1969) and Krishnamurti (1970). Figure 5 shows our measured 
Nusselt numbers together with lines representing the relations 

Nu = 0·184Ra0.281 (silicone oil), 

Nu = 0·131Ra0'30 (water), 

(10) 

(11) 

which are best fits to Hossby's data. In the case of water all our measurements are 
within 1% of relation (11), while for silicone oil we are systematically lower by about 
3% compared with relation (10). The excellent agreement in the case of water is not 
surprising because the correction for heat transport by the sidewalls is small and the 
material properties are well known. The sidewall correction is much more important 
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FIGURE 5. Nusselt numbers from experiments using water ( <$>) and 20 eSt silicone oil (@) as a 
function of the Rayleigh number. The straight lines are best fits to the data of Rossby (1969) for 
the same two fluids. 

0 
Ra X 10-4 

FIGURE 6. Rayleigh number times Nusselt number plotted against the Rayleigh number for 
experiments using silicone oil.--, best-fitting curve to Ross by's ( 1969) data for 20 eSt silicone oil, 
which has a Prandtl number of about 200 .•. our own data for the same oil. --, from 
Krishnamurti (1970) for 10 eSt (Prandtl number ;::::: 100). ---, from Krishnamurti (1970) for 
1000 eSt silicone oil (Prandtl number ;::::: 860). 

when using silicone oil (as it is for L-100 and golden syrup) and the agreement between 
the two experiments is not as good. Krishnamurti's results together with Rossby's 
and our own are shown in figure 6 on a plot ofNusselt number times Rayleigh number 
vs. Rayleigh number, which is the form used by Krishnamurti. Assuming that 10 and 
20 eSt silicone oils are comparable, Krishnamurti's results are about 10% lower than 
those of the other two experiments. The main reason for the differences between the 
three experiments is almost certainly imperfect correction for heat transport in the 
sidewalls and thermal insulation. 
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FIGURE 7. Nusselt numbers from experiments using golden syrup and with Rayleigh number near 
critical. (a) Cases with viscosity variations between 2·6 x 103 and 3·8 x 103 . The solid (open) symbol 
means that the smaller (larger) value of thermal conductivity from table 1 was used. The vertical 
arrow indicates the critical Rayleigh number given by the linear theory. (b) Same as (a) but for 
viscosity variations between 9 x 104 and 5·7 x 105 . The long arrow pointing towards the left joins 
a conductive point that persisted for about 12 hours before going unstable to the convective point, 
which has the same total heat flux. 

Comparing the three experiments emphasizes the distinction between precision and 
accuracy. Our experiments have a precision of about 1 % judged by the scatter around 
the relation 

Nu = 0·18Ra0' 281 • (12) 

The absolute accuracy, which is mainly a matter of resolving the multiplying 
constant, is much more uncertain, and given the differences between the experiments 
might be no better than 10%. We will use (12) as the uniform-viscosity relationship 
with which to compare the variable-viscosity results. There is an added complication 
in that (12) is for a Prandtl number of about 200, while L-100 and golden syrup have 
Prandtl numbers two to three orders of magnitude greater. From figures 5 and 6 one 
can see that the Nusselt number at fixed Rayleigh number increases with increasing 
Prandtl number, thus the Nusselt numbers given by (12) will be lower than the 
approprate value for a uniform-viscosity fluid with a Prandtl number equal to that 
of L-100 or golden syrup. 

The overall conclusion is that the precision of the experiments is quite sufficient 
to resolve changes in the Nusselt number due to different Rayleigh numbers (or, later, 
viscosity variations), but that the accuracy is not well enough known to attach much 
significance to differences of less than 10% in the actual value of the Nusselt number 
between experiments using different fluids or even different experiments using the 
same fluid. 

6. Results near critical 
'I'wosetsofex~peTimentswitl:dixedviscCJsity variation.ofabCJut3 x103 andl05 wel'e 

run using golden syrup to determine the Nusselt number for Rayleigh numbers near 
critical. Busse's (1976b) theoretical analysis for small-amplitude convection with 
weak viscosity variations suggests that convection can exist at subcritical Rayleigh 
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numbers, and we wanted to demonstrate this point in the case of large viscosity 
variations when the effect would be most easily observed. The experimental results 
are given in figure 7, and in each ease two values of the thermal conductivity are used 
to show that the uncertainty in K is not very important. 

Each set of experiments began with convection well established (Nu > 1-.5). The 
heat input was then reduced in steps with sufficient time between changes to insure 
that a new steady state was established. Since the adjustment time of convection at 
small Rayleigh numbers can be very long, two or more measurements of the Nusselt 
number, separated by at least four hours, were made to confirm that the system was 
indeed steady. The data for both cases fall along curves that intersect a Nusselt 
number of unity at Rayleigh numbers of about half the critical value. After several 
Nusselt-number measurements at Rayleigh numbers less than this intersection value, 
the heat input was increased in steps and the conductive state (Nu = 1) was found 
to persist at Rayleigh numbers that earlier had been clearly convective. This 
conductive state finally breaks down with further increases in the heat input at 
Rayleigh numbers still below the critical value found in the linear theory. The onset 
of convection makes the Nusselt number jump back onto the original curve and is 
accompanied by a reduction in the Rayleigh number due to the smaller temperature 
change across the convecting layer and an associated increase in the viscosity used 
in the definition of the Ray leigh n urn ber. Had we controlled the boundary tern peratures 
instead of the heat input, the data points would have been the same, but the jump 
in Nusselt number would have been at constant Rayleigh number. 

The finite-amplitude instability implicit in the behaviour of the Nusselt number 
near critical is almost certainly due to the effect of variable viscosity. No such 
behaviour is seen in more nearly uniform viscosity fluids such as water and silicone 
oil (Rossby 1969); in fact the extrapolation ofthe Nusselt-number-Rayleigh-number 
curve to a Nusselt number of one gives a very good estimate of the critical Rayleigh 
number in these fluids. That it is not the case for fluids with strong temperature­
dependent viscosity is not surprising (Busse 1967). The breakdown ofthe conductive 
state well below the critical Hayleigh number is probably influenced by the sidewalls 
containing the fluid. White (1982) has observed the onset of convection at subcritical 
Hayleigh numbers when the viscosity variation is 50 and finds that cells develop first 
along the sidewalls and then slowly diffuse into the interior. Such an evolution is 
consistent with the sidewalls providing finite-amplitude disturbances that grow at 
Hayleigh numbers below critical. 

7. Results for L-100 and golden syrup 
Nusselt numbers from experiments with L-100 and golden syrup can be used to 

determine a representative viscosity, which when used to calculate the Rayleigh 
number results in a Nusselt-number-Hayleigh-number relationship such as (12). By 
representative we mean that the parametrized heat transfer is as much as possible 
independent of the viscosity variation. 

An obvious choice for a representative viscosity is that corresponding to a 
temperature equal to the mean of the boundaries (v!), which was used earlier for 
defining the Hayleigh number in the linear theory. Booker (1976) has already shown 
that this viscosity leads to a Nusselt-number-Rayleigh-number relation that predicts 
the measured heat transfer of a variable-viscosity fluid with L!v up to 350 to within 
15%. We can now test this result over a much larger range of L!v. A useful way of 
displaying the results is to normalize the measured Nusselt number by dividing it 
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FIGURE 8. Normalized Nusselt numbers as a function of the total variation in viscosity. The solid 
symbols are for the Nusselt number divided by the value given by (12), while the open symbols 
use (13) to normalize the measured Nusselt number. II. data from Booker (1976); e, 0. L-100; 
V, v, golden syrup. Two values are plotted for each experiment using golden syrup: the larger 
(smaller) value used the smaller (larger) value of thermal conductivity given in table 1. The four 
squares with circles around them are those experiments by Booker for which the Rayleigh number 
is less than 2·3 x 104 . 

by the Nusselt number from (12) when vl is used to calculate the Rayleigh number. 
The solid symbols in figure 8 show the normalized Nusselt numbers for L-100, golden 
syrup and Booker's (1976) data, over a range of almost five orders of magnitude in 
viscosity variation. The general conclusion is as before: v~; is indeed a representative 
viscosity in that the variable-viscosity fluids have a non--dimensional heat transfer 
within 20% of that of a uniform viscosity equal to v~;. 

In detail there are various points worth mentioning about the data in figure 8. The 
L-100 data when extrapolated to a uniform viscosity (~v = 1) have a normalized 
Nusselt number of about 1·1, which is not unreasonable since the uniform-viscosity 
reference given by (12) is for a much lower Prandtl number. Krishnamurti's (1970) 
data for the Nusselt number of silicone oils with Prandtl numbers 100 and 860 suggest 
that a difference of about 10% is more or less what one should expect. Booker's (1976) 
data obtained with a polybutene oil very similar to L-100 are lower in absolute terms 
than our own, but do show a similar dependence of the normalized Nusselt number 
on ~v. 'Ve believe that Booker's (1976) data are too low because his assumed value 
of the thermal conductivity is incorrect, as we mentioned earlier when discussing the 
material properties ofthe experimental fluids. Given the reference used, the fact that 
his data extrapolate to a normalized Nussclt number of unity is added reason to 
believe that they arc too low. It is worth noting that Booker (1976) did not measure 
the heat transfer of silicone oil himself, and therefore his experiments arc not directly 
calibrated in terms of the reference fluid. His data have one advantage over ours in 
that they cover a large range of Rayleigh numbers. For each experiment using golden 
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syrup we have plotted two values of the normalized Nussclt number, corresponding 
to the two values of the thermal conductivity in table 1. Again there is an 
uncertainty in the actual level of the normalized Nusselt number, but its trend with 
viscosity variation is not significantly affected by the choice of K. lfforeed to choose, 
the higher value for golden syrup is more likely to be correct on the basis that it should 
have a slightly higher normalized Nusselt number than L-100 because of its greater 
Prandlt number. 

Booker & Stengel (1978) have suggested an even more striking normalization for 
the Nusselt numbers of variable-viscosity fluids the of supercriticality 
in place of the Rayleigh number alone in relation (12). For a uniform-viscosity fluid 
(12) can also be written (R )0.281 

N1t = 1·46 R: , (13) 

where Rc is the critical Rayleigh number. When this relation is applied to a 
variable-viscosity fluid the criticall~ayleigh number contains the information on the 
degree of viscosity variation. The measured Nusselt numbers for L-100 and golden 
syrup normalized by (13) are shown by the open in 8. Aside from 
uncertainties in the aetuallevel, the normalized Nussclt numbers arc now virtually 
independent of viscosity variation. A remarkable result when one considers that the 
actual viscosity varies in some cases five orders of 

8. Horizontally averaged temperature 
Examples of the non-dimensional horizontally temperature at large 

Rayleigh number are shown in figure 9, and at lower Rayleigh number, but covering 
a greater range in viscosity variations, in figure 10. The most obvious feature resulting 
from the variations in viscosity is the asymmetry between the hot and cold boundary 
layers and associated offset of the interior from the average of the two 
boundary temperatures. In terms of the earlier results on heat transfer that 
emphasized the importance of v~, we now see that this is not that of the 
isothermal interior: instead it corresponds to a level somewhere in the upper cold 
boundary layer where the temperature is equal to 0·5. The offset of the interior 
temperature ()i (()i is defined as the temperature at the inflexion of the averaged 
temperature profile) from its uniform viscosity value of 0·5 is shovm in figure 11 for 
a variety of Rayleigh numbers and variations up to 105 . ()i increases 
smoothly with increasing viscosity variation but discontinuously with Rayleigh 
number. At small Rayleigh numbers (104_2 x 104 ) the interior temperature falls along 
the solid curve. At Rayleigh numbers in the range 2 x 104-4 x 104 the interior 
temperature increases with increasing Rayleigh number with the data falling between 
the solid and dashed curves. At Rayleigh numbers greater than 4 x 104 , and up to 
8 x 105 , the interior temperature becomes independent of Ra and falls along the dashed 
curve. This dependence on Rayleigh number suggests a transition at Rayleigh 
numbers in the range 2 x 104-4 x 104 and independent of viscosity variation. \Vhite 
(1982) describes a change in planform from square cells with rising in their centres 
to a spoke pattern characterized by irregular polygons at Rayleigh numbers near 
3 x 104 and viscosity variation greater than 20. This change in planform seems the most 
likely explanation for the change in interior \Ve cannot use our own 
Nusselt-number data to address the change in heat associated with this 
transition because all our experiments are at Rayleigh numbers corresponding to 
offsets along the solid curve in figure 11. Booker's ( 1976) data cover a larger range 

FL:\1 12!} 
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FIGUim 9. Non-dimensional tempterature 8 as a function of depth. 0, 20 cRt silicone oil, d11 = 3, 
Ra = 2·16 X 105 ; Ill, L-100, dJ! = 22, Ra = 1·36 X 105 ; 8, L-100, dr• = 750, Ra = 4·95 X 105. In all 
but the last case data near the boundaries has been omitted. 
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FIGURE 10. Non-dimensional temperature 8 in L-100 and golden syrup as a function of depth for 
different total viscosity variation. 0, L-100, d!' = 11·8, Ra = 2·36 x 104

; 0. L-100, tiv = 102
, 

Ra = 2·29 x 104 ; Ill. golden syrup, tiv = 4·15 x 103
, Ra = 1·34 x 104

; 8, golden syrup, tiv = 105
, 

Ra = 1·02 x 104 • Each symbol represents a measurement, and in all but the last case dltta near the 
boundaries has been omitted. 

of Rayleigh numbers and two of his low-Rayleigh-number experiments (Ra ~ 2 x 104
, 

.&v ~ 100) have slightly larger (about 4 %) normalized Nusselt number than the 
higher-Rayleigh-number cases with similar .&v (see figure 8). If this difference is real 
the effect of the transition is to reduce the heat-transfer efficiency as measured by 
the Nusselt number, as would be the case if the increase in the interior temperature 
is larger than the reduction in the temperature drop across the lower boundary layer 
resulting from the lower interior viscosity. 

The horizontally averaged temperature profiles can be used to determine the 
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FIGURE 11. Non-dimensional interior temperature(); as a function of total viscosity variation. 
+, L-100, Ra < 4 x 104

; (>, L-100, Ra > 104 ; 8, golden syrup, Ra < 3 x 103 • 

average viscosity structure and the convective heat transfer as a function of depth. 
The fraction of the total heat flux carried by convection O<zl is simply 

0 
_ Nu-d1Jjdz 

(z)- Nu · (14) 

Because the Nusselt number and the horizontally averaged temperature gradients 
d1Jjdz are measured in separate experiments, we use (13) to estimate the appropriate 
Nusselt number for the experiments providing the averaged temperature gradient. 
Four examples of the temperature, viscosity and fractional convective heat transfer 
are given in figure 12. The convective heat transfer shows that the system develops 
a relatively thick conductive lid (0 ~ 0) at the cold upper boundary, which accounts 
for most of the asymmetry between the boundary layers. The convective heat transfer 
in this 'lid' is in three of the cases shown slightly negative, which if real implies that 
the main convective flow drives counter-rotating cells in the lid. The accuracy of the 
data is not sufficient for confidence in this result, and furthermore no such secondary 
cells are seen in the eigenfunctions of the linear theory. The important point 
established by the data is that the system can be characterized as having convection 
below a conductive lid whose thickness is determined by the ability of the convective 
flow to penetrate into a region of high viscosity. 

The viscosity structure shows that most of the viscosity change occurs within the 
conductive lid. The change in viscosity across the convective portion of the system 
is always small ( < 100), being smallest (about 10) at the highest Rayleigh numbers 
studied ( Ra ~ 5 x 105 ). This suggests that the limit of strongly tern perature-dependent 
viscosity and large Rayleigh number might be relatively simple, characterizable as 
effectively isoviscous convection under a conductive lid whose viscosity variation is 
of no relevance. However, for such a representation to be useful one must understand 
in a generalizable way the mechanisms that determine the relative thickness of these 
two layers. 
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9. Discussion 
The general approach adopted in this paper has been to compare the thermal 

properties of convection in variable-viscosity fluids to that of the uniform-viscosity 
case and seek a representative definition of the Rayleigh number such that para­
metrizing relationships like the dependence of Nusselt number on Rayleigh number 
retain their usefulness despite viscosity variations as large as five orders of magnitude. 
The viscosity vi corresponding to the mean temperature of the two boundaries leads 
to a representative Rayleigh number in that the corresponding critical Rayleigh 
number differs by no more than a factor of 2 from that of a uniform-viscosity fluid, 
and the heat transport as a function of this Rayleigh number is always within 20% 
of the corresponding constant-viscosity case. This heat-transfer result, first 
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demonstrated by Booker ( 1976) over a more limited range of viscosity variation, is 
now seen to hold for very large viscosity variations, which is remarkable indeed when 
one considers that vi is not necessarily associated with the region of active convection, 
and for viscosities variations only slightly larger than those studied will fall within 
the conductive lid that develops at the cold top boundary. vi will be within the 
conductive lid once the non-dimensional internal temperature exceeds 0·75. This leads 
one to suspect that the usefulness of v! might be specific to these particular fluids 
and the parameter range studied. 

The dependence of the Nusselt number on the supercriticality ofthe layer (equation 
(13)), for which the effect of viscosity variation is contained in the critical Rayleigh 
number, is likely to be more general, but one should keep in mind that the viscosity 
structure of the conductive state on which the critical Rayleigh number is based is 
not the same as that of the convective state one is trying to describe. This distinction 
seems not to be important in the case ofL-100 and golden syrup but it might become 
so for other temperature-dependent fluids. The success of using the supercriticality 
to determine the Nusselt number is somewhat surprising when one considers that 
there exists a finite-amplitude state when Ra = Rc with Nusselt number as large 
as 1·6. 

An alternative to seeking analogies between uniform- and variable-viscosity fluids 
is to emphasize their differences, in particular the existence of what we have called 
a conductive lid that accounts for the offset of the interior temperature from the 
average of the boundary temperatures. The usefulness of representing a variable­
viscosity system in terms of a convective layer below a stagnant lid depends on 
understanding or at least being able to predict the relative thickness of the layers. 
In a sense the problem becomes one of penetrative convection, and the main result 
of the experiments is to show that the convective flow is restricted to a layer with 
a relatively small change in viscosity across it. The advantage of a two-layer 
representation is that it focuses on a specific issue, the ability of convection to 
penetrate into a high-viscosity region, which may prove easier to generalize than the 
concept of a representative Rayleigh number. 
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