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MEASUREMENTS OF MANTLE WAVE VELOCITIES AND INVERSION
FOR LATERAL HETEROGENEITIES AND ANISOTROPY

3. INVERSION
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Abstract. Lateral heterogeneity in the
earth’s upper mantle is investigated by inverting
dispersion curves of long—period surface waves
(100—330 s). Models for seven different tectonic
regions are derived by inversion of regionalized
great circle phase velocity measurements from our
previous studies. We also obtain a representation
of upper mantle heterogeneities with no a priori
regionalization from the inversion of the degree
6 spherical harmonic expansion of phase and group
velocities. The data are from the observation of
about 200 paths for Love waves and 250 paths for
Rayleigh waves. For both the regionalized and the
spherical harmonic inversions, corrections are
applied to take into account lateral variations
in crustal thickness and other shallow parame
ters. These corrections are found to be impor
tant, especially at low spherical harmonic order.

the “trench region” and fast velocities down to
250 km under shields. Below 200 km under the
oceans, both S velocity and S anisotropy support
a model of small—scale convection in which cold
blobs detach from the bottom of the lithosphere
when its age is large enough. The spherical har
monic models clearly demonstrate (a posteriori)
the relation between surface tectonics and S
velocity heterogeneities in the first 250 km: all
shields are fast; most ridges are slow; below 300
km, a belt of fast mantle follows the Pacific
subduction zones. However, at greater depths,
large—scale heterogeneities that seem to bear no
relationship to surface tectonics are observed.
The most prominent feature at 050 km is a fast—
velocity region under the South Atlantic Ocean.
Smaller—scale heterogeneities that are not re
lated to surface tectonics are also mapped at
shallower depths: an anomalously slow region
centered in the south central Pacific is possibly
linked to intense hot spot activity; a very fast
region southeast of South America may be related
to subduction of old Pacific plate. Between 200

and 000 km, a belt of SV>SH anisotropy follows
part of the ridge and subduction systems, indi
cating vertical mantle flow in these regions. The

spherical harmonic results open new horizons for
the understanding of convection in the mantle.
Perspectives for the improvement of the models
presented are discussed.
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The inversion is performed for transversely iso
tropic models that explicitly include shear wave
and compressional wave anisotropy. Some a priori
information based on physical considerations is
used to link the variations in P and S anisotro—
pies, and the variations in density, P velocity,
and S velocity. S velocity is resolved down to a
depth of about 050 km. S anisotropy is well
resolved between 200 and 000 km depths. Our S
velocity regionalized models exhibit trends re
lated to surface tectonics: for the upper 200 km,
the average velocity increases with the age of
the crust; a very fast velocity below 300 km in
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1. Introduction

Plate tectonics has demonstrated a major role
for the lithospheric plates in the convective
processes that govern mantle dynamics. Early on,
the possibility of having other kinds of convect
ive motions of different scales has been pro
posed: small—scale sublithospheric convection
(Richter and Parsons, 1975), hot spot plumes
(Morgan, 1971), and very large scale “tennis
ball” convection (Hess, 1965). The evidence for
such phenomena and the assessment of their rela
tive importance, as well as the real organization
of circulation at depth, are, however, difficult
to produce when only surface observations are
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7262 Natal’ et al.: Upper Mantle Heterogeneity and Anisotropy

available. Therefore the mapping of lateral het

erogeneities as a function of depth in the mantle

is essential to the study of mantle convection.

Seismology appears to be the only tool that
can produce an image (though only an instanta

neous one) of three—dimensional heterogneities

within the earth. Indeed, both seismic body waves

and surface waves have been used to investigate

the earth’s lateral heterogeneities. On a region

al scale, body waves have proved useful in dense

ly instrumented areas (Aki et al., 1977;

Romanowicz, 1979; Babuka et al., 1984). On a

global scale, surface waves provide a better

coverage. Regional studies (Forsyth, 1975) and

global studies using an a priori regionalization

based on surface tectonics (Toksbz and Anderson,
1966; Anderson, 1967; Kanamori, 1970; Dziewonski,

1971) were in fact among the first to provide

information about the depth stucture of the con

vective heterogeneities on the scale of the tec

tonic plates. Some of these studies preceded the

formulation of the plate tectonics hypothesis.

Recent developments in long—period digital

networks, the improved modeling of source pro

cesses, and the performances of digital computers
have prompted a new approach to the problem.

Spherical harmonic expansions of the hetero

geneities, with no a priori regionalization, have

now been obtained (Nakanishi and Anderson, 1982,
1984; Nataf et al., 1984; Woodhouse and

Dziewonski, 1984).
In the present study, models of upper mantle

lateral heterogeneities will be presented from

both the regionalized and the spherical harmonic
approach The main advantage of the regionaliza—
tion approach is that very accurate measurements

can be performed Phase velocities are measured

on complete great circle paths so that the ef

fects of the phase at the source cancel out

(SatO, 1958). However, by using great circle

observations alone, even though they are very

accurate, only the even spherical harmonic compo

nents of the real heterogeneities can be ret

rieved (Backus, 1964). This basic weakness of

great circle data can be bypassed if it is as

sumed a priori that the heterogeneities at depth

are related to surface tectonics The earth can

then be divided in several different regions, and

the average surface wave velocities over each

region can be determined (Toksdz and Anderson,

1966). Depending on the appropriateness of the a

priori choice, the way that great circle observa

tions are actually explained varies. Souriau and

Souriau (1983) have tested the variance reduction

achieved by several proposed regionalizations and

concluded that the regionalization of Okal (1977)

was the best. It includes four oceanic regions

corresponding to different age slices of the

seafloor, a region for trenches and marginal

seas, a shield region, and a mountainous region.

Using great circle phase velocity measurements,

Nakanishi and Anderson (1983) (hereafter referred

to as NA1) have obtained average dispersion

curves for both Love and Rayleigh waves for each

of the seven regions of Okal’s regionalization.

Here we invert these dispersion curves and obtain

the variations of shear wave velocity and anisot—

ropy as a function of depth for each region Love

and Rayleigh waves are inverted simultaneously

with anisotropy as an explicit inversion parame

ter whose resolution is discussed directly. The

models we obtain describe useful properties of

convection on the scale of the tectonic plates.

However, as only that scale has been put in a

priori, heterogeneities at any other scale (smal

ler or larger) have been mixed into what we treat

as characteristic of the plate circulation.

In the spherical harmonic expansion approach,

no such problem exists. For that method, direct

earthquake—to—station wave trains are analyzed.

Were the data flawless and the coverage at the

surface of the earth complete, it would then be

possible to retrieve local dispersion curves at

any point at the surface of the earth with no a

priori regional assumptions. Of course, the real

situation is not this ideal. In particular, for

this kind of data it is necessary to correct for

the phase pattern at the source, so that the data

are not as accurate as the great circle data.

With the coverage achieved with about 250 paths,

Nakanishi and Anderson (1984) (hereafter referred

to as NA2) were able to retrieve the coefficients

of the spherical harmonic expansion of dispersion

curves up to degree 6. It is these coefficients

that we invert in the present work, expanding on

the results already presented by Natal’ et al.

(1984). Except for the regionalization, we choose

the same kind of parameterization and a priori

information as in the regionalized inversion so

that direct comparisons can be made. The spheri

cal harmonic representation, although coarse as

yet, is practical for calculating correlations

with other geophysical data (such as heat flow

and the geoid). It is also a convenient frame of

reference well suited for comparisons and for

gradual refinement.
Before performing our inversions, we applied

some corrections to take into account the lateral

variations of crustal thickness and other shallow

features. We find these corrections to be quite

significant at low order, even for long—period
surface waves.

Anisotropy is an important parameter for two

reasons: first, it could be responsible for a

significant part of the observed variability in

surface wave velocities, and second, it could

bring some valuable information on flow in the

mantle. Our models are transversely isotropic,

including both P and S anisotropy. The six param

eters of such models cannot be resolved from the

fundamental modes alone of surface waves. It is

thus necessary to bring in some extra a priori

information.
The inversion method we use was chosen in

order to meet these requirements. We adopt the

method of Tarantola and Valette (1982b). It is

very flexible, in the sense that many kinds of a

priori information can be easily built in through

an a priori covariance matrix on the parameters.

In particular, we can impose a similar S anisot—

ropy and P anisotropy, using a priori constraints

deduced from field observations on peridotites.

We also place some constraints that link the

variations of density and P velocity to S veloci

ty variations. All along, we try to assess the

reliability of the results that we present by

displaying the usual inversion diagnostics (reso

lution kernels, a posteriori standard deviations,

fits to the data) and the results of some other

tests.
As in almost all seismological studies up to

now, the data used in this study have been de

rived under the so—called geometric optics ap

proximation. For surface waves this really means



Nataf et al.: Upper Mantle Heterogeneity and Anisotropy 7263

rs S ,

sfas
in S

ssss sssssssmmminminminm in TITITTT TF.SSS.S .

mrnmmmm,nmmrammmm mrszns S S S S s
Smininwmmmmmmmmm in \mmmsSSsS
inmin mmmmmmmin T inmsssss.=———. .

s . minm ::::: ::: ::
s,s s in,.. . s. IUD ‘I’ in in . . .

0

55555. .S.s.sSS.,SSSSSS,. S.SSSS

sssssssssss,ssssssSSSSSSsSSSSSSSSS:.SSsSSSSSs,SSSSSSsSSsSsSSSSSSSSssSSS

— I I I I I I —

0 60 120 180 240 300 360

two things: first, that we neglect the difference

between the measured phase velocity and the as

ymptotic phase velocity derived from Jean’s for

mula, and second, that we consider that phase and

group velocities of surface waves are affected

only by the heterogeneities that underlie the

source—receiver great circle path. The bias in

troduced by the first approximation can be evalu

ated a priori and is discussed in NA2 and in the

data section. On the other hand, the validity of

the second approximation depends on the amplitude

of’ the heterogeneities and can only be assessed a

posteriori once an aspherical model of the earth

has been derived. We therefore consider that

problem in the discussion section.

2. Data

Surface waves recorded at the International

Deployment of Accelerometers (IDA) and the Global

Digital Seismographic Network (GDSN) stations

have been analyzed for 25 large earthquakes that

occurred in 1980. Phase and group velocities of

the fundamental modes have been measured on ap

proximately 200 paths for Love waves and 250

paths for Rayleigh waves, with periods from 100

to 330 s. The data retrieval and analysis are

described in NA1 and NA2.

accurate great circle measurements have been

performed (HAl) and have been used together with

an a priori regionalization. Velocities have also

been measured on earthquake-to—station paths,

some care being taken to correct for the effects

of’ the source mechanism and finiteness (NA2).

2.1. Regionalized Phase Velocities

We use the a priori regionalization proposed

by Okal (1977) and shown in Figure 1. Seven types

of’ regions are defined, according to their tecto—

nic setting. There are four oceanic types corre

sponding to four age slices of the oceanic floor:

region A (age>135 Ma), region B (80—135 Ma),

region C (30—80 Ma), region 0 (0—30 Ma). A sepa

rate type (region T) includes trenches and mar

ginal seas. Two continental types are defined:

mountainous regions (M) and shields (5). This

regionalization is successful in reducing the

variance of great circle observations (Souriau

and Souriau, 1983). The variance reduction for

great circle phase velocity measurements amounts

to about 80% for Rayleigh waves and 60% for Love

waves for periods from 150 to 300 s (HAl).

Regionalized phase slowness is obtained by

using the now classical approach of’ Toks5z and

Anderson (1966): the observed slowness at a given

period on a given great circle path is the aver

age of the slowness of the different regions

taken with weights proportional to their length

contribution to the path. By least squares inver

sion of’ the data observed on 200 paths for Love

waves and 250 for Rayleigh waves, it is possible

to retrieve the dispersion curves from 100 to 330

s for the seven individual regions (HAl). The

regionalized dispersion curves thus obtained

(Nakanishi and Anderson, 1983, Tables 7 and 8 and

Figures 17 and 18) form the data set of’ the first

part of the present study. It is used to deter

mine the seismic velocity structure as a function

of depth for the seven different tectonic re

gions.

2.2. Phase and Group Velocities in Spherical Har

monics

The information contained in great circle

measurements is restricted to that part of the

earth’s lateral heterogeneities that is symmetric

with respect to the earth’s center: the even

terms of the spherical harmonic representation of
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Fig. 1. Okal’s (1977) regionalization. The grid size is 5°x5°. Symbols are blank, ocean

0—30 Ma; dots, 30—80 Ma; dashes, 80—135 Ma; equals, older than 135 Ma; “T”, trench and

marginal seas; ‘rn”, Phanerozoic mountains; “s”, shields. Cylindrical equidistant projec

tion. The same projection is used throughout this paper.
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Fig. 2. Power spectrum of’ the corrections due to

shallow layers (hatched rectangles), compared to

the spectrum of the measured phase slowness vari

ations plotted with their 2o error bars, at pe

riods of 100 and 200 s for Love and Rayleigh

waves. Note that the correction is quite sig

nificant at low spherical harmonic order 1.

the lateral heterogeneities (Backus, 1961). On
the contrary, single—station measurements are

sensitive to both even and odd terms. A conve

nient way for describing lateral heterogenities

of quantities at the surface of the earth is
indeed to use a spherical harmonic decomposition.

The value of the quantity S at a point (8,’p) on
the surface of the earth is expressed as

1

S(8,’) E

The spherical harmonics are fully normalized with

r (l-m)!l
p(9) [2—8°)(2l+1)

j2
Pm(cosO)

where the P’(cosO) are the associated Legendre

polynomials (see Stacey, 1977, pp. 319—323). In

theory, it is possible to obtain a complete know

ledge of the earth’s lateral heterogneities by

using single-station velocity measurements. In

practice, this knowledge is limited by the errors

in the data and by the coarseness of the coverage

of’ surface wave paths on the earth. From least

squares inversion of the actual data, a represen

tation truncated to a maximum order L is ob

tained. With approximately 200 paths for Love
waves and 250 paths for Rayleigh waves and con

sidering the accuracy of the measurements, it was

found that a good precision on the spherical

harmonic coefficients could be obtained for L 6
(NA2).

Phase and group dispersion curves are con

structed with periods from 100 to 330 s for both

Love and Rayleigh waves, for each of the 49

components of the L = 6 representation. At long

period the approximation made in NA2 that the
phase velocity is sampled uniformly over the

great circle path, the zeroth-order approxima—

tion, breaks down. The first—order approximation

has been derived by Schwab and Kausel (1976) for

Love waves and by Wielandt (1980) for Rayleigh
waves. The first—order correction increases with

the increase of period and with the decrease of

distance between receiver and poles and depends

on the source focal mechanism. By evaluating that

correction in the actual geometry and by analyz

ing synthetic seismograms, NA2 found that the

bias in the zeroth—order approximation was at

most equal to the estimated error on the data in

the case of the largest periods that were ana

lyzed (330 s). That effect was therefore ne

glected. To be on the safe side, we exclude from

the inversion all data with periods larger than

270 s. Apart from that, the spherical harmonic

dispersion curves obtained by Nakanishi and

Anderson (198:4, Tables 8, 9, 10 and 11) form the

data set of the second part of the present study.

We invert these to determine the three—dimension

al seismic velocity structure of the upper man

tle, limited to order 6 lateral variations.

3. Shallow Layer Corrections

Surface waves are very sensitive to the upper
most layers of the earth. In particular, the

thickness of the crust, which can vary by a
factor of 6 between oceans and continents, is
responsible for large variations in the phase and
group velocities of surface waves. Of course, the

shorter the period, the larger the effect; but

even for 300 s Rayleigh waves, the effect is

quite important. The waves that we consider here

(100—300 s Love and Rayleigh waves) thus suffer

notable phase shifts due to the uppermost layers.

It is therefore necessary and crucial to correct

the data for the contribution of shallow layers

as carefully as possible. This has been done

before both the regionalized and the spherical
harmonic inversions were performed. We have con—

(1) sidered four factors: crustal thickness, 2n5n
velocities, ocean depth, and topography. The

distribution at the surface of the earth of the

last two factors is obtained from a 5°x5° compi

lation. Crustal thickness is the dominant factor.
(2) Unfortunately, its distribution is not as accura

tely known. A compilation by Soller et al. (1981)

provides countour maps of crustal thickness and

velocities over much of the world. Visual

averages were taken on 15°x15° cells, and empty

cells were filled in by using a predictor based

on tectonic setting according to Okal’s (1977)

regionalization, in a way similar to Chapman and

Pollack’s (1975) procedure for heat flow.

In the regionalized approach, histograms are

constructed for each of the seven regions, and

the average is taken and built into the starting

model of each region. The histograms are present
ed in Appendix A.

For the spherical harmonic inversion, we di
rectly correct the data for shallow layers ef

fects, so that a single starting model can be

used for all L19 coefficients. We expand the dis

tribution of the four shallow factors in spheri

cal harmonics, calculate the shift in surface
wave velocity due to a unit change in every

factor at all pertinent periods, and deduce the

resulting correction to apply to each of the 49
spherical harmonic dispersion curves. Maps and

corrections are shown in Appendix A.

Figure 2 shows the power spectra of the cor—

LOVE RAYLEIGH
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rections at selected periods, compared to the

power spectra of the measured variations in phase

slowness. The power w1 of a quantity S is ex—

pressed as

1
= 1

[u2 m21

i =o ÷ (B1)]

where A and B’ are the spherical harmonic coef

ficients of the quantity S as defined in equation

(1).
It is worth stressing that these shallow layer

corrections are especially large at low order.

This has primarily to do with the distribution of

continents: the too well-known north—south asym

metry and the strong sectorial zoning, both low—

order features.
The corrections are particulary important for

Love waves: whereas the original Love wave veloc

ity maps at 100 seconds show no systematic dif

ference between oceans and continents (NA2), the

corrected maps do. Indeed, the thick crust of

continents (slow) nearly compensates the conti

nental lithosphere (fast), so that the overall

average continental velocity is close to the

oceanic one.
The two points we just mentioned demonstrate

that it is crucial to correct for the effects of

shallow layers in order to retrieve a realistic

picture of the upper mantle heterogeneities even

and, especially, for its large—scale features.

4 Anisotropy

14.1. Evidence for Anisotropy

There is now considerable evidence for seismic

velocity anisotropy in the earth’s mantle. For a

general review of that evidence, the reader is

referred to two special issues of the Geophys

ical Journal of the Royal Astronomical Society

(Bamford and Crampin, 1977; Crampin et al.,

19814). On a regional scale, ‘n studies have re

vealed that in the oceanic lithosphere, P waves

traveling in the oceanic plate spreading direc

tion are consistently faster (by about 5%) than

those traveling perpendicular to the spreading

direction (e.g., Hess, 19614; Raitt et al., 1969).

Similar results have been obtained for conti

nents, although the tectonic setting is usually

more complex (e.g., Bamford, 1973; Vetter and

Minster, 1981; Fuchs, 1983; Hearn, 19814). On a

wider scale, the long—reported discrepancy bet

ween Love and Rayleigh waves in many provinces

can be explained if a 3% polarization anisotro—

py of S waves is allowed for (e.g., Anderson,

1961; Harkrider and Anderson, 1962; Forsyth,

1975; Schlue and Knopoff, 1977; Yu and Mitchell,

1979; Journet and Jobert, 1982).

On a global scale, S and P wave anisotropy had

to be introduced by Dziewonski and Anderson

(1981) in order to fit the global earth normal

modes and body waves data set. The Preliminary

Reference Earth Model (PREM) that they obtain by

inversion of that data set displays P and S

anisotropies up to 14% for depths between 80 and

200 km. Although Dziewonski and Anderson (1981)

do not show the resolution kernels for their

inversion, we think that the data set they use

provides good constraints on the anisotropy of S

waves at least. Indeed, we calculated the resolu—

tion kernels obtained for the inversion of the

120 normal modes of’ their data set that are most

sensitive to upper mantle structure, and we found

that S anisotropy was well resolved in the region

where their model seems to require anisotropy.

The resolution kernels are shown in Appendix B.

(3) From a seismological point of view, it there

fore seems that the long—held hypothesis of iso

tropy has to be abandoned. This statement is

strengthened by evidence from petrology and geo

logy; it has long been known that olivine, pre

sumably a major constituent of the upper mantle

above 1400 km, is strongly anisotropic. Velocity

measurements on olivine single crystals indicate

anisotropies up to 25% for P waves and 20% for S

waves (Kumazawa and Anderson, 1969). Unless oliv—

me crystals are randomly oriented in the upper

mantle, anisotropy should be the rule rather than

the exception. Indeed petrofabrio observations on

ophiolites and other maCic massif’s indicate that

crystal orientation is strongly controlled by the

ambient strain field and is therefore quite con

sistent on regional scales (Nicolas et al., 1971;

Peselnick et al., 19714; Peselnick and Nicolas,

1978). Furthermore, Christensen and Salisbury

(1979) show that using the petrof’abric data for

the Bay of’ Islands ophiolite together with the

elastic moduli of’ olivine single crystals, they

predict an azimuthal anisotropy for P waves that

is in excellent agreement with the actual oceanic

data of’ Morris et al. (1969). Tectonic plate

motions and convection currents in the mantle are

associated with large—scale stress and strain

fields, so that anisotropy can be expected on a

large scale in the upper 1400 km of’ the mantle.

14.2. Azimuthal and Polarization Anisotropy

The most general form of anisotropy involves

21 elastic coefficients instead of the two which

characterize an isotropic body. However, surface

waves are affected by only a subset of the inde

pendent combinations of’ these elastic coeffi

cients: six for Love waves and 12 for Rayleigh

waves (Smith and Dahlen, 1973). A special case of

anisotropy is transverse isotropy with a vertical

axis of’ symmetry: it corresponds to the most

general kind of’ anisotropy that can be given to a

radially symmetric earth (Backus, 1967). Trans

verse isotropy involves five elastic coefficients

(Love, 1927); there is no anisotropy in the hori

zontal plane, but the velocities of body waves

vary in a vertical plane, depending on the angle

between the direction of propagation and the

vertical. Also, S waves have different velocities

depending on whether they are polarized in the

vertical plane (SV) or in the horizontal plane

(SM) (Anderson, 1961). For that reason, trans

verse isotropy is sometimes called polarization

anisotropy. Because it involves no azimuthal

dependence, transverse isotropy can be incorpo

rated into standard methods to calculate normal

modes of a layered earth (Anderson, 1961; Backus,

1967; Takeuchi and Saito, 1972). For these rea

sons, transverse isotropy was chosen to describe

the Preliminary Reference Earth Model (PREM) of’
Oziewonski and Anderson (1981).

In the present study, we will also restrict

our attention to transversely isotropic models.

There is no a priori reason to believe that this

type of anisotropy is dominant over azimuthal

anisotropy on a regional scale. In fact, much of



7266 Nataf et al.: Upper Mantle Heterogeneity and Anisotropy
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Fig. 3. Partial derivatives of the period T of the 0S110 normal mode (T—210 s Rayleigh

wave) with respect to the six parameters of a transversely isotropic earth p, °FI v’

, , andq ) as a function of depth in the uper mantle. Units are 1O km for

and q; io— km1 g cm3 for p; and 1O km km s for °H and
.

The model used to

calculate the partials is PREM.

the evidence that we have for anisotropy comes

from the azimuthal variation, which can reach

several percent. However, even if the most gener

al kind of anisotropy is considered, the average

over all azimuths of surface wave velocities

depends on five combinations of the elastic coef

ficients only These combinations reduce the

actual medium to a transversely isotropic medium

whose equivalent coefficients can be calculated

from Smith and Dahien’s (1973) more general ex

pressions, as shown in Appendix C. Therefore, if

a good azimuthal coverage is achieved for every

region, or spherical harmonic, the azimuthal

average replaces the actual azimuthal variation

and we have an equivalent transversely isotropic

medium Of course, valuable information on the

azimuthal dependence is lost in that process In

that respect, our approach must be regarded as a

first step. Indeed, Tanimoto and Anderson (19814,

1985) using a data set extended from NA2 retrieve

both azimuthal—dependent and —independent terms

for the larger—scale heterogeneities. Neverthe

less, it must be kept in mind that the informa

tion in fundamental Love and Rayleigh waves is

limited and that the direct retrieval of the

lateral heterogeneities of the density and the

five elastic coefficients of a transversely iso

tropic earth model is beyond reach at present

In the following, we define the five indepen

dent combinations of the elastic coefficients as

from Takeuchi and Saito (1972):

N/L =

•= C/A CaVIaR)2

F

(14)

where the A, C, F, L, and N are the five elastic

coefficients of the equivalent transversely iso

tropic medium, as given in Appendix C. The param

eter describes the anisotropy of S waves, •
describes the anisotropy of P waves, and r is the

fifth parameter needed to describe fully trans

verse isotropy.

14.3. Seismological and Geodynamical Relevance

of Anisotropy

Once one admits the existence of anisotropy in

the earth’s upper mantle, it can be tested wheth

er anisotropy leads to sizeable effects for the

data set we are dealing with: the dispersion

curves of fundamental Love and Rayleigh waves.

The goal of this subsection is to show that this

is indeed the case and furthermore that anisot—

ropy carries valuable information concerning the

mechanics of the mantle.

In dealing with lateral heterogeneities, it

1F8T1
T [ j
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should be recognized that velocity variations
induced by changes in crystal orientation can
exceed those due to changes in temperature. Fig
ure 3 illustrates this point by displaying the
partial derivatives of the period of the
mode (--212 s Rayleigh wave) with respect to
density and the five other parameters. It can be
observed that the shapes of the andkernels

are almost identical. This means that there ex
ists an almost complete trade—off between SV

velocity and P wave anisotropy. Paying attention
now to the amplitudes of the kernels, let us see
what kind of parameter variations we need in
order to explain a phase velocity anomaly of,
say, 0.03 km/s (typical of the observed anomalies
at this period). Changing the parameters over a
100—km—thick layer around the depth of maximum
amplitude (--300 km), the variation that we
need to explain the anomaly is 0.12 km/s versus a
•variation of 0.1. Going one step further, a
variation of 0.12 km/s can be due to a --350°C
temperature variation, whereas a4variation of
0.1 (a 5% P anisotropy variation) can be produced
by a 90° shift of the preferred orientation of
crystals in a realistic mantle (see Appendix D).
We note that an undulation of about 100 km of the
1400—km discontinuity would also cause the same
phase velocity anomaly.

Based on geodynamical considerations, it is
difficult to expect temperature variations at a

given depth in excess of, say, 600°C in the upper
mantle. On the other hand, extrapolating from the

observed azimuthal dependence of n waves, P
anisotropy up to 7% cannot be ruled out. On both

seismological and physical grounds it thus ap

pears that anistropy in the upper mantle can
contribute quite significantly to the observed
lateral heterogeneities of surface wave veloci

ties. This is why it is necessary to include
anisotropy in the inversion of surface waves and

free oscillation data.
Although this, of course, complicates the

procedure, it should be emphasized that anisotro—

py can be a useful tool for geodynamics. Whereas

velocity variations can help us map temperature
heterogeneities in the mantle and thus place

constraints on its dynamics, anisotropy can help

us trace convective motions in the mantle and

thus place bounds on its kinetics. This is be

cause motions in the mantle lead to preferential

crystal orientations through their associated

strain fields (McKenzie, 1979).
Anisotropy appears to be a necessary and use

ful complement for both seismology and geody—

namics. This has indeed been recognized: early

on, Hess (19611) pointed out that the azimuthal
dependence of n velocities in the oceanic litho

sphere was an important clue in favor of sea

floor spreading; more recently, Anderson and

Began (1983) and Began and Anderson (19811) built

consistent oceanic velocity models including both

thermal and orientation effects to fit surface

wave data in the Pacific; Tanimoto and Anderson
(19811, 1985) used the azimuthal anisotropy of

surface wave velocities as a marker of convective

motions in the mantle. In this paper we retrieve

information on the transverse isotropy of the

different tectonic regions as defined by Okal

(1977) and of the spherical harmonic expansion of

the upper mantle’s lateral heterogeneities up to

degree 6.

5.1. Forward Problem

The forward problem consists in calculating
the periods of the normal modes for a given
spherical, anisotropio earth model. Indeed, as we
will see in the next section, we transform our

original phase and group velocity data into the

period of normal modes with integer mode number.
Our transformed data are then the periods of a
given set of normal modes for every region or
spherical harmonic coefficient. The model is
defined by the values of the density, the five
elastic coefficients, and the shear and bulk
quality factors for all radii from the center of
the earth to its surface. We use the computer
program EOS written by A. Dziewonski to calculate
for a given model and for each chosen normal mode
its period, phase velocity, group velocity, and
partial derivatives of the period with respect to
the model parameters. The calculation includes
the effects of spherioity, gravity, and dissipa
tion. The program is adapted from F. Gilbert’s
isotropic earth program to include transverse
isotropy following the guidelines of Takeuchi and
Saito (1972). Backus (1967) was the first to
deduce the scalar equations of elastic gravita
tional oscillations of a transversely isotropic,
radially stratified, spherically symmetric earth.

We analyze fundamental surface waves with
periods from 100 to 300 s, and can retrieve
information only about the upper mantle. There
fore, in all the inversions that we perform, we
leave the inner part of the earth unmodified: we
use PREM parameters from the center of the earth
to the top of the lower mantle (at a depth of 670
km). We also keep the quality factors of PREM
unchanged for all radii. The upper mantle is
divided into 314 layers, on top of which lay 13
layers of crust and ocean. Below the crust, seis
mic discontinuities are kept at depths of 80,
220, 1100, and 670 km. Between these discontinu
ities, both the forward calculation and the
inversion are conducted as continuous operations.
All the models we present are at the reference
period of 1 s (see Dziewonski and Anderson,
1981).

5.2. ionAlorithm

A glance at the partial derivatives displayed
in the previous section makes it obvious that the
data we have do not enable us to determine
uniquely all six parameters for all radii in the

upper mantle. Our problem is obviously under—

constrained. In order to retrieve valuable and

meaningful information, various inversion methods
have been designed that all lead to some kind of
well—constrained average of the parameters under

study. Starting from the corner stone work of

Backus and Gilbert (1967, 1968, 1970), various

improvements have been proposed from either a

conceptual or a practical point of view. Among
those, the discovery of the importance of a

priori information (be it explicit or hidden) as

a major ingredient for constraining undercon—
strained problems has proved most useful

(Franklin, 1970; Jordan and Franklin, 1971;

Sabatier, 1977a,b; Jackson, 1979). This has led

Tarantola and Valette (1982a) to propose a fully

5. Inversion
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“Cartesian” probalistic approach to inversion
problems. The application of’ their very general
formulation to the more specific but widespread
problem of slightly nonlinear least squares in
version, along the lines of’ Backus and Gilbert,
yields inversion algorithms that are both practi—
cal and conceptually pleasant (Tarantola and
Valette, 1982b). They have the advantage over
Backus and Gilbert’s (1967, 1968, 1970) and
Wiggins’(1972) algorithms in that they explicitly
include a priori information on the parameters.
The philosophy of Tarantola and Valette’s algo
rithms can be summarized as’follows: the answer
obtained (a posteriori model with its error bar,
or more generally its covariance matrix) is as
close to “reality” as possible, given the data

(with error bars), a theory that relates them to
the model, and the a priori knowledge assigned to
the model parameters (a priori model with its
covarjance matrix).

Mathematically, if the theory gives the “data”
d for the model 2 through a functional g by d
g(p) and if G is the matrix of the partial deriv
atives of g with respect to 2’ the model that
best fits the observed data and the a priori
information chosen (in a least squares sense) is
given as the limit when k—CL of £k defined by

2k+1 2 kpp
T)—1

G (cdd + G C G
0 00

[4O k)+Gk2k2o

where Cd d is the covariance matrix for the
data, C 0is the a priori covariance matrix for
the mocL, and is the a priori model. When the
functional g is linear in p, no iteration is
needed, and the a posteriori model is found by

setting k 0 in equation (5). In that case, the

a posteriori covariance matrix Cp on the model

is analytically expressed as

— C G’(C + GC GT)_ GC (6)
pp p0 p0 p p d0d0 p0p0 p0 p0

The a posteriori maxtrix C contains all the
information we need concerning the accuracyt

with which our best fitting model P is obtained.
The diagonal terms give the a posteriori standard
deviation on the model parameters, and the off—
diagonal terms describe the trade—off between
parameters at different depths. The trade—off is
more commonly discussed in terms of “resolving
kernels” (Backus and Gilbert, 1970) or a resolu
tion matrix. For Tarantola and Valette’s algo
rithm, the resolution matrix B is given by

Montagner and Jobert (1981) as

B C GT (C + GC GT)_l G
p0p0 dd0 p0p0

For nonlinear problems, no analytical matrix
expression has been found for the a posteriori

covariance matrix nor for the resolution matrix.
However, the problem we study here is only

slightly nonlinear, and computing the a posteri—

on covariance matrix using equation (6) at any

step k gives pretty much the same answer, which

should be reliable enough. For the same reason
only a few iterations on k are needed to obtain a
stable and convergent r model.

In our case the model 2 is made of six conti
nuous functions of the radius r, corresponding to
the six parameters of a transversely isotropic
earth (namely, p, aH, PV, , •, and q ). The mat
rix formulation presented above is easily gener
alized to include continuous functions (Tarantola
and Valette, 1982b). The resolution B is made of
6 x 6 continuous functions of the radius r and
carries information about the usual depth resolu
tion for each parameter but also about the
“trade—off” between different parameters. The
data d are the periods of the selected torsional
and spheroidal normal modes.

From a practical point of view, the main ad
vantage of Tarantola and Valette’s (1982b) algo
rithm for our application is that it gives com
plete flexibility for defining the a priori co—
variance matrix of the parameters. This will
prove useful for introducing a priori links bet
ween parameters: for example, we may have a
priori physical reasons to believe that, at a
given depth, density, P velocity, and S velocity
should vary in the same way if their variations
are due to variations in temperature. The use of
an a priori covariance matrix on the parameters
enables us to enter such a priori information,
making it possible to constrain an otherwise very
undetermined problem.

In the next section, some of these aspects
will be exemplified as we use a very special
application of Tarantola and Valette’s algorithm
(namely, finding a model curve to fit data that
are its values and the values of its derivative
at given points) in order to combine the informa—
tions brought by phase velocities on one hand and
group velocities on the other.

6. Combining Phase Velocity and Group
Velocity Information

6.1. Method

For the earthquake—to—station observations
that are used to derive the spherical harmonic
expansion of lateral heterogeneities, NA2 mea
sured both phase and group velocities. Of course,
if the phase velocity measurements were perfect,
no further information would be brought by the
group velocity measurements. However, as the
measurements carry some errors, nontrivial infor
mation is brought by complementing phase velocity

measurements with group velocity data (Anderson
and Tokshz, 1963; Gilbert, 1976).

Group velocity data could be added to the
phase velocity data set and partial derivatives
calculated with respect to the model parameters
and included in the inversion procedure. This
approach, however, suffers two drawbacks: (1) the

(7) number of data is doubled, thus making the inver
sion computations much heavier, for a gain in
information that might not justify it, and (2)
partial derivatives for group velocities involve
a numerical differentiation so that at least
twice as many periods (Rodi et al., 1975) or
modes must be calculated in the forward problem
than needed for phase velocity inversion.

Furthermore, phase and group velocities are
measured at a given period T, whereas in a spher
ical earth, computations are best done at a given
mode number n. When relating a model to observa
tions, it is therefore necessary to convert from
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mode numbers to periods. For a correct interpola

tion to be made, more modes than actually needed

must be calculated each time a model is tested.

In the inversion procedure the data do not

change, and it is logical to first convert these

from a fixed period to a fixed and integer mode

number. Only the same limited number of modes

then needs to b calculated at each model—testing

step.
To perform this conversion and combine the

information brought by phase velocity and group

velocity, we designed the following method:

The Rayleigh—Ritz formula defines the phase

velocity C of a given mode in a spherical earth

with radius R as C w/k (2rr/T)/[(n+1/2)/B],

where T is the period of the normal mode consid

ered and n is its mode number. The group velocity

U is U dw/dk d(2tTR/T)/dn. Introducing the

variable x 2rrR IT, we then have
e

x
n(x)

dn 1
—(x) =-jj-.y

If we can find a smooth continuous curve that

relates n to x, it is easy to pick integer n

values and read the corresponding x value and

thereby deduce the period T of the normal mode n.

The problem is therefore to find a smooth n(x)

curve given the values it takes at selected

points (from the phase velocity data in equation

(8)) and given the values its derivative takes at

selected points (from the group velocity data in

equation (9)). This is a typical inversion prob

lem and, as such, is treated as an example by

Tarantola and Valette (1982b). The “model” is the

continuous function n(x). The “data” are the

phase velocity and group velocity measurements at

selected x values. The standard deviations on

these measurements are built into the covariance

matrix for the data. The problem is linear, and

the partial derivatives are the Dirac distribu

tion for the phase velocity data and its deriva

tive for the group velocity data. The a priori

covariance matrix of the parameters is chosen as

2
(x1-x2)2

,
[n(x1nx2] a0 exp(

— 2
00 2

0

where a0 is the standard deviation of the a

priori guess on n and is the typical x length

scale of permitted undulations. The a priori

model can be chosen as

n(x)zax-*-b
0

where the constants a and b are roughly esti

mated. The inversion now is particularly simple

because most integrations involved can be per

formed analytically (see Tarantola and Valette

(1982b) for more details).

The correlation length is arbitrarily cho

sen so as to avoid unwanted undulations in the a

posteriori model n(x) curve and its derivative. A

“best” smooth curve is then obtained, together

with its a posteriori standard deviation calcu

lated from the a posteriori covariance matrix of

the parameters. Integer n values are picked, and

the corresponding T(n) data read with their stan

dard deviations. When actually dealing with the

spherical harmonic coefficients of phase and

group slowness, a slight modification of the

method we just described is required. This is

presented in Appendix E.
An advantage of our approach is that one can

check how consistent phase and group velocities

are, before trying to find an earth model to fit

them. In our spherical harmonic inversion we use

this facility to test how well determined the

individual coefficients are.

6.2. Compatibility Between Phase and Group

Velocity Data

If one can find a reasonably smooth curve to

simultaneously fit phase and group velocity data,

these data are consistent. On the contrary, if no

reasonable curve can be found, there is some

(8) inconsistency between the two data sets. As phase

and group velocities are measured and expanded

independently, their consistency can be used as a

(9) criterion for judging how well determined and

reliable are the individual coefficients of the

spherical harmonic expansion.

This is best seen in some examples, Figure 4

displays the fits obtained for three individual

coefficients that all appear to be quie consis—

tnt. For these three coefficients (B2, A, and

A) the smooth curve we invert for is found to

give a good fit to the phase velocity measure

ments (drawn with their error bars), while its

derivative also accurately fits the group veloci

ty measurements (drawn with their error bars) for

the chosen correlation length its. We therefore

deduce that phase and group velocities are con

sistent for these particular spherical harmonic

coefficients, which are probably well constrained

by our data. This is confirmed by the fact that

they all show fairly small error bars.

On the contrary, Figure 5 illustrates the case

of “bad” coefficients. For these two coeffi

cients, A and A, no “reasonable” curve can be

found that fits the phase and group velocity data

simultaneously. They are inconsistent. The curve

that we obtain can be seen as a reasonable curve

that complies as best as possible with both data

sets. For these coefficients, phase or group

velocities or both, are not well constrained, and

one or both are not reliable. This is confirmed

by the large standard deviations that affect

them. Our procedure usually tends to reduce the

amplitude of such”bad” coefficients, while at
tempting to produce a reasonable compromise.

It is interesting to test all the coefficients

using the qualitative criterion we just defined.

(11) Coefficients that have near—zero amplitudes at

all periods for both phase and group velocities

are automatically “good” but they are not very

interesting because they contribute little to the

lateral heterogeneneities. We are thus left with

two types of coefficients: “good” ones for which

phase and group velocities are consistent and

which contribute significantly to lateral hetero—

genities, and “bad” ones that display some incon

sistency between phase and group velocities and

have large ampitudes. The second type of coeffi

cients might lead to spurious results, so that it

may be better to eliminate them at the end.

Listed as “good” coefficients are the following:

(10)
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Fig. . Three examples of “good” spherical harmonic coefficients for which phase and

group velocity data are found to be in agreement. The functions y’ (transformed group

velocity) and y (transformed phase velocity), as defined in Appendix F, are plotted

against x = (2uR)/T, where T is the period. The data points are drawn with their 2o

error bars. A unique continous model is built that fits the y data, while its derivative

fits the y’ data, using a special inversion algorithm. It is drawn with its a posteriori

standard deviation (dashed lines). The horizontal bar is the a priori smoothness length

o.

1 1 2 0 1 2 3 1 3 )4 1 2
A, B2, B2, A3, A3, A3, 83, Ai, A, B, A5, A5,

A5, B,, A, B, and B6.”Bad” coefficients

are A, 83, B, A, B, B6, and B.

Even order harmonics are usually well deter

mined (NA2); they also display a good consis

tency. Some odd order harmonics show a good con

sistency, but most “bad” coefficients are odd

order harmonics.

7. A Priori Information

A priori information, be it hidden or expli

citly expressed, is an essential ingredient in

any inversion “cuisine.” It enters the procedure

in several different ways: we have already made

use of some a priori information when introducing

shallow layer corrections, the choice of a ref

erence average earth model is also based on in

formation obtained from other data it is thus to

be considered as a priori information for our

inversion. Another piece of information that we

need to bring in concerns the smoothness of the

expected parameter variations in the upper man—

tle. Additionally, physical constraints can place

bounds on the range of possible variations, as

well as on the correlation that may exist between

some of the parameters.
In Tarantola and Valette’s (1982b) inversion

method, this kind of a priori information is

explicitly introduced through the a priori co—

variance matrix on the parameters
,

. The next

subsections describe the a priori0 c°hoices we

make, and how they are used to build a reasonable

a priori covariance matrix.

7.1. Correlation Length

As in section 6, a correlation length t can

be used to describe the smoothness of the expect

ed variations with depth of a given parameter

2(r). Assuming a Gaussian distribution, the a

priori covariance matrix is expressed as
2

2
(r1-r2)

C (2(r1),2(r2)) = o(p) exp(—
2pop0 2 L
0

2

LOVE RAYLEIGH

y

-2

I
0.4 y

°:
=F

x 2tR/T

(12)
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LOVE RAYLEIGH

When the distance Iri_r21between two points is

small as compared to the correlation length

the a priori covariance between the parameters at

the two corresponding radii is strong, and they

are thus required to vary little with respect to

one another in the inversion process. The corre

lation length controls the smoothness of the

variations of the parameters with depth.

Ideally, we would like to choose a correlation

length based on physical arguments; for example,

from the modeling of convection in the mantle, we

expect temperature variations, and hence the

seismic velocity variations they produce, to be

“smooth” on a scale of some 50—100 km (the thick

ness of the lithospheric boundary layer). Strong

variations can, however, occur on the scale of

the minerals that the mantle is made of. Besides

the fact that such variations are of little geo—
dynamical interest, they are of course unresolv

able by the data set that we are dealing with.

This raises the question of the degree of “rough

ness” that we are able to detect, considering the

depth sensitivity of the data we use. Logically,

no such concern should be raised at this stage,

since depth—resolution is an output of the inver

sion procedure indeed. However, if we choose too

small a correlation length, the answer we get is

poorly constrained; we are faced with a long—

recognized problem: the trade—off between resolu

tion and precision (Backus and Gilbert, 1970).

Two different philosophies are available.
1. On the one hand, “classical” inversion

methods (Backus and Gilbert, 1970; Wiggins, 1972)

let the data “decide” what roughness they can

actually resolve, given their uncertainties. The

danger is then that the a posteriori standard

deviation for the parameters depends heavily on

the shape of the resolution kernels, which is

optimized by the inversion procedure but might be

very different from a Gaussian distribution and

therefore difficult to assess physically

(Jackson, 1979).
2. On the other hand, Tarantola and Valette’s

method includes smoothness as a required a priori

ingredient. The a posteriori standard deviation

for the parameters then expresses the way that

the data constrain the variations of the parame

ters on the a priori given scale. The danger in

that case is that if the a priori scale that we

choose is too fine, no significant constraint is

brought by the data in the end.

Faced with this dilemma, we are led to “cheat”

a little with the logic of Tarantola and

Valette’s method: the choice we make for the a

priori correlation length will take into account

the way we expect the data to resolve the parame

ters with depth. For example, although we have no

a priori physical reason to believe that varia

tions are more smooth at 600 km depth than at 100

km depth, we choose a correlation length at depth

that is twice the shallow one because we know

that our data have a better resolution near the

surface than at depth. Figure 6 shows the varia

tion of the a priori correlation length with

depth that we finally retain, for both the re—

gionalized and the spherical harmonics inver

sions, as a reasonable compromise between real a

priori information and a guess at the degree of

roughness we can constrain from the data.

We should mention that a third way of con—

Fig. 5. Two examples of’ “bad” spherical harmonic coefficients for which phase and group

velocities are found to be inconsistent. Other conventions as in Figure 1.
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I

The coefficient s governs the degree to which p
and q are correlated. If a 0, p and are
uncorrelated; if a z 1, the correlation is com
plete. For convenience, the correlation can be
expressed approximately in terms of an average
ratio t so that

(114)

The ratio t corresponds to the slope of the long
axis of the ellipse in Figure 7, and s describes
the spread away from the t line. If the correla
tion is strong enough (i.e., (1—s) small enough),
expression (13) becomes

/ 2 2 \
( a,() at

pp 1 2 22 1o 0 \st a()

We note that the parameter s cannot be inter
preted in terms of a spread of the ratio t con
trary to what was stated by Nataf et al. (19814).
In the following, we will try to define the a
priori a, t, and a that we need for building a
physically reasonable a priori covariance matrix
for the parameters p, 0H v’ •, and q that we
invert for.

Let us examine the factors that induce varia
tions in the model parameters at a given depth:
(1) undulations of the seismic discontinuities,
be they phase or chemical transitions, produce
horizontal variations of density and P and S
velocities and, possibly, of the anisotropic
parameters, (2) temperature heterogeneities pro
duce variations in density and P and S velocities
but have no effect on anisotropy, (3) changes in
crystal orientation are responsible for varia
tions of the anisotropic parameters, have some
influence on P and S velocities, and have no
effect on density.

Fig. 7. Schematic drawing of the a priori co—
variance domain for two correlated parameters p
and q. The slope of the long axis of the ellipse
defines an average ratio t. The parameter

describes the spread away from the
t correlation line. The case drawn corresponds to
tO.67 and szO.83.

with

(15)

01 2
S 1/1 — (..) (16)

Fig. 6. Plot of the a priori correlation length
that we choose, as a function of depth. It

describes the required smoothness of the models
we invert for and enters the inversion procedure
through the a priori covariance matrix, as given
by expressions (12) and (21).

trolling the variations of the model with depth
is to parameterize these variations using a set
of functions of depth such as polynomials
(Dziewonski and Anderson, 1981) or Legendre poly
nomials (Woodhouse and Dziewonski, 19814). The
inversion is then treated as a classical least
squares inversion, the model being overdeter—
mined. The problem with this method is that lit
tle natural flexibility is left to the model and
that the functions might not be well suited for
an optimal resolution to be achieved either. On
ths ther hand, the parameterization makes the
computations much lighter and the results easier
to communicate.

In fact, we have chosen the latter approach
when dealing with lateral heterogeneities as we
expanded the data in spherical harmonics using a
simple least squares inversion method (NA2),
whereas it would have been possible to use
Tarantola and Valette’s method with some horizon
tal a priori correlation length (Montagner,
1986). We believe that our mixed approach sets a
possible compromise between the freedom that
needs to be left to the earth for expressing its
heterogeneities and the order that we need to
bring in for understanding them.

7.2. Physical Constraints on the Parameters

In this subsection, physical constraints are
used to place bonds on the expected variations of
the parameters and on the way they correlate. If
two parameters p and are correlated, their a
priori covariance is nonzero. In the (p,) plane
the a priori expected variations define an ellip
soidal domain, as sketched in Figure 7. The a
priori covariance matrix for these two parameters
can be written as

/ 2(p)
s%(p)00(q)\

C - I 2 I (13)
POP0

\sa(2)a(.8) açq) J
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0.1

—0.5 and s z 0.875

We have retained the fact that 4)andvary in

opposite ways for any realistic anisotropic man

tle. The rationale for the choice of the nu

merical factor is based on the variations ob

served when changing the preferred orientation

from horizontal to vertical in a realistic mantle

material (Appendix 0). The 4’ variation is then

in fact larger than the variation. However, as

we excluded ‘i from the inversion, we added its

effect to the 4) effect, since 4) and r1 corre

spond to almost identical partial derivatives.

The resulting equivalent 4) variation is then

typically half the variation (with opposite

sign).
If the I1QQ km discontinuity, in part, marks

the transition from divine to spinel and ortho—

pyroxene to garnet (majorite), we should expect

the mantle below that depth to be more isotropic.
(17) Therefore we reduced the a priori o( ) to 0.05

below 100 km.
In the spherical harmonic inversion, we invert

every coefficient with the same a priori cons

traints. However, as we expect variations for one

given coefficient to be smaller than overall

variations between regions, we divided the above

by 2 for both and

7.3. Djscontinuities

PREM, and the earth, presumably, shows several

seismic discontinuities. The 670—km and the 400—

km discontinuities are well known and are pre

sumed to exist everywhere on the globe. PREM also

displays discontinuities at 80 km and 220 km.

Because of these discontinuities, the partial

derivatives 0 are discontinuous at the corre

sponding radii. The problem therefore arises of

what a priori correlation to choose between the

two sides of the boundary. Indeed, on physical

grounds we might expect a cold sinking convection

current to produce fast seismic velocities on

both sides of the boundary if convection passes
(18) through; on the other hand, the effect, in terms

of the amplitudes of velocity variations, might

be different depending on which side of the dis

continuity we look at, due to different material

properties. We thus expect heterogeneities on

both sides to be correlated, but we can allow for

a reduction of correlation when crossing a seis

mic discontinuity. Undulations of the disconti

nuity would also produce some equivalent loss of

correlation across an average discontinuity.

Mathematically, if we use equation (12) to build

the a priori covariance matrix, the two lines of

the matrix corresponding to the two sides of a

discontinuity will be identical; will then

be singular, which might lead to some numerical

problems in the inversion algebra.

For these reasons, both physical and mathe

matical, we find it convenient to apply a reduc

tion of correlation across the seismic disconti—

nuities. Equation (12) becomes
2

2
(r1-r2)

C [p(r1),p(r2),JAa (p) exp( —

________

pop0 °
2

0

(19)
If convection takes place in the upper mantle,

we have reasons to believe that all three fac

tors, undulations, temperature, and orientation,

are present and play a role in shaping the

earth’s lateral heterogeneities. Our goal here,

however, is not to test a given convection model

but merely to use some reasonable physical con

straints to produce rough a priori guesses on the

variations of the different parameters. In that

spirit, we will assume that variations in densi

ty, and Pv are mostly due to temperature

variations alone. We then expect all three fac

tors to decrease when the temperature increases.

More precisely, the temperature derivatives of

density, uH, and for olivine are estimated

from Kumazawa and Anderson (1969):

—— —2.5 x 10 K

PT

1 aH
—— —5 x 10 K1

CH T

—5 x1O5K

These numbers are not to be taken at face value,

as they can vary substantially, depending on the

temperature, the chemical composition, and what

phases (e.g., olivine, j3—phase, Y—spinel) we con

sider in the upper mantle. What remains, however,

is that lateral variations in p, 0H’ and are

expected to be correlated and that the range of

plausible variations in these parameters can be

bounded if we believe that lateral variations in

temperature do not exceed, say, 1200°C. Using

this kind of argument, we choose the following a

priori constraints:

Oo( 7) 0.2 km/s

g/cm3
— 0.3 and s 0.875

km/s

— 1.5 and s 0.92
hR

rv

It is worth noting that this kind of a priori

constraint also gives a fairly good description

of the variations to expect from undulations of

the seismic discontinuities.

Changes in crystal orientation are responsible

for variations in the anisotropic parameters. In

Appendix 0 the changes in all six inversion pa

rameters are given for a change of the flow from

horizontal to vertical in a realistic anisotropic

mantle. Although aH and are found to vary in

such a process, we will neglect these variations

and consider that only and ‘vary, neglecting

also the variation in Ti• We will consider that, a

priori, changes in the anisotropic parameters

and 4) on the one hand and changes in p, aH, and

Pv on the other hand are decoupled, and we choose

the following a priori constraints:

(20)
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where the coefficient A is 1 when r1 and r2 are
on the same side of the discontinuity and A
takes some value between 0 and 1 when they are on
different sides. In the following, X 0.8 was
chosen.

7.11. A Priori Covariance Matrix

Combining the ingredients proposed in the
previous subsections we are able to build the
complete a priori covariance matrix on the para
meters . The general expression for its
elements is

0

C[p(r1),q(r2)]zsto(p,r1)a(p,r2)[UA(disc.)]

2
(r1—r2)

xexp(— )
2

(21)

where the definitions of the symbols have been
presented above, together with the values we
choose for them in our inversions.

The a priori covariance matrix for the data

Cd0d0 is chosen diagonal and built with the stan
dard deviations obtained from the regionalized or
spherical harmonic expansions. It is not strictly
valid to consider that all data are independent,
especially since we have in fact introduced some
correlation between them when combining phase and
group velocities. Our simplification is equiva
lent to giving more weight to the individual data
points than they actually deserve. The effect is

to exaggerate the required parameter variations,

as we show in section 9.
The choice of our a priori covariance matrix

can seem rather arbitrary and rigid. It is indeed
important to realize that selecting an a priori

information is not innocent. Were the model well
constrained by the data alone, no such problem
would arise, since the information brought in a
priori would be overwhelmed by the information
brought in by the data. Unfortunately, the phase
velocities of fundamental mode Love and Rayleigh
waves do not carry enough information to con
strain fully the variations with depth of the six
parameters of a transversely isotropic upper
mantle. Faced with this reality, one might be
tempted to ignore some of the parameters alto
gether. For example, one could assume isotropy
and invert for p, a , and 3 only, or even for

the dominant parameter, alone. We think that
such an a priori choice is no longer physically
reasonable and that the apparent confidence that
it brings can be misleading. We prefer building a
seemingly more complicated a priori cuisine that
rests upon more reasonable physical assumptions
while permitting some flexibility for violating
them. Our results, of course, will depend on the
choice we make for the a priori information, as a
few examples will show in section 10. The reader
should refer to our final results as, at most,
being the best that we can extract from our data
with our present knowledge.

8. Resolution and Trade—Off

Before getting to the earth’s models that we
obtain by inversion, it is necessary to examine

what resolution we have from the data that we

use. As we invert for five different parameters

(p, 0H ,4), resolution also includes the
trade—off between parameters. The resolution
function B given by equation (7) tells us what
kind of resolving power as a function of depth we
have for a given parameter and also what “leak
age” from other parameters comes in.

Figure 8 shows the generalized resolution
functions for the inversion of the B spherical
harmonic coefficient. We show only one set of
resolution functions; they are almost identical
for all the spherical harmonic coefficients and
are rather similar to the ones obtained for the
inversion of the different regions. The resolu
tion is plotted at selected depths for the five
parameters. Each resolution line comprises one
segment that is the usual “resolution function”
or “averaging kernel” and four other segments
that describe the trade—off with the other para
meters. Ideally, we would like to obtain a delta
function centered on the target depth (marked by
an arrow) and zero trade—off with the other pa
rameters.

It is important to realize that if the usual
depth resolution is dimensionless, this is no
longer true for the trade—off between parameters.
The problem then arises of how to compare parame
ters that are of different physical nature. It
seems reasonable to relate each parameter to some
natural scale (Jordan, 1973). It is easy to show
that if one uses a scale u to define dimension
less parameters 1 r p/u, then the dimension
less resolution function i for these new parame
ters is given by

uj(rn)
[i(rm)’Pj(rn)] B[pi(rm),pj(rn)]

ui(rm)

(22)

The amplitude of the trade—off between two
parameters depends on the scale chosen. The most
natural choice is to pick the a priori standard

deviation as a scale for each parameter p1,
as they have been defined precisely so as to
bracket the physically plausible variations of
the parameters. The larger is for a parameter

the larger are the variations that we expect

for the latter, and through equation (22), the

smaller is the trade—off of the other parameters

with it.
We now examine the sets of resolution/trade

off plots of Figure 8. As expected, the two best

resolved parameters are and . Typical values
for the width at midheight of the resolution

kernels are 150 km at 200 km depth, and 250 km at
1100 km depth. Similar values have been obtained

for inversions of data in the same period range
(e.g., Lévêque, 1980). However, we also note a
significant trade—off with • (P anisotropy).
This, of course, comes from the almost perfect
identity of shape between the and 4 partial
derivatives for Rayleigh waves as discussed in
section LI. The resolution kernels are not well
behaved for depths shallower than about 160 km;

for these depths there is also a significant

trade—off with shallow structure. The reso

lution kernels are rather wide: about 250 km at
200 km depth, and 350 km at 4OO km depth. We note

that aH is completely unresolved in our inver
sions.

In conclusion, we can get a fair resolution of
variations throughout most of the upper man—
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Fig. 8. Resolution/trade—off functions for the coefficient. Each line is the line of

the resolution function that oorresonds to the tested parameter at the tested depth

(marked by an arrow). Units are 1O km1. Each of the five segments spans the upper

mantle. Each segment corresponds to a different parameter. Every parameter is normalized

with its a priori standard deviation cc. Note that and are the best resolved

parameters.

tle. S anisotropy is not as well resolved, but we

should get reliable estimates of variations

averaged between 200 and 1400 km depth. Shallow S

anisotropy might be contaminated by varia

tions. The other parameters (p, a8, and 4) ) that

we invert for will be mostly controlled by the a

priori information that links them to and .

9. Regional Inversion

In this section we present the models we ob

tain for the seven tectonic regions of Okal’s re—

gionalization shown in Figure 1 and discuss their

implications. We examine the fits and the stan

dard deviations of the models and design a few

tests to assess how reliable our models are. Our

results corroborate some now well—established

features, such as the thickening of a fast litho—

spheric lid with age in the oceans, and the

presence of a fast mantle under shields. The

trench, or qonvergence, region has a distinct

signature. Anisotropy indicates horizontal flow

under the oceans except for the youngest and

oldest parts where the flow is vertical.

9.1. nalizedModels

Figures 9 and 10 show the structure of the

upper mantle for the four oceanic regions (A, B,

C, D). Figures 11 and 12 show the results ob

tained for the three other regions (T, H, 5). In

Figures 9 and 11 we plot the differences from the

0 0 0
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corresponding a priori models. Below 80 km, the a

priori model is PREM for all regions. Between 80

km and the base of the crust, the and
structure of the a priori models varies depending

on the 1’n value chosen for the corresponding

region. In Figures 10 and 12 the absolute values

are plotted (for a 1—s period seismic wave refer

ence).
The structures of the four oceanic regions

indicate a correlation with the age of the ocean

floor. Region 0, the youngest region (0—30 Ma),
has lower than average velocities throughout the

upper mantle. The velocity is especially low

between 80 and 250 km depth. The velocity in the

upper 220 km increases gently with age from re
gion 0 to region C (30—80 Ha) to region B (80—135

Ma) and increases even more to region A (more
than 135 Ma). Except for the latter, the oceanic

regions display the same lower—than—average ve

locity between 200 km and 1100 km. As discussed

below, many of these features have already been

described in regional or global studies of the

oceanic mantle. We also note that at depths

greater than 1400 km, the youngest ocean (D) is

slow, whereas the oldest region (A) is fast. For

ages from 30 to 135 Ma, we find no significant
variations at these depths.

The evolution of S anisotropy ( ) with age is

not as obvious. If we focus on the slice between

200 and 1400 km depth, where resolution is best,

we find that the two extreme regions (0 and A)
have a significant negative t signature. As

shown in Appendix 0, a negative t, i.e., a less

than unity , i.e., SV>SH, is diagnostic of

vertical flow for any realistic olivine—rich

material. In both regions we could be seeing a

vertical mantle flow. Region C (30—80 Ma), on the

contrary, has a significant SR >SV signature

(i.e., horizontal flow), while region B (80—135

Ma) shows almost no anisotropy beyond that of the

reference model PREM.
The region of trenches and marginal seas (T)

has a peculiar signature: low velocity in the

upper 300 km and high velocity below that depth.

One interpretation is that we are seeing the slow

mantle associated with marginal seas and island

Fig. 10. Final oceanic models. Absolute and S
anisotropy values as a function of depth. The
reference period is 1 s. The solid line is PREM,
and the horizontal bars attached are our 2o a
posteriori standard deviations. The vertical bars
are the a priori correlation length t at selec
ted depths. The scale for S anisotropy ((SH—
SV)/SV) has been chosen so that the velocity
variations that it describes are comparable to
the variations. For region A the model ob
tained from the third iteration is plotted.

I
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Fig. 9. Final oceanic models (regions A, B, C, and 0). We plot the deviations, from the

a priori model, of the five parameters we invert for, as a function of depth in the

upper mantle. Below 80 km, the a priori model is PREM for all regions. Note the evolu

tion of the structure with the age of the seafloor in the first 200 km.
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arc volcanism at shallow depth and cold subducted

oceanic lithosphere at larger depths. There is a

significant SH>SV anisotropy below 200 km in that

region and about 2.5% SV>SH anisotropy at

shallower depths, consistent with vertical flow.

The shield region Cs) is characterized by fast

mantle down to 300 km, with a tendency toward a

slow mantle below 1100 km depth. There is almost

no anisotropy, except in the upper 200 km where

an SH>SV anisotropy is detected. The mountainous

region (M) requires no anisotropy. Its struc

ture indicates a slow uppermost mantle, with a

somewhat fast zone between 200 and 1100 km. Before

discussing in more detail the implications of our

results, we present a few elements that help

assess their reliability.

9.2. Fits to the Data

Figures 13 and 14 show the fits that our final

models give to the regionalized data. For each of

the seven regions, we display, for both Love and

Rayleigh waves, the data (from NA1), the fit

given by the starting model, and the fit obtained

from the final model, all referenced to the cor

responding PREM values. The original C(T) data

have been transformed to T(n) data by interpola

ting the phase velocities to integer n values.

The differences from PREM are plotted as period

differences fT(n) for given mode numbers n. Dif

ferences in terms of’ phase velocity variation

C(T) at a given period T can be deduced using

the classical formula:

where C, U (the group velocity), and T can be

taken as the PREM reference values listed by

Dziewonski and Anderson (1981) for the chosen

mode numbers n.
We observe that for all regions we obtain a

good fit of both Love and Rayleigh waves data.

Our models are too stiff to fit some of the

wiggles in the data, but these are probably arti

facts of the data retrieval. We also note that

the data at the longest period (330 a) are ot

satisfied by our models in some regions. At these

periods the traveling wave approach starts to

break down so that the data might be biased

(NA1).
It is interesting to note the importance of

the crustal corrections when examining heteroge

neities in the mantle. For example, comparin

p
0 ir

100

- 200

.300-

40QH

50O .

-0.05 0.05

1/

N

/

I;

-0.1 0 0.1

T

0 0.1 -0.05 0.05-0.1 0 0.1 -0.1

g/cm3 km/s km/s

Fig. 11. Final models for regions T, M, and 5. Conventions as in Figure 9. Note the

large fast Py anomaly at depth for the trench region. Also note that the continental

regions (S and M) require no anisotropy below 200 km.
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M —-— mountains

S —-— shields

-5 0 5%

p- p

C (T\

C)T”U\T)n
(23)

4.5 5.0 kn/s 5.5

Fig. 12. Final models for regions T, N, and S.

Absolute P and S anisotropy values. Conventions

as in Figure 10.
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LOVE RAYLEIGH

Fig. 13. Fits to the data for the oceanic regions. For each region, the periods for Love
(left) and Rayleigh (right) waves are plotted with their 2o error bars against the mode
number n. The solid line is the fit given by our final model; the dashed line is for the
a priori model. All values are differences from the corresponding PREM values.

data from region S (young ocean) and region S
(shields), we find that at short periods both are
very close to the average. However, when we com
pare them to the values given by their respective
a priori models, which include realistic crustal
structures, we observe that there exists a sub—
stancial difference. This difference of about 2 s
must be accounted for by heterogeneities in the
mantle, which explains why we find a slow litho
spheric mantle for young oceans and a fast one
under shields.

Finally, we note that our models, which in
clude anisotropy, have no problem in fitting Love
and Rayleigh wave data simultaneously. This by

itself does not mean that anisotropy is in fact
required for explaining the data. However, we
show in the next subsection that for some regions
the anisotropy found in the model is above the
noise level given by its a posteriori standard
deviation, meaning that anisotropy is indeed
necessary to explain the data, given the choice
of a priori information.

9.3. A Posteriori Standard Deviations

The diagonal terms of the a posteriori covari—
ance matrix given in expression (6) are the
squares of the a posteriori standard deviations

0

modenumber Ii
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Fig. 111. Same as Figure 13 for the T, M, and S regions.

of the parameters. They describe how well con

strained are the features displayed by the models

produced by the inversion. Figure 15 is a plot of

the a posteriori standard deviations for all five

parameters as a function of depth for two re

gions: region A and region C. As can be seen from

the proportion of the total surface of the earth

that they occupy (see Appendix A), these two

regions represent two extremes: the best con

strained region (C) and the worst one (A). All

other regions lie in between. We define a vari

ance reduction VR by

2
0.

1 ---p.
a

0

where 0 and a are the a posteriori and a priori

standard deviations, respectively. The maximum

variance reductions we obtain are 97% for 3, 88%

for , 85% for H’ 78% for p, and 77% for •. As

we had deduced from the resolution plots, 3 and

appear to be the best constrained parameters.

If we now compare the a posteriori standard de

viation plots to the actual variations displayed

in the models, we find that the variations in the

density pand in the P anisotropy 4, practically

all lie within the error bars and are thus uncon—

strained. Their variation merely reflects the

variations of the other parameters, which are

constrained, to which they are a priori linked.

One exception is the high—density zone below 100

km found for the trench region. Another one is

the PV>PH anisotropy required below 200 km for

region A (old ocean).
For
,

most variations between 80 km and 1400

km are really constrained features. Below 1400 km,

only the very high velocity of the trench region

and the somewhat low velocity of the shield re

gion are above the noise level. Although the four

oceanic regions do seem to show a nice evolution

with age at these depths, we cannot assert it

(211) with any confidence. All variations above 80

km are not well constrained.

SH>SV anisotropy (i.e., horizontal flow) is

required between 200 km and 1100 km depth for the

C region (ocean, 30—80 Ma) and for the trench

region, whereas the 0 region (youngest ocean) and

the A region (oldest ocean) require SV>SH anisot—

ropy (i.e., vertical flow) at these depths. Be—

gions A and T seem to require anisotropy below

1100 km, even though we have a priori almost

rejected this possibility by setting a small a

priori standard deviation. However, these two

regions might be affected by instabilities in the

regionalization process: region A covers a small

I I I

final model

a priori model

I I__ I

——

I I I I

+‘f --&64#-
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proportion of the earth’s surface, and region T

has a rather heterogeneous topography (see

Appendix A).

9.I. Convergence

We have seen that for a nonlinear inverse

problem, we must iterate expression (5) to obtain

the final converged model. Luckily, the inversion

of surface waves phase velocities is not very

nonlinear, and only a few iterations are needed.

A sufficient convergence is usually achieved

after only one iteration (k1 in expression (5)).

All models and fits presented in the previous

subsections were the results of the second itera

tion (kz2), except for region A. Here we show how

convergence is reached for region A by displaying

the models (Figure 16) and the fits (Figure 17)

obtained for k=0,1,2,3. The data for region A are

rather far from the average, so that it takes one

more iteration for this model to stabilize. For

the other regions, the kz2 models are close

enough to the final converged models for our

purposes.

9.5. Test on Data Independency

All the data points that we invert are not

really independent; the phase velocity that we

measure at a period T is in fact an average over

some period range, which might overlap with the

neighboring measurement. Ideally, we should eval

uate this overlap and build an a priori covari—

ance matrix on the data Cd0d accordingly. How

ever, we neglected such interactions in our in

version and considered all data to be indepen

dent. This simplifiction might be unjustified (N.

Jobert, personal communication, 1983). In order

to test the influence of data selection, we ran a

case where only every fifth data point is taken

and assumed independency again. Region M was

chosen. Figure 18 shows the models obtained from

the inversions of the complete data set and the

reduced data set. Figure 19 shows the associated

fits. Although the two fits look almost as good

with respect to the complete data set, the two

models show some substantial differences. Anisot—

ropy is unaffected, but the structure is some

what changed. As could be expected, the inversion

p
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Fig. 15. A posteriori standard deviations

worst resolved (A, dashed line) regions.
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Fig. 16. Convergence of the iterative inversion: the models for region A. The models

obtained for the first, second, and third iterations are drawn. Other conventions as in

Figure 9.
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LOVE

II)

data obtained for the first, second, and

as in Figure 13.

of the reduced data set yields smaller overall

amplitudes. Wevertheless, the pattern of varia

tions with depth remains almost unchanged. This

problem, together with the influence of the

choice for the a priori correlation length on the

parameters, LX0, is here to remind us that great

care must be observed when interpreting the re

sults of surface wave inversions.

9.6. Group Velocities

Although we did not measure group velocities

for the different tectonic regions, it is inter

esting to calculate them for our models in order

to compare them to previous or future observa

tions. Figures 20 and 21 show the group veloci

ties that we calculate for Love and Rayleigh

waves from the models of our seven regions.

9.7. Discussion

Before the discovery of plate tectonics, sur

face waves had been used to demonstrate the dif

ference in mantle structure between oceans and

continents (Dorman et ml., 1960; Brune and

Dorman, 1963). After the discovery of seafloor

spreading, there were many investigations of the

oceanic upper mantle. In fact, seismology would

soon bring supporting evidence to the new con

cept.
9.7.1. Oceans. Many studies, both regional

and global, demonstrate the systematic evolution

of the oceanic uppermost mantle with the age of

the seafloor. In a detailed study of surface

waves dispersion in the Nazca plate, Forsyth

(1975) showed the existence of a fast lithospher—

ic lid, whose thickness increases with age. A

pronounced low—velocity zone was observed in the

youngest parts of the ocean (Wu, 1972). A very

similar behavior was discovered in the Pacific

plate by Mitchell and Yu (1980). The thickness of

the lid increases from about 30 km for a 5 Ma

ocean to 50 km for 140 Ma, 90 km for 80 Ma, and

120 km for the oldest ocean. These findings sup

ported convective models of seafloor spreading,

which required the thickening of a cold oceanic

lithosphere with age or, equivalently, the cool

ing and growth of a thermal boundary layer

(Turcotte and Oxburgh, 1967; McKenzie, 1967). The

data that we use do not provide enough resolution

to follow accurately the thickening of the lid

with age. However, our models show quite a sys

tematic increase with age of the lid thickness

and of the velocity in the first 200 km. The

difference in velocity (0.2 km/a) is not unrea

sonably different from what a thermal model of

the lithosphere would produce.

With the installation of long—period digital

seismographs, it became possible to go one step

further and investigate heterogeneities below the

lithosphere. One question was in the air and

needed an answer: do ridges have deep hot roots

-0.05 0.05 -0.1 0 0.1
g/cm3 km/s

C?
0
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RAYLEIGH
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11111; 111111! III
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Fig. 17. Convergence of the iterative inversion: the fits for region A. The fits to the

third iterations are drawn. Other conventions
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Fig. 18. Test on data independency: the model (solid line) obtained from the inversion

of the complete data set is compared to the model (dashed line) obtained using a reduced

data set for region M. Other conventions as in Figure 9.
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C
Q

Fig. 19. Test on data independency: the fits obtained for the two models of Figure 18.

The solid data points form the data subset that was inverted to obtain the second model.

Other conventions as in Figure 13.

or are they merely surface lea tures produced by

the pulling apart of the oceanic plates? Compari

Sons of deep structures in the oceans were per

formed from regional and global studies. Lévêque

(1980), Wielandt and Knopoff (1982), and

Montagner and Jobert (1983) find old oceans to be

faster than young oceans down to at least 500 km.

Nakanishi (1981) found no significant difference

between young and old oceans below 300 km.

Dziewonski and Steim (1982), using waveform in

version, inferred the existence of substantial

shear velocity differences (0.2 km/a) between

young and old oceans for depths from tl00 km to

670 km. In our models, old oceans are faster than

young oceans by about 0.1 km/s at the same

depths, but we have seen that the a posteriori

standard deviation was about as large. In summa

ry, shear velocity data seem to indicate that

ridges are slower than old oceans throughout the

entire upper mantle. It is then tempting to con

clude that ridges have a deep hot root. However,

we will see that the S anisotropy results suggest

an alternative hypothesis.

From Forsyth’s (1975) study it became evident

that anisotropy could play an important role in

the dispersion of oceanic surface waves. Indeed,

his models for the Nazca plate display a 3.5%
SH>SV anisotropy in the first 120 km and possibly

a 3% SVSH anisotropy from 120 to 1100 km.

Mitchell and Yu (1980) also advocate an SH>SV

anisotropy of about 2.5% in the lid for old ocean

but could not resolve deeper anisotropy. All

these studies considered only S anisotropy.

Anderson and Regan (1983) pointed out that by

also considering P wave anisotropy, it was possi

ble to build oceanic models that were rather

different from the previous ones but that fitted

the data as well. Their models are characterized

by a very thin lid (115 km at 80 Ma) above an

anisotropic low—velocity zone with SH>SV at most

ages. Using very long—period data, Schlue and

Knopoff (1977) and Journet and Jobert (1982) have

a better resolution below the lid and also find

SH>SV. Journet and Jobert note that this anisot—

ropy increases with age in the first 150 km of

the mantle. In the Pacific, Montagner (1985)

confirms this trend and finds that for young

oceans, one could even have SV>SH in the upper

150 km.
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Our analysis shows that when using very long

period Love and Rayleigh waves, it is difficult

to resolve anisotropy above 200 km because of S

velocity contamination. Below 200 km, we must

remain cautious about the validity of the re

sults. Nevertheless, our results seem to indicate

that young oceans (region 0) have SV>SH (vertical

flow). For older oceans (region C) the anisotropy

corresponds to horizontal flow (SH>SV), but this

anisotropy is progressively replaced by SV>SH

anisotropy again when the age of the ocean in

creases (region B and region A).

Together with the shear velocity results, this

behavior suggests a possible scenario: as the

plates move apart, hot material is advected up at

ridges; shear velocities are slow down to 200 km,

and the flow is vertical (region 0). Then the

material turns around, and the flow becomes hori

zontal (SH>.SV) and the lithosphere thickens (re

gion C). When the oceanic lithosphere is old

enough, thermal boundary layer instabilities

develop at its base (Parsons and McKenzie, 1978;

Jaupart and Parsons, 1985), and cold blobs detach

and founder into the mantle (Houseman and

McKenzie, 1982; Fleitout and Yuen, i984). These

cold blobs create a dominantly vertical flow

beneath the lithosphere (regions B and A) and

adveot cold material to increasingly larger

depths. The shear velocity differences between

young and old oceans below 300 km could then re

sult from the fact that blobs are inhibited under

the ridges while abundant under old oceans

(Houseman, 1983) rather than being due to the

presence of an active deep hot rising current

under the ridge.
9.7.2. Trenches and rnarina1 seas. The

trench region (T) is remarkable by its deep and

very fast signature. This peculiarity already

mentioned by Nakanishi (1981) can be seen as

observational evidence for cold subducted litho

sphere. A major element of the dynamics of plate

convection is thus detected. Above 300 km, the

cold subducted slab is not seen: it is presumably

hidden by the presence of hot material associated

with volcanism and marginal seas, two phenomena

that often accompany subduction. Anisotropy seems

to indicate a vertical flow between 100 and 200

km and a horizontal flow from 200 to 100 km, a

somewhat counterintuitive result.

9.7.3. Continents. Shields have long been

known to be underlain by a thick cold lithosphere

(Brune and Dorman, 1963). In our models they are

characterized by fast velocities from 80 km to

about 300 km. Above 80 km, the lower—than—average

velocity displayed by our model is not a signifi

cant resolvable feature. Below about 350 km,

shields seem to be slower than the average earth

(and than the oldest oceans). We find no evidence

for the “tectosphere” advocated by Jordan (1975),

although shields on average are indeed faster

than most oceanic regions, but not the oldest

oceans, down to 400 km. The mountainous region

(M) is very similar to the shield region except

in the top 200 km, where it is slower, in agree

ment with Nakanishi’s (1981) findings. We note

that our M region taken from Okal (1977) com

prises regions as different as the East African

rift and the Himalayan belt. The two continental

regions seem to require no anisotropy between 200

and 100 km.
The regionalized approach serves to constrain

better the structure of mantle convection on the

scale of the tectonic plates. It has the draw

back, however, of hiding possible smaller—scale

features and to unduely distribute possible very

large scale features. In the next sections, we

will show that the spherical harmonic approach

nicely confirms some of the regionalized results

but also permits us to go one step beyond.

10. Inversion for Spherical Harmonic Coefficients

In this section, we present the variations

with depth of the five parameters (p, °H’ Pv’ ‘

cP), in the case of a few selected spherical

harmonic coefficients. Of course, to get an image

of the real earth, one has to combine all the

coefficients, as we do in the next section. How

ever, some coefficients are better constrained

than others in our inversion, and it is useful to

examine a few coefficients individually. The

results are given for all the coefficients at

selected depths in Table 1 for and in Table 2

for . We also give some elements that help

assess the reliability of our results (standard

deviations, fits to the data, and a few other

tests).

10.1. Models

The B coefficient is of special interest: it

is a well—constrained coefficient, and it des

cribes most of the degree 2 variations. Our in

version results for that coefficient are shown in

Figure 22. At 370 km depth it has the largest

variation of all coefficients (—0.021 km/s). The

associated S anisotropy is not very large (less

than 1%). Below OO km, no significant anomaly

is required, although °H remains negative

throughout the upper mantle. Figure 23 gives the

results for the A coefficient. As we have seen

in section 6, it is a “bad” coefficient, in the

sense that phase and group velocities seem to be

incompatible. The results are a hesitating p
variation and a strong S anisotropy (—1.5%) bet

ween 200 and 1O0 km depth. It has, in fact, the

largest S anisotropy of all the coefficients at

280 km depth. This raises an important point: S

anisotropy appears to be rather sensitive to

“defects” in the data. This is not unexpected: if

Love or Rayleigh waves data are erroneous, the

inversion tends to produce a nonphysical model

that complies as best as possible to both data

sets, thereby producing spurious large anisotropy

variations. As a consequence, among the 12 coef

ficients that are above the noise level (given by

the a posteriori standard deviation) at 280 km

depth, there are as many “bad” coefficients

(five) as “good” ones (five). Anisotropy is dif

ficult to resolve, and we have to keep that

problem in mind when analyzing the maps obtained

by recombining the coefficients. The situation is

not as serious for variations: at 100 km depth

from the 12 coefficients above the noise level, 2

are “bad,” whereas 9 are “good”; 1 “bad” versus 5

“good” at 250 km depth; and no “bad” coefficient

among the five coefficients above the noise level

at 310 km depth.
Figure 21 shows our A5 model. Although it is

an odd order spherical harmonic coefficient, it

is well constrained in the expansion and has

compatible phase and group velocities. At 100 km
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TABLE 1. Spherical Harmonic Coefficients Alm and 8lm for at Selected Depths

Depth, 1cm

47 80— 80÷ 160 220— 220+ 310 p400— 1400÷ 533 670—

AlO 17.1 114.5 10.8 0.3 —0.9 3.8 10.0 10.5 7.9 —7.0 —22.6

All 20.5 23.1 29.14 23.9 16.0 3.5 1.3 14.9 17.14 15.8 2.0

511 —214.8 —20.6 —18.9 10.2 20.11 20.6 10.11 —1.7 —8.0 —1.7 19.2

A20 —3.2 —2.3 _14.2 6.1 11.6 21.2 17.3 6.4 —8.7 —16.0 —6.4

A21 —54.2 —43.5 —22.7 12.7 20.0 —3.2 —10.9 —12.8 5.4 15.2 18.5

B21 —30.3 —24.5 —114.3 9.7 17.3 5.7 3.7 1.2 11.7 11.3 7.2

A22 16.7 17.3 19.2 11.14 3.5 —7.6 —10.1 —3.0 10.2 21.2 18.3

B22 —47.1 —39.3 —19.4 —3.0 —1.2 —22.3 —22.9 —19.7 1.2 —1.7 —16.5

A30 5.3 8.3 12.7 15.1 8.1 —6.1 —17.7 —17.9 _7.14 7.0 17.2

A31 —19.6 —14.5 —10.0 15.14 20.6 12.7 —0.3 —9.7 —8.7 1.7 21.0

B31 2.3 2.6 5.2 —1.0 —5.5 —11.1 —10.7 —5.8 1.2 4.9 0.9

A32 —33.0 —28.6 —28.7 7.5 21.0 214.9 11.9 —3.2 —15.1 —2.0 31.9

B32 146.2 141.2 38.4 0.8 —12.6 _1l.14 2.14 16.7 23.1 10.5 —21.3

A33 5.14 —0.2 —11.1 —15.2 —7.6 7.3 16.7 11.5 —1.5 —25.0 —37.6

B33 —2.2 —5.7 —10.6 —16.2 —12.3 —3.2 6.0 7.8 2.9 —7.8 —17.7

A40 2.9 3.4 1.9 6.8 6.3 144 —2.3 —5.5 —5.9 2.2 13.9

A141 5.6 9.8 22.4 13.1 —0.2 —214.0 —27.7 —13.8 12.5 31.7 214.9

B41 —27.0 —22.7 —23.0 10.1 20.9 23.4 8.6 —5.0 —111.5 2.9 38.7

A42 3.1 —0.5 —3.8 —16.3 —17.8 —18.4 —8.5 2.14 11.0 12.2 —0.1

842 _141.7 —32.5 —19.8 19.6 27.6 6.4 —7.5 —11.9 5.1 27.14 45.8

A43 26.1 12.9 —18.6 —33.0 —25.9 8.6 15.5 15.1 —11.3 0.7 28.3

B143 8.3 14.0 —5.7 —9.1 —6.4 1.2 3.9 14.5 —1.6 1.8 8.5

A44 —12.6 —10.8 —7.9 3.5 8.3 5.5 5.1 1.6 3.0 —2.0 —4.8

B44 19.9 19.9 9.9 23.1 25.3 37.3 19.1 0.4 —22.8 —13.6 214.0

A50 114.7 4.3 —11.9 35.14 —32.5 —15.7 3.3 11.5 4.7 —10.6 —29.1

A51 —3.7 0.9 14.14 214.1 28.3 28.6 16.5 0.2 —10.0 —18.4 —8.3

B51 34.14 31.6 31.14 414 —6.1 —6.1 1.5 6.9 8.7 —10.8 —38.2

A52 —32.2 —31.4 —29.6 —13.9 —2.4 1.8 8.0 6.14 5.1 0.14 33

852 —0.2 —0.0 —1.7 6.0 12.0 20.6 21.6 13.5 2.2 —11.3 —13.4

A53 6.6 3.2 —1.5 —12.0 —13.7 —13.3 —7.7 —1.7 2.2 1.9 —5.0

B53 —23.0 —19.1 —15.0 5.5 12.7 15.1 7.6 —4.1 —12.8 —15.8 —3.5

A511 27.1 32.2 41.6 35.8 24.0 15.1 5.1 2.1 4•14 4.2 2.2

B54 —8.8 —9.2 —6.2 —11.4 —10.0 —4.2 2.6 1.7 —4.2 —21.3 —34.5

ASS —0.3 9.0 24.5 37.3 30.0 16.6 —0.6 _6.14 —2.9 11.8 28.1

B55 43.8 40.6 40.9 7.4 —5.3 —2.7 7.5 13.6 13.2 —12.3 —46.3

A60 5.14 —8.9 —22.0 —11.5 —4.4 6.14 0.5 —3.7 —13.6 7.9 40.6

A61 —6.6 14.6 —0.3 2.3 0.4 _14.9 —9.0 —9.9 —7.2 —4.2 —0.9

B6l —52.0 —44.3 —33.3 5.7 17.0 1.2 —8.9 —15.0 —2.5 11.2 26.0

A62 —12.4 —10.6 —3.6 —1.3 0.4 —7.7 —0.8 3.7 14.2 3.8 —16.7

B62 37.14 32.4 27.5 —3.1 —16.7 —24.0 —18.7 —5.8 7.9 8.3 —9.8

A63 35.1 25.7 9.9 —19.2 —23.1 —6.4 5.5 11.4 1.3 —8.4 —18.4

863 59.3 49.6 36.0 —7.7 —18.2 —2.3 13.7 21.3 11.6 —13.7 —43.8

A614 9.5 6.6 0.2 —7.3 —7.5 5.6 6.0 1.9 —12.3 —16.9 —10.4

864 29.7 23.8 9.9 —3.5 —3.3 19.2 20.7 12.0 —12.9 —27.4 —22.4

A65 25.3 27.8 34.6 22.8 11.7 7.5 0.6 _14.9 —10.8 —23.0 —28.7

865 —6.3 —2.6 —0.3 17.3 18.2 5.4 —7.2 —11.0 —0.6 16.2 31.6

A66 46.6 39.0 26.2 —6.5 —14.6 5.9 12.4 10.9 —9.7 —28.3 —36.4

866 25.14 20.6 18.2 —9.6 —16.2 —15.6 1.2 14.5 22.5 5.5 —29.5

aeven 147. 142. 29. 19. 32. 31. 16. 31. 35. 18. 144

aodd 55. 48. 32. 21. 35. 33. 17. 32. 37. 22. 52.

Values in meters er second. The two last lines are the a posteriori standard

deviations for the B2 and A coefficients and are considered to be typical of even

and odd degree 1, respectively.
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TABLE 2. Spherical Harmonic Coefficients for at Selected Depths

Depth, km

47 80— 80+ 160 220— 220+ 310 1400— 400+ 533 670—

AlO 0.4 0.7 0.8 3.4 4.9 6.0 6.3 14.7 1.3 0.2 —0.3
All —0.2 —2.9 —7.2 —9.9 —5.6 —0.8 10.8 20.3 9.1 10.9 8.2
Bll 22.11 22.11 21.9 12.7 14.1 —1.1 —8.0 —8.9 —2.8 —1.6 —0.5

A20 —6.2 —14.1 —1.0 6.3 9.0 9.6 8.11 11.0 0.5 —1.9 —2.5
A2l 15.14 114.9 13.0 7.9 11.5 14.6 3.1 3.1 1.1 1.3 1.1
B21 8.5 5.7 1.1 —6.9 —7.8 —5.6 _0.14 5.6 2.9 14.14 3.4
A22 7.2 5.4 2.5 —3.6 —5.6 —5.4 _14.3 —1.5 —0.1 1.0 1.1
B22 6.2 8.9 11.8 15.6 11.9 10.1 —3.2 —16.6 —9.2 —12.9 —10.1

A30 12.0 9.6 6.1 —5.3 —10.9 —13.2 —13.8 —9.0 —2.1 0.9 2.0
A31 15.3 13.9 11.7 1.2 —6.’l —9.7 —16.3 —18.1 —7.2 —6.6 _14.8
B31 2.5 3.2 14.4 3.2 —0.2 —3.0 —9.1 —12.6 —5.1 —4.9 —2.9
A32 12.9 12.9 12.9 6.7 1 • 1 —2.0 —7.2 —9.3 —3.8 —11.1 —3.5
832 —17.9 —17.5 —17.3 —5.6 5.6 12.3 211.8 29.8 11 .8 11 .2 7.7
A33 10.3 8.0 5.4 —8.8 —18.1 —24.5 —30.5 —27.0 —8.5 _14.l —0.6
B33 —11.3 —4.0 —3.5 —1.7 —0.6 —0.4 —0.2 —0.6 —0.3 —0.5 —0.4

A40 6.0 3.9 0.4 —‘4.6 _3.14 —1.3 7.0 15.2 7.3 9.1 6.7
A141 14.3 3.5 1.8 O.4 1.2 2.8 6.6 10.3 11.7 6.0 5.1
B41 9.4 8.5 6.9 3.9 14.3 5.9 10.5 13.5 5.3 14.6 2.0
A142 5.0 3.9 2.1 —1.7 —3.3 —3.6 —3.7 _2.14 —0.6 0.3 0.6
B142 26.3 21.1 12.6 —7.3 —13.14 —13.0 —5.9 6.7 5.0 9.14 7.8
A’43 14.9 1.0 —3.8 —12.5 _9.14 —7.8 11.3 32.0 16.9 22.5 17.14
8143 10.6 7.5 3.1 —7.9 —10.7 —11.6 —5.6 4.7 11.3 8.2 7.2
A’l’I 9.1 7.14 14.5 —0.5 —0.9 0.3 5.2 10.9 5.3 6.8 5.3
B44 —3.7 —4.8 —6.1 _11.8 0.1 3.8 12.9 17.5 6.8 5.7 2.2

A50 9.6 9.1 8.7 —0.5 —9.6 —16.5 —27.5 —30.7 —11.3 —9.2 —5.1
A51 2.7 2.9 3.2 3.3 3.0 3.1 2.14 1.2 0.0 —0.8 —1.2
851 —10.5 —8.2 _14.9 3.6 5.3 5.0 —1.2 —9.4 —5.3 —7.7 —5.9
A52 —1.7 —3.1 —5.5 —14.5 1.5 6.5 19.3 28.5 12.2 13.3 9.5
B52 —5.9 —6.0 —5.8 —3.6 —0.9 0.5 14’4 6.6 2.8 3.0 2.0
A53 8.2 6.3 14.0 —7.1 —111.3 —18.9 —23.6 —21.0 —6.7 —3.3 —0.5
B53 —2.8 —0.3 3.4 8.7 7.6 6.0 —2.3 —11.8 —6.6 —9.8 —8.3
A51l —20.14 —17.1 —12.2 4.0 11.8 15.6 114.8 6.0 —0.3 —5.0 —5.6
B514 —20.6 —16.5 —10.3 6.3 12.3 114.1 9.1 —2.3 —3.7 —8.5 —7.7
ASS —22.6 —18.14 —12.2 7.4 16.9 21.9 21.14 10.6 0.7 —5.6 —6.9
B55 —20.7 —17.9 —14.2 3.4 111.0 19.3 214.3 20.9 6.7 3.6 1.6

A60 15.3 11.2 5.3 —7.5 —8.2 —7.2 6.8 23.7 12.7 17.5 13.6
A61 2.4 14.0 6.3 7.6 4.2 1.14 7.4 —14.7 —6.9 _8.14 —6.2
B61 19.5 15.9 10.0 —4.0 —9.1 —8.5 —6.8 —2.2 —O.4 0.9 0.5
A62 9.6 8.9 7.6 1.4 —3.14 —6.0 —9.3 —8.0 2.2 0.1 1.7
B62 7.1 14.2 —0.2 —9.9 —13.5 —14.6 —13.9 —9.0 —2.3 0.6 1.8
A63 —4.3 —5.6 —7.0 —8.0 —5.3 —4.6 4.1 13.6 7.6 10.8 9.1
B63 —9.7 —8.0 —5.1 0.7 1.14 —0.8 _14.9 —8.5 —3.3 —3.3 —1.6
A6’4 —13.1 —9.6 —4.1 8.5 12.5 12.7 8.8 0.5 —1.6 —5.3 —5.2
B614 —12.5 —9.3 —4.2 7.3 10.6 10.1 5.7 —2.7 —2.8 —6.3 —6.1
A65 —15.0 —10.3 —2.9 9.3 8.4 5.0 —10.7 —27.5 —13.6 —17.9 —13.7
B65 20.8 111.2 11.5 —17.14 —22.2 —21.6 —9.1 10.0 7.8 114.7 12.7
A66 _214.9 —20.6 —13.4 3.0 8.0 7.3 1.1 _9.14 —5.6 —9.2 —7.6
B66 0.8 0.6 —0.1 —0.6 —0.8 —1.4 —0.8 1.3 1.4 3.1 3.6

0even 22. 20. 19. 16. 20. 17. 13. 19. 10. 11. 16.
aodd 27. 23. 21. 19. 23. 21. 15. 23. 12. 15. 18.

Units are l0. See Table 1 footnotes.
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parameters as a function of depth. Same

horizontal scales are different.

depth, it has the largest amplitude (0.042

km/s) of all coefficients, well above the noise

level (0.022 km/a), and is needed to fit the very

fast short—period Rayleigh waves (NA2). It also

shows a significant S anisotropy (0.8%) between

200 and 400 km. It is interesting to note that

the highest degrees in our expansion (5 and 6)

have large velocity variations, especially at

shallow depths. As we will see in the next sec

tion, this is a consequence of the strong varia

tions that occur between different oceanic prov

inces or between oceans and continents, on a

lateral scale equal to or smaller than 3500 km

(the half wavelength of a degree 6 spherical

harmonic function). This was shown in the region—

alized data of Nakanishi and Anderson (1983,

Figures 19 and 20).

10.2. Fits

For most spherical harmonic coefficients we

obtain a good simultaneous fit of both Love and

Rayleigh waves. Tndeed the misfit to the T versus

n data is always smaller than the data standard

deviation for both Love and Rayleigh waves over

-2.5 2.5 -5 0 5
g/cm3 iw km/s

the entire period range from 100 to 250 s for all

spherical harmonic coef’icients, with only two

exceptions: the A and A coefficients for 100—s

Rayleigh waves, for which the misfit reaches —1.2

and 1.3 times the standard deviation, respective

ly. This is a good indication that the inverse

problem for a given coefficient is only weakly

nonlinear and that the parameterization of our

model is adequate. Although we invert only the T

versus n data, the fit to group velocities is

also quite good, a consequence of our method for

combining phase and group velocity data before

performing the inversion. For periods lower than

200 s, the misfit to group slowness is smaller

than the error bar for both Love and Rayleig

wavesr, except for a few coefficients such as B4

and A, for which the misfit reaches —1.9 times

the error bar at 150 s. Above 200 s, the fit to

group slowness deteriorates rapidly. For 24O—s

period Love waves, the misfit is larger than the

data standard deviation for 22 coefficients, up

to a factor of -2.6 for the A coefficient. The

closeness of the fits will be best seen on the

maps obtained by recombining the coefficients.

However, it is useful to examine one example of
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Fig. 22. Spherical harmonic coefficient B: model. Variations of the five inverted

conventions as in Figure 9 but note that the
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Fig. 23. Same as Figure 22 for A.
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Fig. 2. Same as Figure 22 for A.

the fit obtained for an individual coefficient.
Figure 25 shows the fit given by our model to
the corresponding data (transformed through our
combination algorithm, and after removal of the
shallow layer& contribution) for both period and
group slowness for Love and Rayleigh waves. The
fit is quite good and always within the error

bars, except for the longest—period group slow
ness of Rayleigh waves. Therefore our B model is
able to explain the observed heterogeneities for
periods up to 270 s (mode 0S28).

10.3. A Posteriori Standard Deviations

The a posteriori standard deviations have been
calculated for a few spherical harmonic coeffi
cients. Although they depend somewhat on the
errors of the data, which are different from one
coefficient to another, it would be too time
consuming to calculate them for all the coeffi
cients. The plot in Figure 26 (the a posteriori

standard deviations for the B and A coeffi
cients) can be considered as typical. The corres—

40 60 80

mode number n
Fig. 25. Fits to the data from our B model. The period (bottom) and group slowness

(top) data points (at given mode numbers n) and their 2a error bars have been derived

from the original phase and group slownesses at given periods according to our special

algorithm. The solid lines are the fits given by our model (drawn in Figure 22). Note

that even the longest periods are well fitted. Other conventions as in Figure 13.
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ponding values for Pv and care reported in the

last lines of Tables 1 and 2. We note that the

variance reductions are slightly larger than in

the case of the regionalized inversion (maxima of

98% for and 93% for ). This is primarily due

to the constraints brought in by the group velo

city data through the combination algorithm.

l0.-l. Reliability Tests

To assess further the reliability of the mo

dels, we compare them to the results of an ear

lier inversion derived with a different, and less

realistic, in our opinion, a priori information.

It concerned a degree 7 expansion (instead of the

present degree 6 expansion) and had the following

a priori information: no a priori correlation

between parameters; inversion for p, °H’ Pu’ ‘

4), and q with a priori standard deviations equal

to 0.1 g/cm3, 0.1 km/s, 0.1 km/s, 0.1, 0.1, 0.1,

respectively; a correlation length of 100 km; and

?0 at discontinuities. Figure 27 compares the

two inversion results for the A coefficient (a

“good” coefficient). As expected, the parameters

p , °H’ 4,, and q, for which the data bring

almost no information, show little resemblance.

However, and , which are the best resolved

parameters, show very similar trends in the two

inversions, except for the uppermost structure

where we know that the resolution is poor. This

gives us some confidence that the features we

will discuss later are in fact robust. The situa

tion is not as nice when dealing with the “bad”

coefficients. Figure 28 compares the two results

obtained for the A coefficient. Although the

dominant feature (strong negative S anisotropy

between 220 and 400 km) is present in both inver

sions, the By structure is totally different.

This points again to the danger of contamination

that erroneous or poorly constrained coefficients

can bring into the maps obtained by recombining

the coefficients.

11. Combining the Spherical Harmonic

Inversion Coefficients

By recombining the spherical harmonic coeffi

cients obtained from the inversion at a chosen

depth, it is possible to build a picture of the

earth’s lateral heterogeneities. This picture is
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rather coarse as yet, since harmonics up to de
gree 6 only are used. Nevertheless, it has the
precious advantage that no a priori information
based on surface tectonics has been used to pro
duce it. It therefore gives us a more “objective”
view of what the earth’s upper mantle really
looks like. Paradoxically, the first thing we
will try to find in these maps is the signature
of the features that are known to be associated
with surface tectonics.

11.1. Shear Wave Velocity Heterogeneities

Figure 29 shows maps of the SV heterogeneities
at selected depths. At 50 km the correlation with
surface tectonics is striking (as pointed out by
Nataf et al. (1984)). All major shields show up
as fast regions (Canada, South America, Africa,
Antarctica, West Australia, Siberia). Most ridges
show up as slow regions (East Pacific, triple
junctions in the Indian and Atlantic oceans, East
African rift). The amplitude of the variation is
quite large (±10%) but is somewhat unconstrained
since the a posteriori standard deviation is also
quite large at this depth. At 150 km the pattern
remains much the same. The amplitude of the het
erogeneities, better constrained at this depth,
is now only ±6%, comparable to the range found in
body wave studies. Farther down, at 250 km, most
shields have retained their fast signature; not
all ridges are slow, but the East African region
remains slow. At 350 km the fast regions seem to
trace the subductions zones (Pacific belt,

Mediterranean basin, Antilles, South Sandwich).
At p150 km the fastest regions are the South
Atlantic and Eurasia. The correlation with sur
face tectonics seems to have disappeared; ridges
are no longer slow. At 550 km the picture is not
very different, and resolution becomes poor. In
this brief survey we have concentrated our atten
tion on the regions that seem to correlate with

surface tectonics. The real goal of our study is,
however, to try to go one step beyond and detect
“anomalous” regions. We cautiously point to a

few: the region around French Polynesia seems to
behave differently from the surrounding oceanic

regions: quite slow at shallow depth, it becomes

fast at 250 km and slow again at greater depths.
The Red Sea is surrounded by a wide slow anomaly.

The central Pacific is fast at shallow depths and

slow at greater depths. Southeast of South

America lies a region that is fast at all depths,
except around 250 km. Though exciting, these
findings must remain tentative at this stage.
Indeed, the poor behavior of some of the spheri
cal harmonic coefficients and the lack of resolu

tion, both horizontally and vertically, do not
allow us to make definitive statements about
these seemingly anomalous regions.

11.2. Shear Wave Anisotropy Heterogeneities

Since the signature of surface tectonics in
terms of S anisotropy is not well established,
the interpretation of the maps shown in Figure
30 must be done with even more care. As expected
from the resolution/trade—off curves, the first
map, at 50 km, bears a strong resemblance to the

Pv map at the same depth, with the opposite sign.
The amplitude of the anomalies is unrealistically

large (± 10% (SH—SV)/SV anisotropies). At 150 km
the amplitudes are much less (±5%), and the pat
tern is quite different. Note that the anisotro
pies are deviations from the average. Since the
average earth model (PREM) is anisotropic at this
depth, with SH>SV, there are more regions with
SH>SV (i.e., horizontal flow) than it appears
from the map. Regions with SV-SH (i.e., vertical

flow) are mostly west and South America and a
large part of the South Atlantic Ocean and
Africa. At 250 km and 350 km, where the trade—off

with is minimum, most ridges seem to have
SV>SH (i.e., vertical flow). The amplitudes are

around ±8%. Old regions of the Pacific ocean also

have SV>SH. Antarctica and South America have
strong SH>SV (i.e., horizontal flow) signatures.

We notice a strong N—S sectorial zoning in the
250 km map, probably the contribution of the

large A and A coefficients. We have seen that
these coefficients were poorly behaved. This is
one more reason to be cautious about the signifi
cance of the S anisotropy heterogeneities.

11.3. Fits to the Data

In section 10.2 we have discussed the fit
obtained for the period and group slowness versus
mode number data for the individual spherical

p (2
H

0 1

100
J U

K
/ jI
/ / [f

3o0 4 ) ) /-\ I

40O

t

\ f

/*c / / \
\ / \\

600 IuI
-25 2.5 -5 0 5 -5 0 5 -5 0 5 -2.5 2.5

10-2 0/cm3 101 km/s 102 km/s

Fig. 28. Same as Figure 27 but for a “bad” coefficient: A. Note that even the best

resolved parameters Pv and have little in common from one inversion to the other.



7290 Nataf et al.: Upper Mantle Heterogeneity and Anisotropy

harmonic coefficients. Here we compare the maps

obtained by recombining the original phase and

group velocity coefficients (before phase and

group velocities were combined and transformed

and before crustal corrections were applied) to

the fits produced by our model. A few examples

are given in Figure 31. It is remarkable that the

fit is very good for Love and Rayleigh waves

simultaneously for both phase and group veloci

ties, even though we did not invert the latter

directly. However, the fit deteriorates for the

largest periods, as mentioned in section 10.2. In

particular, the group velocity map for 250—s Love

waves fails to match the amplitudes seen in the

data. Nevertheless, the patterns are very simi

lar, and the amplitudes predicted by our fit are

in fact probably more realistic (NA2).

12. Discussion

In this section, we try to assess further the

reliabilty of the results presented in the pre

vious section by comparing them to other recent

models. We also discuss their geodynamical rele

vance and examine the correlation with the geoid.

Finally, we examine the validity of the geometric

optics approximation in the light of our results.

12.1. Comparison With Woodhouse and Dziewonski’s

Models

Woodhouse and Dziewonski (19814) have recently

produced models of the heterogeneities of shear

wave velocities in the upper mantle. They also

chose a spherical harmonic representation. A

comparison of the two results is a useful check,

since the data, their treatment, the inversion

procedure, and the authors are different.

Woodhouse and Dziewonski obtain their models by

direct waveform inversion of Love and Rayleigh

waves with periods larger than 135 s. Their path

coverage being much denser than ours (they use

about 14 times as many paths as we do), they can

push their expansion up to degree 8. They retain

only the differences between average ocean and

average continent to treat crustal corrections,

and they do not allow for lateral variations in

anisotropy. One can compare individual spherical

harmonic coefficients as a function of depth or

maps of recombined coefficients at a given depth.

n-

-‘/
I1.

L
---, —-

.—-

L
.

,- LE-— z —
depth = 50 krnj

- N
/_ -

F-——

/

/ (i

t

( ( N5 - --

14 ;
U

_r/4__

-

1(((?(c :
-350km

\

: \ //

C450km{

‘F

.5

N N

F

- ‘H1
______)

5’-

JN*5N/ ‘N5-:250km

i50krn

—-i
F -— 1

V\1 ( L--- N -

.5 ‘(‘a N

_/

Fig. 29. Maps of f3 heterogeneities in the upper mantle at selected depths (117, 1140,

250, 34O, 141414, 556 km), synthetized from our degree 6 spherical harmonic expansion

models. The contour interval is 50 m/s (100 m/s for the shallowest map).



Nataf et a1. Upper Mantle Heterogeneity and Anisotropy 7291
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Fig. 30. Maps ofheterogeneities in the upper mantle at selected depths (L47, 14O,

250, 31O km), synthetized from our degree 6 spherical harmonic expansion models. The

contour interval is 5%. Divide by 2 to obtain approximate (SH—SV)/SV anisotropy.
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12.1.1. Maps. The maps of our Figure 29 can
be compared directly to their Plate 2 (their
model M814C). The resemblance between the two sets

of S velocity maps is striking down to a depth of

about 100 km. Below 400 km, the two models have

little in common, except the fast velocity region

in the South Atlantic. Their shallow maps delin

eate more closely surface tectonics features than

ours, probably because of the better horizontal
resolution achieved in their study. We note that
the anomalous regions under French Polynesia and

the central Pacific are also present on their

maps. The anomaly we described southeast of South

America and the one around the Red Sea are dis

placed to much greater depths in their model.
12.1.2. Individual coefficients. We compare

the results of the two studies for the B coeffi
cient. As we have already mentioned, it is an

interesting coefficient in that it carries most

of the degree 2 variation. In both studies, it is

one of the best resolved coefficients. The two

models are plotted in Figure 32, together with
Masters et al.’s (1982) transition zone model.
Although Masters et al. did not include crustal
corrections, it is not important here since these
corrections are very small for the B coefficient
(see Appendix A). It is remarkable that all three

studies agree on the sign and on the size of the

heterogeneity. However, they disagree on the
depth of that anomaly. Our model requires no

anomaly below 1OO km. Since both Woodhouse and
Dziewonski (198t1) and Masters et al. (1982) ana

lyze data at longer periods than we do, they have

more resolution at depth. On the other hand, if
shallow anomalies, better constrained by our

shorter—period data, are as large as we find

them, they could be responsible in part for the

long—period anomaly. In any case, it appears that

even for the best resolved spherical harmonic

coefficients there may be a serious problem for
constraining the depth of the heterogeneity res

ponsible for the surface wave variations.

12.2. Comparison With Our Regona1ized Models

Our regionalized models can be expanded in
spherical harmonics and compared to the direct
spherical harmonic expansion models. That compa
rison is useful for determining the origin of the

heterogeneities and for discussing which places

are “anomalous.” Once again the comparison can be

performed coefficient by coefficient or by look

ing at maps of recombined coefficients.
12.2.1. Coefficients. Figire 33 gives the

variation with depth of the B2 coefficient ob

tained from the expansion of our regionalized

models. The plot can be compared directly to the

plots of Figure 32, except that the scale has

been increased by a factor of 5. Indeed, the

amplitudes of the anomalies are much less for the

regionalized expansion; this is not unexpected
since the regionalization has averaged out some

of the variations; also, the a priori information
for the inversion is not quite the same. However,

the large negatve I3 anomaly is rather similar

to the direct B2 inversion model and in fact is
closer to Woodhouse and Dziewonski’s results due

to its deep negative signature. The resemblance

between the two S anisotropy models is striking;

they seem to differ only in amplitude. The same

is true for the other degree 2 coefficients (ex

cept for the A, anisotropy). We are led to follow
Kawakatsu (1983) and Nakanishi and Anderson

(1983) in affirming that regionalized models can

indeed predict the observed degree 2 patterns;

their conclusion being now extended from data to

-
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models and for both and S anisotropy. Such a

statement might be misleading: it does not mean

that degree 2 features are intrinsically linked

to surface tectonics. In fact, “pure path” re—

gionalizations are very sensitive to degree 2

heterogeneities (Kawakatsu, 1983). If there ex

ists a degree 2 pattern of heterogeneity, the

regionalization has enough degree 2 sampling to

unduely distribute these heterogeneities between

the different regions.

12.2.2. Maps. Figure 3 shows degree 6 maps

of the regionalized shear wave velocities at

selected depths. The amplitudes are much smaller

than those obtained from the direct spherical

harmonic inversion. At 150 km both shields and

ridges clearly show up. At 350 km there is an

interesting result: at this depth, all the ocean

ic regions but one (the oldest ocean, region A)

have the same velocity (see Figures 9 and 10),

and continents are fast. However, on the degree 6
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filtered map, ridges seem to show up as slow

regions. This may be an artifact due to the

coarseness of’ the expansion and to the fact that

ridges are parts of the ocean that often lay at

equal distances from the surrounding continents.

At 1450 km the dominant feature is the fast signa

ture of the subducted slabs (region T), as in the

direct expansion at a somewhat shallower depth.

The degree 6 maps of’ the regionalized anisot—

ropy bear little resemblance to the direct inver

sion maps, despite the great similarities between

their degree 2 components. This could mean that

anisotropy is not simply related to surface tec

tonics or that our results for anisotropy are

very poorly constrained.

12.3. Correlation With the Geoid

If the shear velocity anomalies that we deter

mine are indeed due to temperature variations in

the mantle, the variations in density that they

produce should alter the gravity field of the

earth. It therefore seems natural to correlate

the geoid with the lateral heterogeneities of

seismic velocities in the mantle. The spherical

harmonic decomposition is particularly well

suited to do this operation since the spherical

harmonic coefficients of the density heterogenei

ties can be integrated directly to yield an equi

valent geoid coefficient. In a dynamic earth,

however, density heterogeneities at depth produce
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Fig. 32. A comparison of the Pv models obtained

by different authors for the spherical har

monic coefficent. The model drawn with the error

bars for and S anisotropy is our model. The

dashed line model has been obtained by

Woodhouse and Dziewonski (19814) by waveform in

version. The short dashed line is a simple P
model that was found by Masters et al. (1982) to

give a good fit to the shifts of spheroidal modes

periods. All models have been converted to

variations by using an average p value of 5

km/s. The Im(6m) of Masters et al. has been

corrected by a —1/W normalization factor to

perform the comparison.

deformations of the surface that often contribute

more to the geoid than the actual heterogeneity

(McKenzie, 1977). Since very shallow heterogenei

ties are not resolved at all in our study, one

can wonder if the geoid calculated directly

should bear any resemblance to the real geoid.

Recently, the geoid response of a spherical dy

namical earth to density heterogeneities at depth

has been derived for different possible earth

models (Ricard et al.; 19814, Richards and Hager,

19814). In this approach, for a given spherical

harmonic order 1, the deformation of the surface,

and of other interfaces at depth, caused by a

density heterogeneity are calculated, and a re

sulting geoid response is produced that takes

into account all contributions. Hager (19814) has

used this approach to compute the geoid anomalies

caused by the subducted slabs. Here we use the

geoid response of the model e of Ricard et al.

(19814) to calculate the equivalent geoid produced

by the density heterogeneities we deduce from our

seismic model. Figure 35 is a plot of the corre

lation coefficients between the real geoid and

the calculated geoid, versus the degree 1, ob—

tamed by various authors. The lower mantle P

velocity model of Dziewonski (19814) shows a re

markable 1=2 anticorrelation with the geoid. A

significant 1=2 positive correlation for the

upper mantle is found by Masters et al. (1982)

and Woodhouse and Dziewonski (19814). However, the

correlation is found for S velocity upper mantle

models that were derived without taking into

account crustal corrections. Woodhouse and

Dziewonski (19814) point out that when these cor

rections are introduced, the 1=2,3 correlation

with the geoid breaks down. Masters et al. and

Woodhouse and Dziewonski obtained the calculated

geoid by direct integration of the seismic heter

ogeneities. Our model, which includes crustal

corrections, has no 1=2,3 correlation with the

geoid. For degrees 1=14,5,6, we find a marginally

significant correlation when using the dynamic

response of a stratified mantle with a chemical

boundary at 670 km (model e of Ricard et al.

(19814)). The correlation is maximum (r=O.6) for

degree 5. For this degree the geoid that we

predict using our density model has the same

amplitude as the observed one. On the contrary,

Woodhouse and Dziewonaki (19814) predict the wrong

sign for the geoid and an amplitude too large by

a factor of 5. However, Hager et al. (1985) show

that a very good positive correlation is obtained

for degrees 1=2,3 when the dynamic response of a

single—layer convecting mantle is applied to

Dziewonski’s (198L1) lower mantle model. Density

heterogeneities associated with subducted slabs

seem to contribute significantly to the higher

degree components of the geoid (Hager, 19811).

The correlation found between the seismic
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models and the geoid is encouraging. From the
results obtained so far, it is clear that density
heterogeneities in both the upper and the lower
mantle contribute to the low—order geoid. For the
geoid to be used as a tool for investigating the
earth’s dynamic structure, it is necessary to
combine information coming from different seismic
models and from surface observations. Only when
this is done properly and when a large set of
possible earth models is tested, is it possible
to be confident that the correlation between
seismic models and the geoid does constrain the
dynamic behavior of the mantle and in particular
whether whole mantle convection or layered con
vection takes place in the earth.

12.. Geometric Optics Approximation

As mentioned in the introduction, our models
are derived under the “geometric optics” approxi
mation. Under that approximation, the phase slow
ness observed at the station is simply the inte
gral average of the local phase slowness over the
source—receiver great circle path (Jordan, 1978).
The same approximation is used by Masters et al.
(1982) and Woodhouse and Dziewonski (1984). In

reality, the observed phase slowness is also
affected by heterogeneities that lie off the mean
path, and the mean path itself is not a great
circle because of refraction effects.

However, there is no tractable theory that
would enable us to account for these effects
rigorously. Indeed, we do not know how to calcu
late ‘outinely the synthetic seismograms on an
aspherical heterogeneous earth, which is really
why we perform only one iteration, and that from
a spherical model, to derive our aspherical mod
el. Woodhouse and Girnius (1982) have developped
a theory that nicely accounts for the contribu
tions from off—great circle heterogeneities,
under the Born approximation of seismic scat
tering. As noted by Woodhouse and Dziewonski
(198q), even that approximate theory, when ap
plied to our inversion problem, would require
computations that are far exceeding present pos
sibilities.

It is important to realize that one of the
major outcomes of the newly derived aspherical
earth models is precisely that they can be used
to evaluate quantitatively higher—order effects
and help derive a realistic yet tractable theory.
Indeed, many different promising approaches are
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Fig. 35. Correlation coefficients between the

real geoid and the predicted geoid for various

models, plotted against the degree 1. The smooth

lines are the limits above (under) which the

correlation (anticorrelation) is significant at

the 95% confidence level. Triangles are for upper

mantle models. Inverted triangles are for a lower

mantle model.

now being proposed and tested: ray tracing for

surface waves (Lay and Kanamori, 1985), Gaussian

beams on a sphere (Jobert and Jobert, 1983;

Yomogida and Aki, 1985), variational methods

(Tsuboi et al., 1985), first—order asymptotic

theory (Romanowicz and Roult, 1986; Davis and

Benson, 1986), and other methods (Park and

Gilbert, 19811; Dahlen and Henson, 1985; Wong and

Woodhouse, 19811).

Now, a legitimate and important question re

garding our model is the following: Would our

model be very different if the higher order ef

fects that we have neglected were accounted for?

This is a difficult question to answer at this

stage, since no complete analysis of these ef

fects is feasible. Nevertheless, partial tests

now available indicate that although higher—order

effects can be quite important locally, they are

unlikely to greatly affect the global model that

we derived.
For example, Lay and Kanamori (1985) performed

surface wave ray tracing using the phase velocity

model of NA2. They find that refraction could

cause the ray path to deviate from the source—

receiver great circle by up to several thousand

kilometers in some instances, but that this is

not the general case, at least for the and B3

wave trains used in NA2. They also show that the

amplitude variations predicted by these focusing—

defocusing effects (which depend on the second

spatial derivative of the heterogeneities) have

the right size, and sometimes the right pattern,

to explain amplitude variations observed in the

data. A similar conclusion is reached by Wong and

Woodhouse (19811). Furthermore, Schwartz and Lay

(1985) calculated the error made in attributing

the phase delay anomaly accumulated on the actual

ray path to heterogeneities on the great circle.

They find that the error, although it can reach

values as high as 12 s locally, is usually much

smaller than the errors on the data.

Off—great circle contributions have been ana

lyzed by Woodhouse and Girnius (1982) under the

Born approximation. They show that the width of

the sensitivity kernel decreases with the period

of the surface wave but also depends on the

position along the source—receiver great circle,

on the focal mechanism and on the epicentral

distance, and has many minima and maxima off the

great circle. However, when the kernel is inte

grated against a realistic regionalization, the

deviation from the geometric optics approximation

is found to be less than 10% at 200 s, except

locally (Woodhouse and Girnius, 1982, Figure 11).

Nice examples of clear violations of the geomet

ric optics assumption have been presented by

Silver and Jordan (1981) and Roult et al. (1986).

Most dramatic are the periodic oscillations ob

served in the eigenfrequency shifts versus mode

number plots at some specific epicentral distan

ces . These oscillations are expected on the

basis of the first—order asymptotic theory, which

predicts deviations from the geometric optics

approximation in !2”[tan (l+1/2)— 11/14], where 1

is the mode number and !2” depends on the first

or second transverse spatial derivative of the

heterogeneities along the path (Woodhouse and

Girnius, 1982; Romanowicz and Boult, 1986; Davis

and Benson, 1986). Again, Bomanowicz and Roult

(1986) show that the amplitude of the fluctua

tions observed in the data is relatively well

matched when 0” is calculated from the aspheri—

cal models of NA2 or Woodhouse and Dziewonski

(19814). Obviously, even if ç2” is very small, the

tangent term can lead to tremendous excursions

away from the geometric optics approximation for

some specific combinations of 1 and . However,

the largest deviations occur at values of 1 for

which the receiver is close to a node (Woodhouse

and Girnius, 1982; Romanowicz and Poult, 1986).

Although this remains a question to be debated,

it seems unlikely that these higher—order effects

should produce a systematic bias in our model,

but they clearly contribute to the variance of

the data that is not accounted for by our model.

13. Conclusions and Perspectives

What have we learned from this study concern

ing convection in the earth’s mantle?

1. On the scale of the tectonic plates, the

dominant scale of convection in the upper mantle,

several trends have been confirmed. The regiona—

lized models confirm the increase of mantle velo

cities above 200 km with the age of the ocean

floor. This is due to the cooling of the oceanic

lithosphere. The spherical harmonic expansion

models demonstrate quite clearly the typical

signature of ridges (slow) and shields (fast) in

the first 250 km. In both approaches, the

presence of cold subducted lithosphere below

trenches is detected as a pronounced fast S ve

locity anomaly below about 300 km. All these

aspects of convection at the scale of the plates

are, of course, well known or at least not unex

pected, but their confirmation by observational

evidence is worth noting.

—slab geoid, Hager, 1984
A Masters et al.1982

Woodhouse & Dziewonski,1984
A this study

Dziewonski, 1984
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2. On a smaller scale, our results raise the

interesting possibility that some average proper

ties of sublithospheric small—scale convection

have been detected. Thermal boundary layer insta

bilities could develop under the aging oceanic

lithosphere on a horizontal scale of a few hun

dreds of kilometers. Although such convective

plumes would be too small to be detected indivi

dually in our study, they might contribute to the

observed regional heterogeneities. Inhibited un

der ridges, they would reach their full strength

under old oceanic lithosphere. It is then tempt

ing to see their signature in the difference

between young and old oceans at depth. S anisot—

ropy between 200 km and 1100 km depth could be

telling us the same story: vertical flow under

ridges turning into horizontal flow under average

age oceans, becoming vertical again under old

oceans where the plumes falling off the base of

the lithosphere are well developed.

3. At the other extreme, very large scale pat

terns seem to dominate at large depth. They might

reveal the presence of a superacale (degree 2) of

convection related to possible degree 2 convec

tion in the lower mantle (Busse, 1983) or to a

previous configuration of continental and old

oceanic plates. However, even more than in the

above discussion where the interaction of small—

scale convection with plate circulation was seen

to be an important phenomena, the mixing of

scales might be difficult to disentangle.

11. Finally, the spherical harmonic maps have

revealed the existence of yet another scale of

heterogeneities: what we called the “anomalous

regions.” The strong slow p anomaly at shallow

depth under the south central Pacific might be

related to hot spot activity, which is intense in

that region. The strong fast anomaly southeast of

South America, also in a region of hot spots,

appears more mysterious. This and the fast anoma

ly under western Australia and the southern

Indian Ocean may represent subducted Pacific

lithosphere and the consequent cooling of the

upper mantle. This would suggest storage of sub—

ducted material in the upper mantle.

The superiority of the spherical harmonic

expansion approach over the regionalized approach

in the domain of scale mixing is that if there is

some interaction between different scales of

convection in the mantle, it will be a matter of

a posteriori interpretation, whereas in the re—

gionalized approach it is intermingled from the

beginning.
The present situation with lateral heteroge

neities in the mantle is reminescent of the early

days of the mapping of the geoid, when the first

satellites were launched some 25 years ago. As

then for the geoid, the image we get is a coarse

one, but it carries in it the seeds of its im

provement.
Indeed, the present models can be used to cor

rect for the effects of propagation in source

studies and thereby help produce better moment

tensors to be used in structural studies

(Tanimoto and Kanamori, 1985).

The spherical harmonic representation is well

suited for investigating the refraction of sur

face waves away from great circle paths (Jobert

and Jobert, 1983; Wong and Woodhouse, 1983, 19811;

Lay and Kanamori, 1985; Yomogida and Aki, 1985).

That effect has been neglected in our study and

related studies (Woodhouse and Dziewonski, 19811;

Masters et al., 1982). It mostly affects the

amplitudes of the seismograms. Although diffi

cult, the inversion of amplitudes patterns might

prove an important tool for constraining lateral

heterogeneities.
In fact, it is probably one of the major

advantages of the present models that they can be

used to evaluate quantitatively higher—order

effects that have been neglected in deriving

them. Already many authors have used them to test

theories that could in turn greatly improve the

present models (e.g., Park and Gilbert, 19811;

Davis and Henson, 1986; Tsuboi et al., 1985;

Dahlen and Henson, 1985). In particular, methods

that can bring information on the spatial deriva

tives of the heterogeneities should be most use

ful for deriving better models (Lay and Kanamori,

1985; Wong and Woodhouse, 19811; Romanowicz and

Roult, 1986).
Azimuthal anisotropy studies that complement

the azimuthally averaged models presented here

are already under way (Tanimoto and Anderson,

19814, 1985). These papers show that the inclusion

of azimuthal anisotropy has little effect on the

maps of heterogeneity. More refined models can

also be derived: Tanimoto (1985, 1986) treated

the horizontal resolving length and showed that

kernels could be constructed with available data

that had a radius of about 2000 km.

Finally, the spherical harmonic models make it

possible to replace local studies in a global

frame.
Nevertheless, and as for the exploration of

the gravity field, better tools will also be

needed in order to improve the resolution of the

spherical harmonic images of mantle heterogenei

ties.
This means more digital long—period stations

around the world to increase the horizontal reso

lution. Our study has shown that odd harmonics

were more poorly determined than even harmonics.

This has primarily to do with the fact that

direct or L1 wave trains cannot be analyzed

for great earthquakes because their amplitudes

are too large for the dynamical response of the

IDA and GDSN seismographs. In that respect, the

networks of high dynamical range, three—component

seismographs that are now being installed

(GEOSCOPE (Romanowicz, 1983; Romanowicz et al.,

19811)) or planned (Dziewonski, 1983; Incorporated

Research Institutions for Seismology, 19811) are

very promising. Concerning the distribution of

the stations, we note tht the purely sectorial

odd coefficients (Ag, A) are among the worst

resolved at present.
The vertical resolution will benefit greatly

from the analysis of shorter periods and of over

tones (Nolet, 1977; Cara, 1979; Lerner—Lam and

Jordan, 1983; Nolet et al., 1986). In particular,

overtones will be needed to better constrain

polarization anisotropy (Lév6que and Cara, 1983,

1985).
Finally, we note that surface waves are unable

to discriminate between bulk heterogeneities and

heterogeneites due to undulations of the seismic

discontinuities. Body waves have been used to

look for displacements of the upper mantle seis

mic discontinuities (e.g., Grand and Helmberger,
19811; Walck, 19811). It will be necessary to have

more data in this field if heterogeneities ob

tained from surface wave studies are to be re

lated to the geoid (Hager, 19811).
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Fig. Al. Surface histograms of ocean depth or

topography, crustal thickness, and P velocity

for the seven tectonic regions defined in Fi

gure 1. For each region the surface of the square

on the left indicates the proportion of the

earth’s surface it covers The arithmetic aver

ages are marked by triangles The arrows indicate

the values used in PREM.

Appendix A: Shallow Layer Corrections.

Four factors are considered: crustal thick

ness, Pn_Sn velocities, ocean depth, and topogra

phy. The distribution of crustal thickness and
velocity is obtained from a compilation of world

wide available data by Soller et al (1981) The

15° x 15° visual averages are estimated, where

possible, from their contoured maps. Ocean depth

and topography are from a 5°x5° Rand.Sio compila

tion.

A.1. Regions

Figure Al shows the surface distribution his

tograms of all four factors for the seven diffe

rent regions. In the oceans, crustal thickness is

fairly uniform, and we use the results of

Christensen and Salisbury (1975), rather than

Soller et al.’s 5 km—spaced contours, to estimate

the structure of the crust as a function of age.

Averages are calculated for each region and are

built into the corresponding starting velocity

model. S velocities are deduced from the observ

ed P velocities by assuming a constant VPH/VSH
ratio of 1.78 (equivalent to a Poisson’s ratio
jzO.27). These velocities at the base of the

crust are smoothly connected to a common PREM

velocity at 80 km depth.
The crust is assumed to be isotropic, and PREM

anisotropy is taken for all starting models. It

would be better to include observed P anjsotropy

and to use measured 5n velocities, but these data

are too sparse as yet for a global survey to be

done. Table Al gives the crustal model for each

region.

A.2. Spherical Harmonics

In order to use the same a priori model for

all 149 coefficients of the L 6 spherical har

monic expansion, we choose to correct the data

for the effects due to shallow layers, rather

than including them in the starting model as in

the previous case. The corrections proceed in

three steps: the four factors considered are

expanded in spherical harmonics; the correction

6T(n) to apply for a unit change in each of the

factors is computed for each mode number n; the

two calculations are combined to produce the

corrections to apply to each of the 149 sets of

dispersion curves according to the following

equation:

T1(n)r (öTcrust(n)xcrust1m)+(öTocean(n)xocean1m)

+(8Tp0(n)XP velocity1m)+(öTe1evxelev1m) (Al)

TABLE Al. Crustal Models Chosen for the Seven Tectonic Regions of Okal (1977)

Oceanic Regions p, a, p, thickness, km

g/cm3 km/s km/s A B C 0 T

Ocean 1.02 1.145 0.0 ‘1.6 4.2 3.9 3.4 4.2

Layer 1 2.0 1.65 1.0 0.3 0.2 0.1 0.0 0.2

Layer 2 2.6 5.0 3.0 1.14 1.14 1.14 1.5 1.14

Layer 3 2.9 6.7 3.8 5.0 5.0 5.0 ‘1.0 5.0

P velocity, km/s 8.23 8.12 8.12 8.00 8.12

Continental Regions p, a, 3, thickness, km

g/cm3 km/s km/s M S

Upper crust 2.14 14.9 2.8 1.0 1.0

Middle crust 2.75 6.0 3.147 20.0 20.0

Lower crust 3.06 6.7 3.79 10.0 10.0

n velocity, km/s 8.01 8.10

-5 5 ¶0 30 50 7.6 80 8.4
rn rrrr f

oceanil crustal
depth

topography
thickness
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topography

ties of 200 a Love and Rayleigh waves for plausi—

ble variations in crustal thickness, P_S veloc

ity, and ocean depth or topography. The straight

lines in each graphic are the linearized laws

taken to correct the spherical harmonic coeffi

cients. Note that the dominant factor is crustal

thickness, which can produce variations in phase

velocity up to 2% even at this period.

where crustlm, oceanlrn, ... are the (1,m) spher

ical harmonic coefficient of the expansion of the

corresponding factor (crustal thickness, ocean

depth, ...) and T1m(n) is the total period shift

-40

-20

Fig. A3. Variation

of the normal mode n by which the (l,m) coeffi

cient is corrected. The correction for group

slowness is derived in a similar way. It should

be noted that our approach assumes that the cor

rection to apply is linearly related to the vari

ation of the parameters for all four’ factors,

over their whole range of variation. This is a

good approximation for the corrections due to

Sn velocity, ocean depth, and topography varia

tions. However for crustal thickness, the domi

nant factor, the approximation is not as good

because the thickness of the crust can vary by

large amounts from region to region, with the

result that some curvature is observed in the

correction—versus—variation curve, as we show

below. Nevertheless, this nonlinear effect is

small enough that no problem arises, considering

the uncertainties in the crustal thickness dis

tribution.
A.2.1. Shallow layers in spherical harmonics.

The Rand.Sio 5°x5° topography compilation can be

directely expanded in spherical harmonics yield

ing the needed oceanlm and elev1 coefficients.

For crustal thickness and Pn velocity, we first

fill in the 15°x15° cells that are left empty in

Soller et al.’s (1981) contoured maps with the

average value obtained for the appropriate tec

tonic region. With this method, similar to

Chapman and Pollack’s (1975) tectonic predictor

for heat flow, we achieve complete coverage and a

spherical harmonic expansion can be performed,

yielding the desired crust1 and P velocity1

coefficients.
Figure A2 shows the contour maps of crustal

thickness, n velocity, and topography, obtained

by recombining the corresponding spherical har

monic coefficients up to degree L 6. The latter

map is useful for illustrating how crude a pic

ture of actual heterogeneities one gets from

limitating the expansion to a maximum degree of

eru.tal thickness
Or-----—

10 km 8.4

• Love
o Rayleigh

C

C.,

C.,

5 5 2

of the phase and group veloci—

LOE R AYLEIGH
-

-

a

.2C Q ),

HTm25osJ

-- -_-:.--. —

L____1.._j

U....
- -:. U - -

.-

Fig. Afl. Degree 6 contour maps of the corrections at 250 a due to shallow layers,

obtained by combining the effects of lateral variations in crustal thickness, 2n veloci

ty, and ocean depth or topography. The contour interval is 20 rn/s for both phase and

group velocities, Love and Rayleigh waves.
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Fig. B1. Resolution kernels obtained for the inversion of a global earth normal modes

data set taken from Dziewonski and Anderson (1981). Same conventions as in Figure 8.

Units on the vertical axis are 10 km1.

L6. We have tried to make the most complete

shallow layer correction possible with available

data. The effect of a simple bimodal correction

versus no crustal correction can be seen in the

work by Woodhouse and Dziewonski (19814).

A.2.2. Corrections. In order to retrieve the

5T(n) value corresponding to a unit change in the

variation of each factor, we calculate the pe

riod, phase and group velocities of given normal

modes for models that have different crustal

thickness, ocean depth, etc. Figure A3 give an

example of the corrections produced by reasonable

variations of the four different factors. As we

need to add the corrections due to all four

factors at the end, it is necessary to take these

parameters to be as “independent” as possible.

For example, the effect of ocean depth is inves

tigated while keeping the thickness of the crust

constant (as it would be for a subsiding oceanic

lithosphere). As we pointed out, the correction

due to crustal thickness is not quite linear over

the complete range of its reasonable variations;

however the nonlinearity is negligible for vari

ations from 5 km to 30 km, which bracket most of

the low—order differences between oceans and

continents.
A.2.3. Shallow layer corrections in spherical

harmonics. By combining the two preceding steps,

corrections are calculated for every spherical

harmonic coefficient (l,m) at all needed mode

numbers n and are applied to the data. The indi

vidual corrections due to all four factors can

also be recombined and compared to the corre

sponding data maps. A few examples of LZr6 recom

bined correction maps are shown in Figure A14.

Appendix B: Resolution Kernels in the Upper

Mantle for a PREM Data Subset

We present the resolution kernels obtained

from the inversion of the 120 normal modes of the

PREM data set (Dziewonski and Anderson, 1981)

that are most sensitive to the structure of the

upper mantle. The modes we choose are

B.1. Toroidal Modes

Fundamental: n 14, 6, 8, 10, 111, 20, 214, 28,

32, 36, 14Q, 1414, 148, 52, 56, 60, 614, 67.
First overtone: n Zr 10, 12, 16, 20, 214, 28,

32, 36, 140, 1414, 118, 52, 60, 66.
Second overtone: n 25, 29, 33, 38, 1414, 52,

61.
Third overtone: n 147, 57, 62, 68, 73.
Fourth overtone: n zr 614, 67, 80, 90, 99.
Fifth overtone: n Zr 79, 105, 118.

B.2. Spheroidal Modes

0 200 400 000

-j

DEPTH (kin)

Fundamental: n Zr 14, 6, 8, 9, 12, 114, 18, 22,
26, 30, 314, 38, 142, 146, 50, 514, 58, 62, 66, 80,
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100, 120, 140, 160.
First overtone: n r 10, 16, 20, 211, 32, 14o,

148, 56, 614, 75.
Second overtone: n 6, 8, 10, 12, 15, 26, 30,

314, 110, 145, 50, 60, 71, 76.
Third overtone: n z 9, 12, 15, 18, 21, 214, 141,

145, 149, 53, 63, 73.
Fifth overtone: n z 11, 114, 19, 23.
Sixth overtone: n z 16, 20, 211, 28.

We use the inversion method described in the
text with the following a priori information: a
priori model, PREM; no a priori correlation bet
ween the six different parameters p, °H’ Pv’ ,
•, q); correlation depth, 1 km; no correlation
between the data points; standard deviations on
the data as listed by Dziewonski and Anderson
(1981). The a priori standard deviations for the
parameters are: 0.1 g/cm3 for p; 0.1 km/s for
and Pv; 0.1 for , ‘P, and q. These units are used
to draw the resolution plot.

Figure Bi displays the resolution kernels. We
note that S anisotropy is well resolved and shows
little trade—off with the other parameters
throughout the upper mantle, except in the top 60
km. This behavior is due to the information
brought in by the overtones. On the other hand,
even with that extensive data set, and r cannot
be resolved independently, as they show a rather
strong mutual trade—off. The low value of the
maximum resolution obtained (1.2x1O5 km1) is
due to the small a priori correlation length
chosen (1 km).

Appendix C: Equivalent Transversely
Isotropic Earth

Smith and Dahlen (1973) have calculated the
azimuthal dependence of surface wave phase veloc
ities for the most general anisotropic medium
with 21 independent elastic coefficients,
for the case of weak anisotropy. Montagner and
Nataf (1986) show that the average over all azi
muths of the phase velocity reduces to a term,
which involves five independent combinations of
the elastic coefficients. In the special case of
a transversely isotropic medium, these five com
binations reduce to the A, C, F, L, N elastic
coefficients that define such a medium, following
Love (1927) and Takeuchi and Saito (1972). As
expected, the azimuthal average of surface waves
phase velocities in the most general anisotropic
medium can therefore be described by means of an
equivalent transversely isotropic model. The
elastic coefficients of this equivalent model are
found as

3 1
A (C11±c22) + -iC12 +

C C33

F (C13+C23) (Cl)

L

N (C11+C22) - C12 + C66

where the C. are the elastic coefficients of the
actual anisoropic medium, in the usual simpli
fied index notation (e.g., Fuchs, 1983). These

expressions will prove useful for evaluating the
effect different crystal or rock orientations
produce on the azimuthal average of surface wave
velocities. Realistic examples are given in
Appendix D.

Appendix 0: Equivalent Transverse Isotropy
for Realistic Materials

In this appendix we use the expressions de
rived in Appendix C to calculate the A, C, F, L,
N elastic coefficients of the equivalent isotro
pic medium for different orientations of olivine
single crystals and other earth materials.

0.1. Olivine Single Crystals

We use the following values of the coef
ficients of divine single crystals calculated at
a 50 km depth and 670°C temperature by Fuchs
(1983) from experimental data obtained by
Kumazawa and Anderson (1969):

3.1141 0.669 0.7211 0.
1.890 0.781 0.

2.265 0.
0.597

expressed in megabars (1 Mbar z 1011 Pa) in the
natural a—b—c orthonormal basis of the olivine
orthorhombic crystallographic system.

We calculate the coefficients of the equiva
lent transversely isotropic medium for two dif
ferent crystal orientations:

1. a horizontal, b horizontal, c vertical

A2.416 oHB,559 km/s
C2.265 Pv14.147O km/s
F0.752 > 1.250
L0.659 cj0.937
N0.8214 q0.686
(in Mbar)

where a density pz3.298 g/cm3 has been chosen;
equations (Cl) have been used to calculate the A,
C, F, L, N and equations (14) to calculate

°H’ V’ ç ,, and q.
2. a vertical, b horizontal, c horizontal

0.2. Realistic Anisotropic Mantle

The mantle is not made of perfectly aligned
olivine single crystals. However, olivine crys
tals do show a strong preferred orientation in
natural ultramafic rocks on both the sample scale
and the massif scale. Using petrofabric field
measurements on ophiolites and single crystals
elastic coefficients, Peselnick and Nicolas
(1978) derive a C matrix for lithospheric upper
mantle:

0.
0.
0.
0.
0.722

0.
0.
0.
0.
0.
0.725

(Dl)

SH—SV
-11 8%

SV -

PV-PH -

PH

(D2)

A2.O52
Cz3. 1111

F0. 696
L0.723
N0.623
(in Mbar

°H888 km/s
km/s

flo.861

4 rl.531
q rl.151

SH-SV -

SV

PV—PH
23.7%

(03)
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0.725 0.723—0.001—0.020 0.000

2.208 0.719 0.017 0.016_0.0014

• 2.202 0.018—0.002 0.00k

• . 0.7149_0.006_0.01O (D14)

• . . 0.792 0.013

• . . . 0.788

where the reference axes are X1: perpendicular to

the ridge; x2: parallel to the ridge; x3: verti

cal (at a 17 km depth and a 250°C temperature).

We deduce the equivalent transverse istropic

medium for two different flow patterns:

1. Horizontal flow (i.e., keeping the same

axes as in (0L1))

with a density p=3.30S g/cm3.
2. Vertical flow (x1 vertical, x2 and

horizontal)

These variations are used to place a priori bonds

on the expected heterogeneities in the mantle and

on the way they correlate.

If the flow in the mantle changes from hori

zontal in one plaàe to vertical in another place,

the variations to expect for the parameters we

invert for are deduced from (05) and (06) as

being

p = 0. g/cm3
—0.15 km/s

PV= 0.061 km/s
—0.07i (07)

p= 0.11
q= 0.19

Appendix E: Combining Phase and Group Slowness

Spherical Harmonic Coefficients

We derive the relationship between the spheri

cal harmonic coefficients of phase slowness on

one hand and group slowness on the other hand. At

a given “point” (8,’) at the surface of the

earth, phase and group velocities are related by

the usual dispersion formulas, so that one has

x 1
n(x,O,cc)

C(x,U,) —

dn 1=
U(x,O,)

with x = (2rrR,)/T , C(x,9,’p) the phase velocity

and U(x,,) the group velocity at the point

(9,) for the period T.
Phase slowness F and group slowness G are

expanded in spherical harmonics as

x0

Fig. El. Schematic drawings showing how to con

vert from data at a given periodT0=(2n5,)/x0 to

data at a given mode number n0. The solid lines

are the dispersion curves for the average earth

(l=m=0); the dashed lines are the dispersion

curves for the earth perturbed with the (l,m)

spherical harmonic term.

G(T,O,) g(T) Y(6,,) (E’l)

where Yf1(O,) stands as an abbreviation of the

cosmpT(o) and sinmø pjT(O) of equation (1).

Combining equations (El) with (E3), and (E2) with

(E1), one gets

n(x,O,o) =[ Zx
lm

Y(O,e)] - (ES)

g1(x) Y(O,p) (E6)

These equations being true for any (P,), it

follows that

Y1m(X) X (E7)

y1(x) g1(x) (E8)

and we can apply our method for fitting a smooth

y1(x) curve knowing the values y takes and the

values its derivative y1 takes at selected

points x.. We can thus test the compatibility of’

phase anà group data for each individual coeffi—

ci ent.
However, it remains to convert these data at

given x (i.e., given periods T.) to data at

given mode numbers n, the problembeing that y

(El) is no longer the mode number. Figure El shows how

the conversion is performed, the approximation

(E2) used being valid when the lateral heterogeneities

are small as compared to the average term l=mzO.

For a given mode number n0, one has

T1(n) 2 iTS C — — ) (E9)
x÷Lx (n) x

0 lm 0 o

2.365 1
U

n

A2.290
C=2.202
F=0.72l =>
L=0. 770
N=0.7811
(in Mbar)

0HZ8.32u1 km/s
km/s

=1.018

4’ =0.961
Ti =0.963

nc

SH—SV
- 0 %

SV
-

PV-PH -

PH -—

X= 2flR0/T

- — —

--

(05)

A=2. 208
C=2. 365
F=0.7214 =>
L=0. 790
N=0.746
(in Mbar)

aH=8.l74 km/s
km/s

=0.94
4, = 1.071

q =1.153

SH-SV
- 2 8%

SV --

PV—PH -

PH -

(06)

with x = (2rrS )/T and n = x f’ (x
(E3) o o o 00 0 2

andF(T,O,) = (T) y(8,)
1 m lm
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x I (x
0 lm 0

tx (n ) -

__________

im 0
g (x )

00 0

the group slowness anomaly at a given n is given
by °

(n ) g Ix + x (n )1
LUJ1m o lm[o lm oj

Integer n0 values are picked, and the tT1 (n ) is
calculated according to equations (E9) an eElO)
from the smooth y1(x) curve constructed to fit
the phase and group slowness data.

Our approach rests upon the dispersion rela
tionship C = w/k and U = dL’/dk. These relation-.
ships are not strictly valid when attenuation is
taken into account (see, for example, Kanamori
and Anderson (1977)). Numerical tests indicate
that the actual group velocity can deviate from
the theoretical U = d i/dk relationship by 0.01
km/s for PREM—like attenuation. This systematic
error is of the same order as the experimental
errors on the measurement of group velocities
(NA2), but its effect can be important when fit—
ting the better resolved average earth (l=m=O)
group velocities, which have errors less than
0.002 km/s (NA2). It is worth noting that the
same bias is introduced when partial derivatives
for group velocity are calculated by numerical
differentiation of phase velocity kernels, fol
lowing the method of Rodi et al. (1975), which
also is based upon the U = dw/dk relationship.
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