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Abstract. We investigate the problem of 
retrieving anisotropy as a function of depth in 
the mantle, from the observed azimuthal 
variations of Love and Rayleigh wave velocities. 
Following the approach of Smith and Dahlen, this 
azimuthal dependence is expressed in terms of a 
Fourier series of the azimuth e. For the most 
general case of anisotropy (provided it is small 
enough), some simple linear combinations of the 
elastic tensor coefficients are shown to describe 
the total effect of anisotropy (both polarization 
anisotropy and azimuthal anisotropy) on the 
propagation of surface waves. For the terms that 
do not depend on the azimuth the combinations are 
related to the elastic coefficients of a 
transversely isotropic mantle. For the azimuthal 
terms the relevant combinations are explicited. 
It is found that the partial derivatives of the 
azimuthal terms with respect to these 
combinations are easy to compute for they are 
proportional to the partial derivatives of a 
transversely isotropic model in the case of a 
plane-layered model. In a first approximation the 
same property holds true for a spherical earth 
and we calculate from PREM all the partial 
derivatives needed for performing the inversion 
of the azimuthal anisotropy of surface waves in 
the period range 50-300 s. It is observed that 
very shallow anisotropy can be responsible for 
substantial azimuthal variations up to the 
longest periods. With this approach it is also 
easy to compute the azimuthal variations of 
surface wave velocities produced by any 
anisotropic model. When a Cij elastic tensor is 
chosen for the upper mantle, azimuthal variations 
up to 2% are obtained for Rayleigh waves. The 
azimuthal variations of Love wave velocities are 
very small. The 2 e term of the azimuthal 
variations of Rayleigh wave velocities is the 
dominant term. Its fast axis corresponds to the 
fast axis of P waves. 

Introduction 

The evidence that much of the upper mant 1 e 
may be anisotropic is steadily growing. In 
particular, the interest in azimuthal anisotropy 
1s increasing. Since intrinsic anisotropy 
requires that crystals be both anisotropic and 
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oriented in preferential directions, observations 
of seismic anisotropy can provide information 
about the mineralogy and the deep structure of 
the mantle. Over the last few years, there has 
been a large increase in the number of 
observations implying anisotropy in the earth 
(for a review, see Crampin et al. [1984]). The 
early evidence was the discrepancy between 
Rayleigh and Love wave dispersion [Anderson, 
1961, 1966; Aki and Kamirtuma, 1963], and the 
azimuthal dependence of Pn velocities [Hess, 
1964; Morris et al., 1969; Raitt et al., 1971]. 
Azimuthal variations have now been we 11 
documented for different areas in the world for 
body waves [Bibee and Shor, 1976; Bamford, 1977; 
Hirn, 1977; Talandier and Bouchon, 1979; Fuchs, 
1983] as well as for surface waves [Forsyth, 
1975; Mitchell and Yu, 1980; Montagner, 1985]. 
The Rayleigh - Love discrepancy is widespread for 
fundamental modes [McEvilly, 1964; Forsyth, 1975; 
Schlue and Knopoff, 1979; Journet and Jobert, 
1982; Montagner, 1985] but also for overtones 
[Leveque and Cara, 1983 ]. This discrepancy is 
accounted for when using a transversely isotropic 
medium with a vertical symmetry axis (PREM of 
Dziewonski and Anderson [1981]). On a global 
scale, long-period surface waves have been used 
to map lateral variations of anisotropy in the 
upper mantle within this framework of a 
transversely isotropic earth [Nataf et al., 
1984]. Tanimoto and Anderson [1984] have recently 
determined the azimuthal variation of Love and 
Rayleigh wave phase velocities on a global 
scale. They show that the fast directions of 
Rayleigh waves appear to correlate with flow 
directions in the mantle, but it is not known to 
what depth the anisotropy extends. 

As we see, observational surface waves 
studies call for two kinds of anisotropy: On the 
one hand, variations of phase or group velocities 
with the azimuth of the path (azimuthal 
anisotropy); on the other hand inconsistent 
values for the azimuthally averaged velocities 
of Love and Rayleigh waves, explained in 
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terms of transverse isotropy (also called 
polarization anisotropy). From an observational 
point of view it must be noted that there is a 
difference between these two forms of 
anisotropy. Azimuthal anisotropy is observed 
directly for body waves as well as for surface 
waves; on the contrary, transverse isotropy is 
not observed directly but is inferred from the 
inversion of Rayleigh and Love wave data. To 
our knowledge, no inversion has been performed 
that takes into account simultaneously azimuthal 
anisotropy and Rayleigh - Love discrepancy. 

From a theoretical point of view the 
propagation of surface waves in a completely 
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anisotropic flane-layered medium has been studied 
by Crampin 1970] and applied to a few special 
cases [crampin, 1970; Maupin, 1985]. Smith and 
Dahlen [1973] have studied the effect of a slight 
elastic anisotropy on the propagation of Love and 
Rayleigh surface waves. They give the azimuthal 
dependence of the phase velocities of surface 
waves, which involves the variation with depth of 
some combinations of the canonical harmonic 
components of the elastic tensor, which are hard 
to handle. 

The purpose of the present paper is to 
provide the basis for an inversion method of the 
azimuthal variations of surface wave velocities. 
From the azimuthal variations at different 
periods our goal is to retrieve the variations 
with depth of some combinations of the elastic 
coefficients. Using Smith and Dahlen's approach, 
we show that the partial derivatives involved can 
be calculated very simply. The combinations of 
the elastic coefficients are explicited. The 
method is then applied to two realistic mantle 
models in order to assess the relative importance 
of the different terms involved. It is shown that 
depending on whether the anisotropy is confined 
to the lithosphere or to the asthenosphere, the 
resulting azimuthal variation of the phase 
velocity of Rayleigh waves presents a different 
signature. 

Relating Local Elastic Coefficients to 
the Anisotropy of Surface Waves 

We follow the approach of Smith and Dahlen 
[1973 ]. They calculate the azimuthal dependence 
of surface wave velocities for the most general 
slightly anisotropic elastic plane-layered medium 
with its 21 independent elastic coefficients. 
Rayleigh's principle is combined with Backus' 
[1970] harmonic tensor decomposition. To the 
first order in the anisotropy, the azimuthal 
dependence of both Love - and Rayleigh - wave 
phase velocity is found to be of the form 

C(w, e) = Al(w) + A2(w)cos2e + A3Cw)sin2e + 

A4(w)cos4e + A5(w)sin4e 

where w is the angular frequency and e ~s the 
azimuth of the wave number vector measured 
clockwise from the north. The various azimuthal 
terms Ai ( w) are depth integral functions that 
involve so~e canonical harmonic elastic 
components y m~z) as derived from Backus [1970 J. 
Indeed, thes~ harmonic components are difficult 
to handle, and we have preferred to express the 
different Ai(w) using the Cartesian elastic 
coefficients Ci · (z) in the usual simplified 
index no tat ion Cs ee Fuchs [ 1983 J, for example). 
The details of the calculations for Love waves 
are given in the appendix, and we present only 
the results in the text. It is found that the 
perturbed phase velocity can be expressed as 

c(k, e) = c 0(k) + oc(k, e) 

where k is the modulus of the wave number vector, 
c 0Ck) is the phase velocity for the isotropic 
medium considered as a reference model and 
ocCk, e) is the first - order perturbation in 
phase velocity dispersion. We assume that the 
anisotropy is slight enough that quasi - Love 

modes and quasi - Rayleigh modes can be defined 
[crampin, 1977]. Love - and Rayleigh wave 
dispersion is successively considered as follows. 

Love Waves 

The first - order perturbation in Love wave 
phase velocity 6CL(k,e) can be expressed as 

6C (k e)= 1 [Ll(k) + L2(k)cos2e + L3(k)sin2e 
L ' --

2C OL(k) 
+ L4(k)cos4e + Ls(k)sin4e] (1) 

where 

La(k) 

J cw 2.dN 
w ,2 

L 1 (k) +---;z-.dL)dz 
La a k 

L2Ck) 1 J -G . W' 2 dz 
La a ckZ 

"' 2 (2) 

L3(k) 1 f -G . W' dz 
La a s k2 

L4(k) 1 J a-Cc. w2 dz 
La 

L 5(k) 1 Ja-Cs.w2 dz 
La 

where W(z) is the unperturbed Love displacement 
eigenfunction and W' its derivative with respect 
to the depth z. 

Rayleigh Waves 

The first - order perturbation in Rayleigh 
wave phase velocity 6CR(k,e) can be expressed as 

6CR(k, e)= _1_ [Rl(k) + R2(k)cos29 + R3(k)sin29 

2CaR(k) 
+ R4(k)cos49 + Rs(k)sin49j (3) 

where 

RaCk) 

R3(k) 1 

Ra 

R4(k) 1 

Ro 

R5(k) 1 

Ra 

fa[ Bs. V 2 

+dF.2U'V 
k 

+ Hs .2U 'V 
k 

+ Gs(~-U) 2 jdz 
"' 2k 

faCe. V dz 

( 2 aCs.V dz 

(4) 

where U(z) and V(z) are the unperturbed Rayleigh 
displacement eigenfunctions, U in the horizontal 
direction and V in the vertical direction of 
propagation; U' and V' are their derivatives with 
respect to z. The sign convention for U, V, W is 
the same as that of Smith and Dahlen [1973]. 
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The 13 depth - functions A, C, F, L, N, Be, 
Bs,Gc, Gs, He, Hs, Cc, Cs are linear combinations 
of the elastic coefficients Cij and are now 
explicitly given as follows 
Constant term (independent of azimuth) 

A 318 Ccu+ C22) + 114 C12 + 1l2 c66 

c c 33 

F 11 2 (C 13+ c 23) (5a) 

L 112 CC44+ c ss) 

N 118 (C 11+ C22) 11 1 4C12+ l2c66 

28- azimuthal term 

Be 1
I2Ccu- c 22) 

Bs Cl6+ C26 

Gc 
1 I 2 (C 55- c 44) 

(5b) 
Gs C54 

He = 
1 I 2 (C 13- C23) 

Hs C35 

48- azimuthal term 

Cc 118 cc u+ C22) 11 1 - 4 C12 - lz c66 

Cs 1 I 2 (C 16- c 26) 
(5c) 

It may be noted that all these expressions are 
relative to the components of the total elastic 
tensor and not of the perturbed one. This is 
possible because only linear combinations of the 
Cij are involved. If we consider the constant 
terms L1 and R1, five independent combinations of 
elastic coefficients are involved. They 
correspond to the case of a transversely 
isotropic medium with vertical symmetry axis 
after averaging over all azimuths. The elastic 
coefficients of this equivalent transversely 
isotro~ic medium have been defined, following 
Love Ll927, p. 196] and Takeuchi and Saito 
[19721, as A, C, F, L, N. 

Let us recall that in a really transversely 
isotropic medium, A, C, L, N can be determined 
from measurements of the P and S wave 
velocities propagating perpendicular or parallel 
to the axis of symmetry: 

A= pViH' C = pViv• N = pV~H' L =pV~V 
where p is the density. 

Some of the previous combinations have already 
been derived in the expressions that describe the 
azimuthal dependence of body waves (see Crampin et 
al. [1984], for example) in a weakly anisotropic 
medium. 

pV 2 = A + B cos28 + B sin28 + C cos48 + C sin48 
p c s c s 

pV~p D - Cccos48 - Cssin48 

pV~R F + Gccos28 + Gssin28 

We use Crampin's notations for the coefficients 
B , B , G , G , C , C . However, H , H do not 
a~pears in <i>od/ wav~ az1muthal depend~nce sand are 

typical of surface waves. On the other hand, we do 
not follow Crampin's notation for theconstant term 
and prefer the most commonly used notation A, C, 
F, L, N. 

From equations (2) and (4) the partial 
derivatives of phase velocities with respect to 
the different parameters Pi can be calculated: 

where 6C1 is anyone of the azimuthal phase 
velocity amplitudes in (1) and (3). The subscripts 
k, w, Pj are used to show that the derivatives 
are taken along k, w, p = constant. lili is the 
normalizing thickness for the partial derivatives. 
U is the group velocity and np the number of 
parameters. 

The partial derivatives with respect to the 
five elastic coefficients of a transversely 
isotropic earth A, C, F, L, N are in the 
1i terature [Anderson and Dziewonski, 1982]. One 
important point is that the determination of the 
partial derivatives for the azimuthal terms does 
not require additional computations because the 
kernels that appear in the azimuthal terms are 
already present in the constant terms L1 and R1 . 
In fact, as can be seen from (2) and (4) the 
partial derivatives of the azimuthal terms with 
respect to the azimuthal combinations of the 
elastic coefficients (B , C , G , ... ) are exactlv 
equal to the partial d~riv~tiv~s of the constant 
term with respect to the corresponding transverse 
isotropy parameters (A, N, L, ... ). Surface wave 
propagation (or normal mode solution in a 
spherical earth) can be calculated completely for 
transverse isotropy with a vertical symmetr¥ axis 
[Anderson, 1961; Takeuchi and Saito, 1972J. Our 
point is that the partial derivatives with respect 
to the five elastic parameters of a transversely 
isotropic earth (PREM, [Dziewonski and Anderson, 
1981 ]) obtained from these calculations can be 
used directly to invert the azimuthal variations 
of the phase velocities of surface waves. In the 
next section, we take advantage of this property 
to present these partial derivatives. 

Partial Derivatives for the Azimuthal Anisotropy 
of Surface Waves 

In the period range that we consider (50 -
300 s), the influence of the sphericity of the 
earth cannot be neglected. We make no attempt 
here to carry out an analysis of azimuthal 
anisotropy for normal modes in a spherical earth. 
Dahlen and Smith [1975] and Woodhouse and Dahlen 
[1978] have given the general expressions for the 
influence of anisotropy perturbation on the 
period of normal modes using Rayleigh 1s 
principle. However the integration has not been 
performed so as to give the variation of the 
eigenperiod with azimuth. It is not possible to 
simply transpose the decomposition made for 
surface waves in a flat layered medium to 
normal modes in a spherical Earth. In particular, 
the concept of azimuth of propagation itself is 
not a natural one for normal modes. Although the 
theory presented above is valid for surface waves 
in a flat mantle, we will calculate the partial 
derivatives with respect to p, A, C, F, L, N in a 
spherical earth. We think that by applying a flat 
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Fig. 1. Partial derivatives for Love waves. The plots are the partial derivatives of 
the period of the normal modes oT40 (left) and oT120 (right) with respect to the 
elastic coefficients of a transversely isotropic earth L and N, and the density p, as 
a function of depth in the upper mantle. (The partial derivatives with respect to A, 
C, Fare null for Love waves). The plots are normalized to their maximum amplitudes, 
which are given for a ~ 1000-km thick perturbed layer. In parenthese, the 
combination of elastic coefficients that has the same partial derivative for the 
azimuthal terms (29 and 49). Note that the amplitude of the L- partial is very small. 

layered theory to a sound spherical earth model, 
we obtain more realistic dispersion properties 
and eigenfunctions than by applying that theory, 
in its legitimate frame, to a necessarily 
oversimplified flat earth model. Sphericity 
cannot produce azimuthal variations in itself. If 
the actual problem of azimuthalanisotropy were 
solved, the sphericity corrections to add to our 
approximated theory would probably amount to some 
10 % of the few percent we are inverting. We use 
the program "EOS" of Dziewonski to compute the 
periods and partial derivatives of the normal 
modes. The earth model we choose, is PREM 
[Dziewonski and Anderson, 1981]. The computation 
includes the effects of gravity and anelastic 
attenuation. 

Figure 1 shows the partial derivatives for 
Love waves. The partial derivative with respect 
to L is equal to the partial derivative with 
respect to -Gc in the 29 - azimuthal term; the 

partial for N is equal to the partial for -Cc 
in the 49 - term. As expected, the amplitude of 
the N - kernel is much larger, which just means 
that Love waves are much more sensitive to 
SH - velocity ( rNTiJ) than to SV - velocity 
(;-Llp). Therefore, we expect the 49- azimuthal 
term to be dominant over the 29 - term for Love 
waves. However, this prediction· depends on the 
relative strengths of the G and C coefficients 
to expect for a realistic .fnisotrotic mantle. We 
also note that the 49 - term is mostly sensitive 
to the shallow Cc - structure. 

Figure 2 displays the partial derivatives for 
Rayleigh waves. There are now three partials that 
contribute to the 2 9 - azimuthal term. One of 
them is very shallow (the Be - partial, equal 
to the A- partial). A second one is sensitive to 
much deeper structure (the G - partial, equal to 
the L - partial). The thir9! partial (the He -
partial, equal to the F - partial) has a mixed 
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Fig. 2. Partial derivatives for Rayleigh waves. flame conventions as for Figure 1. The 
partial with respect to N has not been plotted. It is null in a flat earth, but it 
takes a non zero value in a spherical earth. However, for the periods considered here, 
its amplitude is small (less than 15% of the amplitude of the L- partial). Note that 
three partials contribute to the 26 - azimuthal term. 
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TABLE 1. Elastic Coefficients Cij chosen for 
both "Lithospheric" and "Asthenospheric" 

Anisotropic Regions. 

i j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

2.3648 0.7253 0.7228 -0.0008 -0.0196 0.0000 

2 2.2081 0.7187 0.0169 0.0164 -0.0040 

3 2.2016 0.0182 -0.0024 0.0041 

4 0.7494 -0.0058 -0.0103 

5 0. 7921 0.0128 

6 0.7877 

In megabars. 
From anisotropic Table 2d of Pese1nick and Nicolas 
(1978) for uppermost oceanic mantle. 

sensitivity and a somewhat smaller amplitude. The 
48 - azimuthal term depends on the C -parameter 
only. The corresponding partial (A _cpartial) is 
very shallow, even at long periods. 

Density cannot be responsible for azimuthal 
anisotropy of course. Nevertheless, it can affect 
its amplitude through the La - or Ro - terms in 
equations (2) and (4). This is a second - order 
effect that can be ignored at the present time. 
Note that the plotted p - partials are those for 
the complete transversely isotropic medium; they 
do not describe the influence of density on the 
azimuthal terms. 

At this stage the main conclusion is that the 
observation of azimuthal anisotropy for long -
period Love or Rayleigh waves does not 
necessarily imply the presence of deep azimuthal 
anisotropy. Indeed, shallow anisotropy can cause 
large azimuthal anisotropy for long period 
Rayleigh waves through the B partial. To 
further assess the relative Dmportance of the 
various terms creating azimuthal anisotropy, we 
need to determine the values of the relevant 
combinations of elastic coefficients in a 
realistic mantle. This is what we present in the 
next section. 

Application to Two Realistic Upper Mantle 
Structures: Anisotropy in the Lithosphere 

or in the Asthenosphere 

From a geodynamical point of view it is 
important to know if we can resolve azimuthal 
anisotropy beneath the lithosphere. In fact, deep 
anisotropy could bring valuable information 
concerning convective currents in the mantle 
[Tanimoto and Anderson, 1984; Nataf et al., 
1984]. To check that point, we apply the partial 
derivatives of the previous section to two simple 
models: a "lithospheric" model in which azimuthal 
anisotropy is restricted to the lithosphere: from 
the base of the crust (at 24 - km depth) to 100 -
km depth; an 11 asthenospheric" model, in which 
azimuthal anisotropy runs from 140 - km to 400 -
km depth, the rest of the mantle (including the 
lithosphere and the spinel zone) bearing no 
azimuthal anisotropy. 

To estimate plausible values for the Gc, 
Be,··· combinations that enter the azimuthal 
terms, we choose a realistic Cij matrix of 
elastic coefficients. Peselnick and Nicolas 
[1978] have calculated the matrix of elastic 
coefficients for uppermost oceanic mantle on a 
massif scale from field observations (Antalya 
ophiolite complex in Turkey), fabric data and 
experimental values of single - crystal elastic 
coefficients. The Cij matrix is the weighted 
average of many samples oriented in the field 
covering a 15 - km long outcrop. This is still 
very small as compared to the wavelength of the 
surface waves we are dealing with (lOO - 1000 
km). From Pn studies and models of the 
formation of oceanic lithosphere it is possible 
to infer that anisotropy remains homogeneous on 
horizontal length - scales in excess of 1000 km. 
We take their results to build both our 
lithospheric and asthenospheric anisotropic 
examples. The Cij matrix (their Table 2d) is 
reproduced in Table 1, with respect to the x, y, 
z axes. The x- axis is normal to the ridge, the 
y - axis is parallel to it and the z - axis is 
vertical. We note that their data produce a 4% P 
- wave anisotropy, somewhat smaller than actually 
observed Pn - anisotropies in the oceans [e.g., 
Morris et al., 1969; Raitt et al., 1971]. 
Therefore we think that the azimuthal anisotropy 
we derive should not overestimate the azimuthal 
anisotropy to be expected for surface waves in 
the earth. 

Given the Ci · matrix, it is easy to 
calculate the combinations Gc, Be, ... that we 
need for discussing azimuthal anisotropy, 
according to equations (5). The values of the 
relevant ratios of combinations are given in 
Table 2. Strictly speaking, we should take into 
account the pressure and temperature 
dependence of these ratios. However, they are 
poorly known in the depth range we consider and 
we neglect them at this stage in order to keep 
our models as simple as possible. 

The azimuthal variations of the phase 
velocities of Love and Rayleigh waves are 
computed by integrating the relevant partials 
times the associated ratios over the anisotropic 
region. For example, the cos28 - anisotropy of 
Rayleigh wave phase velocity at a given period To 
for the "asthenospheric" model is obtained as 

400km 
Llc(T 0)cos28 = -c {j [l!?_c )~@!.) + C!!c }E:_(oT) 
C U 140km A T OA k F T oF k 

+ LQc)_!:(oT)j ~ }cos28 
L T oL k l:.h 

TABLE 2. Ratios of the Combinations of the 

cos 

Elastic Coefficients Used to Calculate the 
Azimuthal Anisotropy of Surface Waves 

for Our Two Realistic Models. 

G c c B H 
c,s ~ c,s c,s c,s 

-L- N -A- -A- -F-

0.028 -0.005 -0.002 0.034 0.003 

sin -0.007 0.003 0.001 -0.002 0.006 
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Fig. 3. The cos2 9 azimuthal anisotropy 
amplitude of Rayleigh waves (top) and Love waves 
(bottom) as a function of period for the two 
tested models. The dashed line is for the 
"lithospheric" model and the continuous line for 
the "asthenospheric" model. Also drawn (fine 
lines) are the individual contributions of the 
Gc and Be terms to the Rayleigh wave cos29 -
anisotropy for both models. Note the large 
anisotropy at long-period for the "lithospheric" 
model. 

where C and U are the unperturbed phase and group 
velocities at the period To. 

The cos29 - amplitudes are given in Figure 3 
as a function of period. As expected, the 29 -
anisotropy of Love waves is very small (less than 
0. 2% peak to peak) . On the contrary, Rayleigh 
waves have a significant 29- anisotropy for both 
models. The "asthenospheric" model yields a 
maximum 1. 6% peak to peak anisotropy at 150 s. 
The "lithospheric" model reaches the same value 
at 50s, but its anisotropy remains high (0.5% 
peak to peak) up to the largest periods. As shown 
in Figure 3, its long - period anisotropy comes 
from the Be contribution. The very shallow 
sensitivity of the Be - partial allies with the 
large value of the Be/A ratio to give that 
strong effect. We also note that the He 
contribution to the 29 term is always 
negligible (not plotted). 

As can be seen from Table 2, the sine - terms 
are much smaller than the cosine - terms, except 
for H and H whose contribution is negligible. 
The Ef=O dirett ion thus corresponds to a maximum 
velocity when the cosine - amplitude is positive 
(as for Rayleigh waves) and to a minimum when the 
cosine amplitude is negative (as for Love 
waves). Rayleigh waves are faster along the 
direction of fast P - waves (which cotncides with 
the normal to the ridge, the x - axis in Table 
1), whereas Love waves are faster 9rf> from that 
direction. As noted by Maupin [1985], that 

property arises from the difference in particle 
motion between Love and Rayleigh waves. 

Figure 4 shows our results for the cos49 -
anisotropy. That term is negligibly small for 
Rayleigh waves (less than 0.1% peak to peak). For 
Love waves, the amplitude is also rather small 
(less than 0. 2% peak to peak) and we note that 
the variation with period is weak. 

To assess the generality of the results that 
we present, we have tried other plausible Cij 
matrices. In particular, we have considered the 
case of the hartzburgite sample given by 
Peselnick and Nicolas [1978]. On the sample 
scale the coherence is better and the resulting 
anisotropy larger. The cos29 Rayleigh wave 
anisotropy is still the dominant feature with a 
maximum 4% peak to peak variation. The cos49 -
anisotropy of Rayleigh waves remains negligible. 
These two trends seem to be indeed robust 
features for any realistic upper mantle 
anisotropy, when the fast axis is horizontal. On 
the other hand, the amplitude and even the sign 
of the cos49 - Love wave anisotropy is quite 
sensitive to the chosen Cij matrix. For the 
hartzburgite Cij• its amplitude reaches half 
the Rayleigh cos29 amplitude and it is 
negative. The cos29 Love wave anisotropy 
remains very small. 

Discussion and Conclusions 

Figures 3 and 4 indicate that realistic 
anisotropic models of the mantle produce 
significant azimuthal variations of the 
velocities of surface waves. The 29 - term of 
Rayleigh wave azimuthal variations is the 
dominant term and a robust feature. Its fast axis 
is the fast axis of P - waves. The peak to peak 
amplitude of the variation reaches 1.6%, a value 
that compares favorably with observed azimuthal 
variations in the Pacific [Forsyth, 1975; 
Mitchell and Yu, 1980; Montagner, 1985] or on a 
global scale [Tanimoto and Anderson, 1984]. We 
should stress that the tensor of the elastic 
coefficients that we adopted for our models is 
truly not extreme in the sense that the Pn -
azimuthal anisotropy it produces is lower than 
actually observed in most oceans. The 40 - term 

cos 49 

erlod 
0 100 200 300 (a.) 

0.5r-----------------------------------~l~O~V~E 

-::-~--~--~-=--=-~-~---------~ 
Q ~--~~~------------------------_-__ -_-_-_-_-__ -_-_-~--

Fig. 4. The cos49 azimuthal anisotropy 
amplitude of Rayleigh waves (top) and Love waves 
(bottom). Same conventions as in Figure 3. 
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for Rayleigh waves is found to be negligible. For 
Love waves, on the contrary, the 48 - term can be 
larger than the 28 - term. The amplitude of both 
terms is however quite small and somewhat 
dependent on the details of the Cij matrix. 
Since the 48 - variation requires a very complete 
azimuthal coverage in order to be detected, we 
think that Love wave azimuthal dependence should 
be rather difficult to retrieve. 

Concerning the variation of the 28 - term of 
Rayleigh wave with period, we note that the 
observation of azimuthal anisotropy at long -
period does not necessarily mean that deep 
anisotropy is present. Indeed, our "lithospheric" 
model yields peak to peak amplitudes up to 0.5% 
at 300 s. This is because two terms contribute to 
the 2 8 - azimuthal variations of Rayleigh waves: 
one is sensitive to very shallow structure (the 
Be - combination), and one to deep structure (the 
Gc combination). In order to retrieve some 
information about the variation of anisotropy as 
a function of depth, it is necessary to invert 
the observed azimuthal anisotropy variations, 
using a period range as large as possible. 

In this paper we have set the bases for such 
an inversion. We have shown how partial 
derivatives for the inversion of the azimuthal 
variations of surface waves velocities could be 
derived very simply from the partial derivatives 
of phase velocity of a transversely isotropic 
earth. We have presented examples of these 
partial derivatives calculated from PREM. Using 
the linear combinations of the elastic 
coefficients derived in equation (5), it is 
possible to test any Cij anisotropic matrix. In 
turn, the inversion of the observed azimuthal 
variations of Rayleigh and Love wave velocities 
could bring most valuable information about the 
petrology of the mantle and about the preferred 
orientations of crystals at depth. Once related 
to the deformation field that produce them, these 
preferred orientations could be used to map 
convect ion currents at depth [Tanimoto and 
Anderson, 1984]. 

We note that the Be - combination, whose 
value at shallow depth significantly contributes 
to the 2 8 - azimuthal variation of Rayleigh wave 
velocity, is the combination that describes the 
28 azimuthal variation of Pn velocity 
[Backus, 1965 ]. Since many data ar.e becoming 
available on the azimuthal variation of 
Pn - velocities around the world, it could be 
possible to correct Rayleigh wave data for this 
shallow contribution and obtain reliable 
estimates of the deeper anisotropy. 

Finally, we note that the present theory 
needs a more rigourous extension to the problem 
of normal modes in a spherical earth. 

Appendix: Direct Calculation of First Order 
Perturbation of Surface Wave Phase Velocity 

in a Slightly Anisotropic Medium 

The calculations which lead to equations (1), 
(2), (3), (4), (5) of text, are detailed using 
the same approach as Smith and Dahlen [1973] but 
without Backus> harmonic tensor decomposition. 
We express the different azimuthal terms as a 
function of the elastic coefficients Cij 
expressed in the commonly used simplified index 
notation. 

First, we recall the assumptions considered by 
Smith and Dahlen [1973]. Let us consider the 
propagation of Love and Rayleigh waves in an 
arbitrarily stratified half - space in which a 
right -handed Cartesian coordinate system (x, y, 
z) is defined. The half - space may be described 
by its density p(z) and its fourth order 
elastic tensor r(z) with 21 independent elastic 
coefficients. The unperturbed medium is assumed 
isotropic with an elastic tensor fo(z). In that 
medium, the two cases of Love - and Rayleigh -
wave dispersion can be successively considered. 

The unperturbed Love wave displacement is of 
the form 

+ [-W(z)sin~l 
u(r,t)= ~(z)cos8Jexp(i[k(xcos8+ysin8)-wt]) (Al) 

where W(z) is the scalar depth eigenfunction for 
Love waves, k the horizontal wave number, and 8 
the azimuth of the wave number vector k, measured 
clockwise from the north. 

The unperturbed Rayleigh wave displacement is 
of the form 

u(;,t)= [~~~~~~~:lexp(i[k(xcos8+ysin8)-wt]) (A2) 
iU(z) J 

where V(z) and U(z) are the scalar depth 
eigenfunction for Rayleigh waves. + 

The associated strain tensor £(r,t) is defined 
by: 

+ 
£ •• (r,t) = 1/2( u .. + u .. ) 
~J ~,J ],1 

(A3) 

where ,j denotes the differentiation with respect 
to the j - th coordinate. The medium is perturbed 
from ro(z) to ro(z)+y(z)' where y(z) is small 
compared to r 0(z). This means that we are in the 
approximation where we can still consider quasi -
Love modes and quasi - Rayleigh modes [Cramp in, 
1977]. 

From Rayleigh's principle, the first- order 
perturbation 6C(k) in phase velocity dispersion 
is [smith and Dahlen, 1973] 

+ 
6C(k) 

ro * 
C J yijkl · £ij "k1 dz 

= 2w 2 * 
b pukuk dz 

(A4) 

where Ui and £ij are the displacement and 
strain for the unperturbed half - space and the 
asterisk denotes complex conjugation. 

Now because of the symmetry of the tensors 
y( z) and £, we use the simplified index notation 
c .. and £. for the elements y. 'kl and £ .. , but we 
m?ih tak~ into account tfr~ numbelJ nij of 
coefficients Yijkl for each Cij. Therefore 
equation (A4) can be written as 

(AS) 

We detail only the calculations for Love 
waves. Equations (Al) and (A3) give the various 
components of strain: 
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* TABLE Al. Calculation of the Various CiiEiEj With 
the Simplified Index Notation, for Love Waves 

n .. 
lJ 

2 

2 

2 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

8 

8 

4 

8 

4 

ij 

11 

22 

33 

12 

13 

23 

24 

14 

15 

16 

24 

25 

26 

34 

35 

36 

44 

45 

46 

55 

56 

66 

a= cos e ; ~ 

El -ia~.kW 
£ 2 ia~.kW 

£3 o. 
£4 1; 2 a W' 

* C •• £. E. 
LJ 1 J 

cua2~2.k2w2 

c22a2~2.k2w2 

0 

-c 12a2~2.k2w2 

0 

0 

0 

C14(-ia2 ~) .kWW' /2 

qs( ia~ 2 ) .kWW' /2 

c 16(-a~)(a 2-~ 2 ) .k2w2;2 

cz4(-ia2 ~) .kWW' /2 

czs< ia~ 2 ).kWW' /2 

c 26a~( a2-~2). k2w2;z 

0 

0 

0 

c44a2.w' 2/4 

c 4 s<-a~) .W' 2;4 
c46(-ia)(a2-~ 2 ).kWW' /2 

css~z.w, 2/4 

cs6(i~)Ca 2-~ 2 ).kWW' /4 

c 66( a2- ~ 2 ). k 2w2 I 4 

sine. 

Es _1/z ~ W' 
£6 1;2 ( a2-~2).kW 
where a= cose and ~=sine. * 

In Table Al, the different terms n .. c .. E.E. 
1J 1] * J of (AS) are given. We note that when c .. E. E. 1s 

. . . . . 1J61CJ e) an 1mag1nary complex, 1ts contr1but1on to C k, 
is null. When all the contributions are summed, 
the different terms ak~l present are such 
that k+l is even. Therefore, these terms can be 
developped as a Fourier series in e with only 
even terms. Finally it is found that: 

The procedure 1s exactly the same for 

Rayleigh waves, starting from the displacement 
given by (A2). 

If we consider a transversely isotropic 
medium with vertical symmetric axis, we have 

Cll czz dA C33 dC 
Cl2 d(A - 2N) c 13 C23 = dF 
c 44 c 55 dL c 66 dN 
c 14 c 24 c 15 = c 25 = c 16 = c 26 = 0 

and (A6) reduces to 

6c Ck, e) 
L 

1 J "' 2 W" 2 (W .dN + _.dL)dz 
k2 

(A7) 

we find again the expressions of Takeuchi and 
Saito [1972, p. 268j for Love waves. Keeping only 
the constant term of equation (A6), we can obtain 
an equivalent transversely isotropic model from 
equation (A7), by setting 

dN 

dL 

then we obtain the equivalent transversely 
isotropic model; the three other equivalent 
parameters A, C, F are obtained from Rayleigh 
waves and are given in the text. 

If we call Cij the elastic coefficients of 
the total elastic tensor, we can set 

N 1/ 8 ( Cu + C22- 2C 12 + 4C66) 

L 
1
/2 C C44 + Css) 
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