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SUMMARY
By inverting the azimuthal dependence of Rayleigh and Love dispersions (including the
azimuthally averaged term) it is possible to separate the effect of anisotropy from other effects
creating lateral heterogeneities (mainly thermal). The different steps of the tomographic
method are described. In the first step, we retrieve the geographical distributions of the
different azimuthal dispersion terms of Rayleigh and Love waves. For a complete slightly
anisotropic medium, these distributions are dependent upon 13 combinations of elastic
moduli. This number of parameters is too large and in order to interpret these distributions as
simply as possible in terms of elastic properties of the medium, some realistic assumptions
about the material can be made. The simplest way to explain the azimuthal distributions is to
assume that the medium possesses a symmetry axis but contrarily to previous investigations,
it is assumed that the orientation of this axis is not necessarily vertical. In that case, one
shows how to retrieve simultaneously the 3-dimensional distributions of seismic velocities and
of anisotropy characterized as a vector by an amplitude and the two angles of the symmetry
axis. This complete process has been named ‘vectorial tomography’ and can provide valuable
information about convection and also mineralogical composition.
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INTRODUCTION

The seismic surface wave tomographic models on a global
scale (Woodhouse & Dziewonski 1984; Nataf, Nakanashi &
Anderson 1984, 1986; Tanimoto & Anderson 1985;
Tanimoto 1986a,b) displayed the location of S-wave velocity
heterogeneities in the Earth’s mantle. By including Love
wave dispersion, Nataf ci al. (1984, 1986) within the
hypothesis of transverse isotropy with vertical symmetry
axis, obtained the geographical distribution of the S-wave
anisotropy at different depths, and they relate this kind of
anisotropy to the orientation of the convective flow
throughout the mantle. Tanimoto & Anderson (1984)
obtained a global scale distribution of the Rayleigh wave
azimuthal anisotropy in terms of spherical harmonics up to
degree 4 by using R2 and R3 phases at different periods.
They found a good correlation of fast Rayleigh wave
directions with upper mantle return flow directions derived
from kinematic considerations (Hager & O’Connell 1979).
The azimuthal anisotropy most likely originates from the
preferred orientation of olivine crystals (Nicolas & Poirier
1976) and can be related to the horizontal flow direction but
so far, the simultaneous inversion at depth of Rayleigh and
Love waves dispersion and their azimuthal dependence has
not been performed.

From a theoretical point of view, Smith & Dahlen (1973)
studied the effect of a slight elastic anisotropy on the
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propagation of Love and Rayleigh waves in a plane-layered
medium. Crampin (1970) and Maupin (1985) also studied
the propagation of surface waves in anisotropic plane-
layered media and investigated a few special cases.
Montagner & Nataf (1986), following the approach of
Smith & Dahlen (1973), showed that only simple linear
combinations of the elastic tensor coefficients are necessary
to describe the total effect of anisotropy (both ‘polarization’
anisotropy and azimuthal anisotropy) on surface waves. The
‘polarization’ anisotropy, so-called by Schlue & Knopoff
(1977) results from the inability to explain Love and
Rayleigh dispersion by a simple isotropic model. In order to
avoid a possible confusion between ‘polarization’ anisotropy
and anomalies in the polarization of the particle motion
induced by anisotropy, Mitchell (1984) proposed the term
Love/Rayleigh incompatibility be used rather than ‘polari
zation’ anisotropy. The ‘polarization’ anisotropy displayed
by Montagner & Nataf (1986) correspond to the 0—n’ term
of their azimuthal expansion describing the equivalent
transversely isotropic medium with vertical symmetry axis.
They propose a simple method for retrieving the anisotropy
at depth and they calculate for a spherical Earth the partial
derivatives needed for performing the inversion.

In this first paper we address the question of the inversion
of a complete dataset of surface-wave group or phase
velocities including different azimuthal terms and we
investigate what information can be derived about lateral
heterogeneities of seismic velocities and anisotropy. The
tomographic method as a first step provides the geographical
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distributions of the anisotropic combinations derived by
Montagner & Nataf (1986). It is shown that a simple way to
explain these consists in assuming that the material
possesses a symmetry axis (orthotropic medium). This
symmetry axis can be characterized by two angles and the
difference of velocities between that in the direction of the
symmetry axis and that in the perpendicular plane measures
the amplitude of the anisotropy. Therefore the anisotropy of
the medium can be described by a pseudo-vector (amplitude
+2 angles) and the complete tomographic process is named
‘Vectorial Tomography’. The complete procedure is
summarized in Fig. 1 and we will consider successively its
different steps.

INVERSION TECHNIQUE

In this section, we detail the different steps which lead to the
retrieval of anisotropy as explained in terms of an
orthotropic material with a symmetry axis of any
orientation. Tomographic techniques for the upper mantle
using surface waves invert primarily the dispersion
properties of surface waves (Nataf et al. 1984, 1986;
Tanimoto & Anderson 1985; Tanimoto 1986a; Suetsugu &
Nakanishi 1985). A two-step procedure is generally used;
First of all, the velocities along the paths are expanded on
the basis of spherical harmonics and then this expansion is
inverted at depth in order to find the three-dimensional
structure of S-wave velocity. Woodhouse & Dziewonski
(1984) use a different method by inverting the waveform
data, but in order to retrieve the S-wave velocity
heterogeneities, they use basically the phase information.
not the amplitude information.

Montagner (1986a) also developed a two-step procedure
but rather than expanding the unknown function on a basis
of functions, he takes the function itself as the unknown,
following the approach of Tarantola & Valette (1982). In
this case, it is necessary to introduce a covariance function
of spatial parameters characterized by an a priori
uncertainty and a correlation length. The theoretical
background has already been explained in previous papers
(Tarantola & Valette 1982; Montagner 1986a; Montagner &
Nataf 1986). Therefore we will only recall the equations

necessary for the general process, but detail the complexity
introduced by the simultaneous inversion of Rayleigh, Love
azimuthally averaged velocities and their azimuthal depend
ence and the interpretation of the anisotropic elastic
combinations provided by the inversion.

Forward problem

The forward problem consists in computing the local phase
and group velocities of surface waves for a given spherical
earth model and afterwards, by integrating these local
dispersion velocities along a path, the theoretical dispersion
curves can be calculated and compared to dispersion data.

Using Rayleigh’s principle combined with the harmonic
tensor decomposition of Backus (1970), Smith & Dahlen
(1973) have shown that a slight elastic anisotropy gives rise
to an azimuthal dependence of the local phase or group
velocities of Love and Rayleigh waves of the form:

V(co, ip)
— V0(w, ) A1(w) +A2(w) cos (2i)
+A3(w) sin (2ip) +A4(co) cos (4’p) +A5(w) sin (4p).

(1)

Following the same approach but with a cartesian
representation of the elastic tensor, Montagner & Nataf
(1986) have shown that only simple combinations of the
elastic coefficients are necessary to describe the total effect
of anisotropy on surface waves in a plane-layered medium.
Mochizuki (1986) applied Rayleigh’s principle to compute
the effect of anisotropy on the eigenfrequencies of free
oscillations of the Earth. He decomposed the fourth-order
elastic tensor by the use of the generalized spherical
harmonics of Phinney & Burridge (1973). He showed that
the eigenfrequency shift with respect to the reference model
depends on 15 kernels and Wigner’s 3-j symbols (Edmonds
1960). These kernels which are functions of latitude and
longitude show that the eigenfrequency shift ow depends at
the same time on even and odd orders of lateral
heterogeneities. But in the asymptotic case, odd terms are
smaller by one order of magnitude than even terms. Also by
using the asymptotic development of Wigner’s 3-j symbols
(Jordan 1978), it is easy to introduce the azimuth p along
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Figure 1 General scheme of processing for ‘Vectorial Tomography’.
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the path and Tanimoto (1986b) showed that the asymptotic
azimuthal dependence of Aw is the same in a spherical earth
as in a fiat-layered medium. This last result justifies the
hypothesis of Montagner & Nataf (1986) who assumed that
the partial derivatives of the azimuthal terms with respect to
the combinations of elastic coefficients (that they derived in
the plane case) are proportional to the partial derivatives of
a transversely isotropic earth in the case of a spherical earth.

We recall now the different combinations in terms of
elastic parameters C1 which are present in the different
azimuthal terms A,(w) of equation (1) (Montagner & Nataf
1986): indices 1 and 2 refer to horizontal coordinates (1:
direction of propagation) and index 3 refers to vertical
coordinate.
Constant term (0p-azimuthai term)

(A1)

A = = (C11 + C22) + C12 + C66

C=pVv=C33

F=(C13+C23)

L=pV2 1(C44+C55)sv =

N pV = (C11 + C22) — C12 + C66

2W-azimuthal term:

Figure 2 Definition of the angles 0 and P which characterize the
symmetry axis of the material in a Cartesian coordinate system,

4p-azimuthal term:

A4) (A5)

cos4p sin 4W (2c)

= (C11 + C,,) — C12 — C66 E = (C16 — C,6)

where p is the density, VPH, V are respectively horizontal
and vertical P-wave velocities, V, horizontal and
vertical S-wave velocities.

From a practical point of view, it is very difficult to
determine the 4ip-azimuthal term because the azimuthal
coverage must be quite good since the total variation occurs
in only 450• On the other hand, Montagner & Nataf (1986)
computed the azimuthal variations of surface wave velocity
that can be expected from a realistic elastic tensor for the
upper mantle. They find that for Love waves, the
contribution of to Rayleigh and Love waves
4W-anisotropy is small and much smaller than the
contributions of B. and G. to the Rayleigh wave
2-ansiotropy. One of the main conclusions of Montagner
& Nataf (1986) is that the dominant azimuthal term is the
2W-azimuthal term of Rayleigh waves. Actually, this
conclusion is valid if the upper mantle is primarily pyrohtic

(2a) (Montagner & Anderson 1987). If the upper mantle is
piclogitic (Anderson & Bass 1984) the 4W-azimuthal term of
a Love wave can be almost as large as the 21p-azimuthal
term of a Rayleigh wave.

On the other hand, Montagner & Nataf (1986) also point
out that the 2W-azimuthal term at long periods can be
explained either by shallow combinations or by deep
G combinations and that if we want to discriminate
between shallow or deep anisotropy it is necessary to have
as broad a period range for the data as possible. As we have
no experience about these and combinations, a
priori constraints on their variation range are not obvious. It
must also be noted that this problem of discrimination
between shallow or deep is exactly the same as the
trade-off between shallow P-wave velocity and deep S-wave
velocity anomalies in the inversion of dispersion data

(2b) because the B5 derivative is the same as the A-derivative
related to P-wave A = pVH) and the derivative is the
same as the L-derivative related to SV-wave (L = pV).
The combinations are the combinations that describe
the 2W-azimuthal variation of I’,, velocity (Backus 1965).
Therefore, since many data are becoming available on the
azimuthal variation of F,, velocities, we can hope that it will
be possible to correct for this shallow effect in the future.

The measured velocity Vd can be related to the local
velocity V(M) in the geometrical optics approximation. This
approximation is valid in the period range that we will
consider (40—300 s) (Jordan 1978; Davis & Henson 1986). In
taking account of the azimuthal dependence of the local
velocity given by equation (1), we get:

ds

Vd
— ipath V(M)

f ds

ipathVo+Al(M,W)+A2(M,0))c05(2W)+Al(M,W)
x sin (2ip) +A4(M,w) cos(4W)

±A5(M,w) sin (4W)

(A2)

cos2W

(A3)

sin

1
B=(C11—C,,) B,=C16+C26

G=(C55—C44) G=C54

H = (C13 — C23) H = C36

2

(3)
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As a first approximation, we can consider that the
azimuthal terms A1(M, cv) are first-order perturbations of
the constant velocity V0. Therefore, the forward problem
can be stated as follows:

—A1(M, cv,p,A, C,F, L,N)
Vd V0 path V0(w)

—f A2(M,w,B0,G0,H)cos2
path V0(w)

—I A3(M,w,B0,G0,N0)sin2i
path V0(w)

— f A(M, cv, E0) cos 4i
Is

path V0(cv)

— f A5(M, cv, E0) sin 4
dS

(4)
path V>(w)

where A is the epicentral distance between the source and
the receiver.

The different kernels which are present in A1 are explicitly
stated in Montagner & Nataf (1986) and Tanimoto (1986b)
and can be computed from the program of Dziewonski &
Anderson (1981) computing the eigenfunctions of any
transversely isotropic spherical earth model. We note again
that to first order in anisotropy, the azimuthal dependence
of Rayleigh and Love wave velocities is valid as well for
phase velocity as for group velocity (Smith & Dahlen 1973).

The inverse method

As we know how to solve the forward problem and compute
the different partial derivatives of data with respect to the
parameters of a general slightly anisotropic medium, it is
now possible to invert a given dataset for these parameters.
We use the continuous form of the algorithm of Tarantola &
Valette (1982) without either a priori regionalization or
blocks. The notations of Tarantola & Valette (1982) and
Montagner (1986a) are used throughout this section.

Let p(r) be a model of the earth. It is a set of unknown
functions which could explain a set of observable quantities,
the discrete dataset d. It is assumed that a theory relating d
and p exists: d = g(p). This theory solves the forward
problem.

Let p0(r) be an a priori model and d0 the synthetic data
such that d0 = g(p0). Tarantola & Valette (1982) showed
that in a least-squares sense, the solution of the inverse
problem is given by:

p(r) = po(r) + O’[d — g(p) + G(p
— Po)] (5a)

where G’ is a generalized inverse given by:

=C0G(C0+ GC0GT) = (GTC G + Cl)GTCl.

(5b)

G[p(r)] is the Frechet derivative of the operator g at the
point p(r), and GT is the adjoint of G. Cd0 is the covariance
matrix of data. C0 is the a priori covariance function on
parameters at points r and r’. C0 describes the a priori
confidence in the a priori model p0(r). There are two ways
to check the reliability of the inversion: either by
considering the a posteriori covariance function C(r, r’)

(Tarantola & Valette 1982) or for a linear problem by
looking at the resolution R(r, r’) (Montagner 1986a). Cj,, and
R are defined as follows:

C = C0 — G’GC0 (GTCIG + C’)’ (6a)

R = GG = C;lGTClG = CPOGT(CdO + GC0GT)lG,

(6b)

When this algorithm is expressed in its continuous form,
the model p(r) is a multifunctional and the inverse problem
is underdetermined. This approach is quite similar to that
of Backus & Gilbert (1968, 1970). But in our case, the
choice of an a priori covariance function on parameters is
fundamental because it introduces a smoothing in the
solution. In the continuous form, equations (5) and (6) are
expressed by:

1”dJfld r ds
p(r) — p0(r) = 2 2 j C’0(r, r)Gf(p)

i=1 j— 1 path, A1

x (S’)(d1 g1(p)
- f G1(p)[p(r1) po(rj)] (7a)

path1 A1

1”d1fld P

C’(r, r’) = C’11(r, r’)
— 2 2 j C0(r,r1)G(p)

i—i j=1 path1

f (S’)0(r1,r’)G1(p) (7b)
i path1 I

R(r, r’) = 2 2 J 0(r, r/)G1(p) (S’)(p)
ds1(r’)

i11=1 path, A1 A1

= Cd0.+f G1(p)f G1(p)ç0(r, r’).
path, A1 path1 J

(7c)

n, is the number of data, G1(p) are the Frechet derivative of
the operator g for parameter p at point r1 belonging to the
path i. If the regionalization is restricted to the inversion of
the o—q’ and 2-I’ azimuthal distributions, p(r) is the
3-functional such that

pT(r) = [A1(r),A2(r),A3(r)] and

G —

—cos2p(r) _sin2lp(r)

V

The a posteriori covariance function C(r, r’) and the
resolution R(r, r’) are 3 x 3 matrices, the elements of which
are the different covariance functions or resolution functions
expressing the correlation between the parameters. They are
defined as follows:

1C11(r,r’) CA1A2(r,r’) CAIAI(r,r’)l
C(r, r’)

=
CA,A1(r,r’) CA,A2(r,r’) CA,A3(r,r’) (8a)

[C3(r,r’) CA3A2(r,r’) CA3A3(r,r’) J
R1,1(r,r’) RA1A,(r,r’) RAIAI(r,r’)l

R(r,r’) = RA,A1(r,r’) RA,A2(r,r’) RA2A3(r,r’) (8b)

[R3(r,r’) RA3A2(r,r’) RA3A3(r,r’)J

It is possible to assume that in the a priori covariance
function CA -A = 0 if i #‘j (which means no correlation
between velocity and azimuthal anisotropy). We find easily
from (6a) and (6b) the different covariance functions
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The physical meaning of C,,, and R are not very different
and they are related by the relation:

C(r1,r3) = [b(r1,r2) — R(r1,r2)]C0(r2,r3).

For a well-resolved problem, R = b(r1,r2) which is similar
to the resolving kernel of Backus & Gilbert (1970) whereas
C(r3,r3) = 0. C,,, and R express the trade-off between the
different distributions of parameters A3(r), A2(r), A3(r) and
for a given couple of parameters p and p1, C,,,,,, and
provides the lateral trade-off between two points. As can be
seen from the relations (8), the final covariance function or
resolution of parameters are dependent at the same time
upon the theory through the kernels and also upon the
quality of the dataset through the number of data and the
covariance matrix of data. Some examples of the calculation
of C,,, are presented in the next paper (Montagner & Jobert,
this issue).

SENSITIVITY OF SURFACE WAVE
ANISOTROPY TO PETROLOGICAL
MODELS

In long-period seismology, there is no a priori knowledge of
the combinations E,,,, defined previously by
equations (2) and we do not know which constraints could
be brought to bear on these parameters in an inversion
process. And it seems important to see if geology, petrology
or mineralogy enables us to reduce the space of parameters.
Since Hess (1964) demonstrated the azimuthal dependence
of P,, velocities in oceanic areas, the evidence that much of
the upper mantle may be anisotropic is steadily increasing.
The origin of this anisotropy has long been debated and the
reader is referred to a special issue of the Geophysical
Journal of the Royal Astronomical Society (Crampin,
Chesnokov and Hopkin 1984) or to the review paper of
Estey, Douglas & Spetzler (1986). It can reasonably be
assumed that large-scale anisotropy in the upper mantle is
due to crystallographic alignment of intrinsically anisotropic
minerals, mainly olivine and pyroxenes (Estey & Douglas
1986). Different petrological studies of ophiolites (Christen
sen 1984; Peselnick & Nicolas 1978) have shown that the
fast axis of olivine-rich aggregates tends to align in the flow
direction whereas the intermediate and slow axes are more
dispersed, giving a fast ‘unique’ axis.

Montagner & Nataf (1986) calculate these different
combinations for the elastic tensor evaluated by Peselnick &
Nicolas (1978) from field observations of an ophiolite
complex in Turkey. They find that the two important
contributions to long-period surface wave azimuthal
anisotropy come from B and G. The first one has a shallow
influence whereas the second one has a deeper influence.
Kawasaki & Kon’no (1984) proposed a model of the
possible form of constituent olivine which is axisymmetric
about the fast axis in the uppermost mantle beneath the
Pacific Ocean. Cara & Lévêque (1987) can explain

(9)

multimode surface waves by introducing a percentage of
oriented olivine down to 400 km. Estey & Douglas (1986)
constrained the real earth anisotropy by the limits of
maximum anisotropy from perfect mineral alignment. They
found that the anisotropy of the upper mantle as described
by PREM (Dziewonski & Anderson 1981) down to 220 km
is best represented by the pryolite model (Ringwood 1975)
which reduces to quasi-hexagonal symmetry. Below 220 km,
the piclogite model with an orthorhombic symmetry
(Anderson & Bass 1984) is preferred.

In this section, we consider the elastic coefficients and
their pressure and temperature dependence as given in table
1 of Estey & Douglas (1986). We compute the different

(A—C) (N—L)
combinations defined by (2) as well as

L
for olivine, pyrolite, piclogite and also for the experimental
sample of Peselnick & Nicolas (1978; hereafter P & N)
(Table 1). The coordinates system has been chosen so as to
align the a-axis (fast axis) along the 1-axis and the b-axis
(slow axis) along the 3-axis except for piclogite. In this
system of coordinates, the 1-axis is the flow direction, the
plane defined by the 1- and 2-axis is the flow plane. Now
instead of coordinates related to mineralogy or a convection
process, we prefer coordinates attached to the earth. The
horizontal plane is defined by the 1-axis and 2-axis, the
1-axis being the direction of maximum P-velocity in this
plane; the 3-axis is the vertical one. As the flow direction is
not necessarily vertical or horizontal, we have rotated the
a-, b- and c- axes so as to explore the variation range of
P-wave anisotropy, S-wave anisotropy, B and G
combinations. In Fig. 3, different diagrams show

Table L Anisotropic elastic moduli and P and T derivatives.
(After Estey & Douglas 1986.)

C, (Mbar/100) olivine pyrolite piclogite P & N

C 323.7 269.0 248.0 236.58
C12 71.6 54.8 59.2 72,5
C13 66.4 63.1 75.9 72.3
C22 235.1 200.0 202.8 220.8
C23 75.6 66.7 72.1 71.9
C33 197.6 197.5 219.1 220.2
C, 64.6 69.8 75.7 74.9
C53 79.0 78.3 78.7 79.2
C,,,, 78.05 79.7 81.9 78.8
A 266.5 229.4 224.9 229.0
C 197.6 197.5 219.1 220.2
F 71.0 64.9 74.0 72.1
L 71.8 74.1 77.2 77.1
N 91.0 84.8 82.5 78.4
B 44.3 34.5 22.6 7.8
G 7.2 4.3 1.5 2.1
H —4.6 —1.8 1.9 0.2
C’ 12.9 5.1 0.6 —0.4
r 34.7 0.9 —12.8 —3.3
(A — C)/C % 34.9 16.2 26.2 4.0
(N—L)/L % 26.7 14.5 6.9 1.7

C,,.,,. and For instance, for C,,,

r ,-‘ c1--’ ç T .-1 ç T -lç’
‘—‘A,A,’-’A1 ‘—‘A,’—A,A1 ‘—A1A, A1 A2 A2A2 ‘—‘A,A,’-’A, ‘-‘A3’—’A3A3

I T —1 ,- ,- T —1 ‘ T c—i r
p po I A2A2 A2” A1A1A, ‘-‘A2A2 A2 A2 A2A2 A2A2 A2” A3’-A3A3

C GT 51 r r ‘F S1G c r GT y-1 CL. A3A3 A3 A1 A,A, A3A3 A3 A2 A2A2 A3A3 A3 A3 A3A3
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Figure 3 Variation at shallow depth of (related to P-wave anisotropy) with respect to (related to S-wave anisotropy) and

(related to P-wave 2p-azimuthal anisotropy) and of (related to S-wave 2p-azimuthal anisotropy) with respect to

and This representation in four quadrants allows a quick comparison of the variation ranges of these different observable forms of

anisotropy for olivine, the experimental sample of Peselnick & Nicolas (1978) and for two petrological models (pyrolite and piclogite),

simultaneously the variations of P-wave anisotropy (through
A C),

S-wave anisotropy (through NL
L),

2w-azimuthal

anisotropy in the P-wave (through ) and the S-wave

(through ), The a-, b- and c-axes are plotted when they

are coincident with the Cartesian coordinates. The long
dashed line ‘—‘ corresponds to the a-axis, the small one

to the b-axis and the dot ‘.‘ to the c-axis.
Let us consider the upper right quadrant where the

P-wave anisotropy
A

C

C
is plotted with respect to the

S-wave anisotropy
N

L

L
The domains of the different

minerals overlap one another, the variation range being

maximum for olivine. All the domains include the
experimental sample of Peselnick & Nicolas (1978). If we

look at the variation of (P-wave 2p-azimuthal anisotropy)

with respect to
A

C

C,
the different domains are still

imbricated. But if we look at the lower right quadrant in

which (S-wave 2W-azimuthal anisotropy) is plotted with

respect to
N L

the different domains are separated.

Therefore, S-wave azimuthal anisotropy (through the
G-combination) seems to be very sensitive to the
mineralogical composition. However, our calculations
assume a perfect alignment and in order to describe a more
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realistic earth, it is necessary to investigate the effect of a
probability distribution or the effect of a proportion of
randomly orientated crystals. If random orientation exists,
the different domains will have a tendency to be closer to
zero and the actual domains of variation include the area
between 0 and the extreme bounds of the domains
(Montagner & Anderson 1987). Of course, any interpreta
tion must take account of this effect, because according to

G N-L
the diagram giving as a function of

L
, we should

conclude that piclogite best explains the results of Peselnick
& Nicolas (1978). However, we must bear in mind that it
can be explained by pyrolite with some random orientation
or probability distribution.

On the other hand, it can be noted that for a medium
axisymmetric about the fast axis (called orthotropic medium
later on), the domains reduce to continuous lines because
two of the three axes are now randomly orientated in the
plane perpendicular to the symmetry axis. Montagner &
Anderson (1987) investigate in a systematic way the effect of
random orientation on the different combinations defined by
formula (2). It can be seen that P & N and to some degree,
pyrolite fulfil this condition of axisymmetry about the fast
axis (equivalent to orthotropy) and their B and G
combinations are little dependent on the orientations of the
slow and intermediate velocity axes. Therefore, for pyrolite
and P & N the hypothesis of orthotropy is quite justified. It
is not the case for piclogite which has a very broad variation
of domains. However, these calculations assume a perfect
alignment which is presumably true at small scale but not at
a large scale. As noted previously, in ophiolite sections
(Christensen 1984), the orientation of the fast axes of olivine
along the flow direction and the random orientation of the
b- and c-axes give a fast symmetry axis for olivine at the
scale of a massif. Therefore, in the real case, picolgite is
probably more orthotropic than could be inferred from
these calculations. This symmetry axis of the orthotropic
medium can be defined by two angles: an azimuth W and an
orientation with respect to vertical 0. In Fig. 4, we have

N-L G
plotted

L
and with respect to x = cos 20. It can be

seen that two values of 0 may correspond to a given value of

or —. Therefore, the variation of the anisotropic
L L

parameters as a function of 0 is non-linear. In the next
section, we will see that this non-linearity is related to a
combination E, itself related to the combination E present in
the 4’-azimuthal terms. The difference between the linear
case (dashed line) and the real computation is important for
olivine and also to a less extent for pyrolite but small for
piclogite and P & N (Fig. 4). If we consider the linear case,
the angle 0 will be overestimated, but as the non-linearity is
not too large for the actual case of P & N. a first
approximation for the angle 0 can be obtained by the linear
equations.

Those calculations were performed under the assumption
that the pressure, P and temperature T are those of the
Earth surface. Now we make use of the partial derivatives of
C1 with respect to P and T (Estey & Douglas 1986) and plot
the same diagrams as Fig. 3 for two different depths 220 and
670 km. The temperature profile comes from Stacey (1977)

and the pressure variation with depth comes from the
PREM model of Dziewonski & Anderson (1981). There is
no difference between the diagrams of Fig. 3 and Fig. 5a
(220 km) but the striking feature is that the pyrolite domain
reduces now to a continuous line which means that pryolite
is axisymmetric about the fast axis at this depth. At a depth
of 670 km, (Fig. 5b), all the domains seem to be intertwined
and have complex boundaries. It is likely that at this depth,
the P and T partial derivatives are imprecise and the
precision of the extrapolation poor. Moreover, phase
transformations of the different constituents are not taken
into account. However; bearing in mind these limitations we
can see that the correlation between P-wave and S-wave
anisotropy still holds at this depth.

Therefore, the main conclusions of this section are the
following:

A-C N-L
(j)

C
and

L
which express the anisotropy of

respectively P-wave and S-wave in a transversely isotropic
medium with a vertical symmetry axis are correlated in the
whole upper mantle. This kind of constraint can be used in
an inversion process.

(ii) The B and G combinations are less correlated and
G which is the most sensitive to the mineralogical
composition, could be used as a discriminant between
petrological models.

(iii) Pyrolite and P & N are quite orthotropic but not
piclogite for perfect alignment. But petrological considera
tions suggest that the approximation of orthotropy is
correct.

(iv) When the orientation 0 of the symmetry axis is
looked for, non-linear terms which are only dependent on a
combination c will bias the determination of 0. But as s is
related to the combination E which can only be determined
from 4p-azimutha1 terms, this nonlinear effect is not easily
corrected for. Therefore, the linear determination of 0 must
be seen as a first approximation of the actual orientation of
the symmetry axis.

INTERPRETATION OF INVERTED
COMBINATIONS IN TERMS OF AN
ORTHOTROPIC MATERIAL

The different ingredients for the inversion of Rayleigh and
Love dispersion data are now defined and we can
theoretically retrieve the 13 combinations of elastic moduli
given in relations (2). At this stage we did not make any
assumption about the medium (except that anisotropy. if
any, is small) but the next problem concerns the
interpretation of these.

The number of these parameters is still too large to allow
for a simple interpretation and moreover seismic data
cannot resolve so many parameters. Therefore it seems
necessary to decrease the number of parameters. The
tendency of random orientation about the fast axis
(Christensen 1984; Peselnick & Nicolas 1978) suggests that
locally the medium possess a symmetry axis. In order to
explain the azimuthal anisotropy this symmetry axis must be
assumed to have any orientation. This kind of medium is
called throughout the text an orthotropic medium. It can be
described by seven parameters: A0, C0, F0, L0, N0 and two
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angles defining the symmetry axis: 00 and W0. 00 is the
orientation of the symmetry axis with respect to the vertical
and WO is the azimuth of its horizontal projection (see Fig.
2). It must be pointed out that, as surface waves cannot
distinguish W0 from W + r, the orientations 00 and —00
are also equivalent for surface wave propagation and we
must not forget this intrinsic limitation in any interpretation
of the symmetry axis. A0, C0, F0, L0 and N0 can be defined
for a reference medium in which the symmetry axis is
vertical. It must be pointed out that the transverse isotropy
is equivalent to the orthotropy such as it has been defined,
but we prefer this last term because there is often confusion
between transverse isotropy and transverse isotropy with a
vertical symmetry axis (such as PREM for instance) which
cannot explain azimuthal anisotropy. If we can retrieve the
seven parameters of the orthotropic medium, a geodynamic
interpretation can be undertaken in relating the symmetry
axis to the flow direction in a convection process.

We must now relate the combinations AR, CR, FR, LR,
NR, BR, GR and ER theoretically retrieved from surface
wave dispersion, to the seven parameters of the orthotropic
medium, We do not calculate these combinations with
respect to I’ because it is always possible at a given depth
to write:

Bcos23p +Bsin2 —B cos2(ji
— WB)

Gcos2p +Gsin2p= Gcos2(Ji— WG)

Hcos2p +Hsin2 =Hcos2(ip
—

E cos 4p + E sin 4’p E cos 4(
— WE).

Table 2. (a) Elastic coefficients when the symmetry axis is
vertical.

C 1 2 3 4 5 6

1 A0 A0—2N0 F 0 0 0
2 A0—2N0 A0 F0 0 0 0
3 F0 F0 C0 0 0 0
4 0 0 0 L0 0 0
5 0 0 0 0 L0 0
6 0 0 0 0 0 N0

The elastic tensor coefficients in the new coordinates
system are obtained by rotating the reference frame
according to the rule:

YijkI = cnpq,mnimpjmqkm,.l (11)

where are the elements of the rotation matrix M given
by:

cos 00 cos W0 —sin W0 sin 00 cos
M

=
j cos 00 sin W0 cos W0 sin 00 sin W0

[ —sinG0 0 cos0

When we perform such a rotation, it is better to consider
the fourth-order elastic tensor Cilki than the simplified C,1
matrix. This parameterization of the medium (with seven
unknowns) is the simplest way to create azimuthal
anisotropy. It corresponds to a hexagonal symmetry but the
unique axis is not radial. We give in Table 2 the relations
and C1 which were redefined in their simplified index
notation, when the symmetry axis is rotated in the 1—3 plane
by an angle 0 (see Fig. 2). The elastic combinations defined
by formula (2) can be recalculated and the different cos” 00,
5jflk

Q can be developed as cos 20, sin 20, cos 40w,
sin 40g. We give now the different combinations AR, CR,
FR, LR, NR, BR, GR, HR and ER which correspond to the
orthotropic medium in the direction 00. 0p-term:

(10)
AR = (41 + 20 cos 20 + 3 cos 40)

+ (9 — 12 cos 20 + 3 cos 40)

+
F0 + 2Lo(7

— 4 cos 20 —3 cos 40)
32

CR = (3 —4 cos 20 + cos 40)

+ (3 + 4 cos 20 + cos 40) +
F0 ±2Lo(

— cos 40)

(b) Elastic coefficients when the symmetry axis is rotated in the plane 1—3 by an angle a

y 1 2 3 4 5 6

I A0cos4O+C0sin4O (A0—2N0)cos20sin20 (Ao+C0—4L0)cos20sin200 A0cos30sin0 0
+ (2F0 + 4L0) cos2 0 + 1 sin2 0 +F0(cos4 0 + sin4 0) — C0 cos 0 sin3 0
ri2 0

2 3’12 A0 (A0 — 2N0) sin2 0 0 (A0 — 2N0 — F0) 0
+F0cos20 cos Osin 0

3 )‘13 ‘723 A0 sin4 0 + C0 cos4 0 0 (A0 — 2L0 — F0) sin3 0
+(2F0+4L0)cos20 cos0+(F0+2L0—C0)
sin2 0 cos3 0 sin 0

4 0 0 0 N0 sin2 0 0 (N0 — L0)
+L0cos20 sin Ocos 0

5 Yio ‘725 ‘735 0 (A0 + C0 — 2F0) sin2 0 ()
cos2 0 +L0(cos20 —

sin2 0)

6 0 0 0 ‘746 0 N0cos2O
+ L0 sin2 0
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C0 + 4L0
FR = —4 cos 20 — cos 400) +

16
(1 — cos 40w)

+(5+2cos200+cos400)
N0

8
+--(l—cos2O0)

LR
A0+C0—2F0

= 16
(1 COS 40) + + COS 20 + COS 40)

N0
+--(1—cos 200)

A0 + C0 - 2F0
NR=

64
(3—4cos200+cos4O0)

2’p term:

+ —4 cos 20 — cos 4O) + (1 + cos 20)

BR=(—5+4cos20o+cos4Oo)

+ (34 cos 20o + COS 40o) +
F0 ±2L0

(1 — COS 40)

GR
A0 + C0 — 2F0(1

— cos 40) + (—cos 20 + cos 40)

— (1 — cos 200)

HR = (—3 + 4 cos 20 — cos 4O) +
c0 4L0(1

— cos 40)

+(1 —2cos200+cos4O0)+(1—cos200)

4p term:

ER
= A0 + C0 —2F0 — 4L0

(3 _4 COS 20 + COS 40)

It is assumed that the 1-axis is orientated according to the
direction of maximum velocity. When 00 = 0 we find the
case of a transversely isotropic medium with a vertical
symmetry axis. We can express equations (12) in a slightly
different way by assuming that A0, C0, F0, L0 and N0 are
first-order pertrubations of isotropic Lame’s coefficients A
and i. In an isotropic medium, we have: A = C = A + 2i,
F = A, L = N = i. It is always possible to choose another
parameterization such that:

A0 = Aeq + 21eq

C0=A0(1—.ir)

Fo=Aeq(ly)

= I2eq

No/leq(l — u).

.ir is related to P-wave anisotropy, y to ij by the relation
1

—
y and u is related to S-wave anisotropy. To have a

more compact notation, we set x = cos 20g. By introducing
these different transformations, we can rewrite (12) as:

AR=Ao—(1 _x)_j(5 —2x —3x2)

jrA0 L0u
FR = Aeq —

—i-- (3 — x) + —— (1 — x) — (2+ x + x2)

LR = L0 — L0(1 —x) + (1 —x2)

NR=Lo_L4(1+x)_(1_2x+x2)

A0jr
BR=

GR=Lo(1_x)+(1_x2)

‘rA
HR= )(1-x) +x(1 -x)

C
ER=(l —x)2

(12a)

CR = A0 — (1 + x) — x2

(14)

where e = 2Aeq y — rA0= A0 + C0 — 2F0 — 4L0.
We can see in these expressions that the x2 terms depend

(12b
only on the parameter r. If we take account of s, the third
step, which consists in retrieving either A0, C0, F0, L0, N0,
00 or A, i, r, a, s, 0 will not be linear. If the dataset
allows for the determination of the five terms of the
azimuthal expansion in equation (1) for Rayleigh and Love
waves, then it is possible to invert for these six parameters.
But if the dataset only allows for the determination of the
constant terms and the 2p-azimuthal terms, it is not possible
to invert for the ER combination and, therefore, C.

Classically, two approaches exist: either only the
parameters corresponding to the largest partial derivatives

(12c) are inverted (Woodhouse & Dziewonski 1984; Tanimoto
1986a) or physical constraints are imposed on the different
parameters (Nataf et al, 1984, 1986). In the first approach,
we get a good resolution of the selected parameters but their
amplitude variation may be biased and generally over
estimated, whereas in the second approach, though more
rigorous, the assessment of constraints is in general very
difficult. In the next paper (this issue), we follow the first
approach for simplicity and the selected parameters will be
in this case L0, N0, G, G5 (or G and ‘G). However, the
previous section showed that constraints between the
complete set of parameters can be found for different
petrological models and Montagner & Anderson (1987) give
an extensive investigation of petrological constraints on
seismic anisotropy which should allow us to pursue the

(13) second approach in the future.
We present now a simplification of the problem which

enables us to explain a dataset of Rayeligh, Love, 0p and
2ip azimuthal velocities. We neglect the variations of the
density p and A, r, e. We recall that to neglect e is
equivalent to neglecting the combinations and that it is
dictated mainly by data. We also neglect the variations of jr
and therefore B, because their partial derivatives influence
is smaller than those of L, N and G. However, we must not
forget the problem of trade-off between shallow P-wave
velocities (or shallow B anisotropy) variations and deep
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S-wave velocities (or deep G anisotropy) variations
(Montagner & Nataf 1986) and some experiments can be

performed to assess this trade-off, The system of equations
(14) becomes very simple and can be written:

= LR + GR

LR+GR

— LR—GR—NR

—
L + 3GR NR

In this case, the solution is very simple and can be
considered as the starting point of a more accurate
description of the medium. This analytical solution presents
some interesting features. According to (17), x can be found

larger than 1 or smaller than —1. If that is the case, we can
attribute the value 1 to x with the appropriate sign. The
study of the condition xl 1 provides three ranges for NR,
bearing in mind that GR is always positive:

<L1,+ GR lxl<1 0<0<90°

LR+GR<NR<LR+2GR rx<—1x=—1 0=90°

z,x> 1 x =1 00 = 0.

This last condition may seem quite surprising because it
means that, though V> V5, the symmetry axis is vertical
whereas this situation should be interpreted as horizontal
symmetry axis (or horizontal flow) by considering only the
constant terms of Rayleigh and Love azimuthal velocity
expansions. As a matter of fact, this last interpretation is
wrong because we must have also a correlative azimuthal
anisotropy. The corollary of this third condition is that the
anisotropy a is negative which is not very easy to explain
petrologically or geodynamically. The errors on data can
give rise to this kind of extraordinary situation. Alterna
tively, the hypothesis of the existence of a symmetry axis may
be too strong. This very simple analytical solution is well suited
when we only have the 0p and 2p terms of the azimuthal
expansion (1). Naturally, if we are able to obtain in addition
the 4J’ azimuthal terms, it is possible to enhance our
description of the elastic medium starting from equations
(14).

CONCLUSIONS

We have detailed in this paper a complete technique to
retrieve simultaneously lateral heterogeneities of seismic
velocities L0(r) and their anisotropies [a(r), 00(r), ‘P0(r)]
from the azimuthal expansion of surface wave velocities.
The complete process was summarized in Fig. 1. According
to the quality of the dataset, some simplifications can be
used. In the hypothesis of an orthotropic medium, we show
how to retrieve the characteristics of the symmetry axis
(amplitude a, angles 0, I’). This method can provide
interesting information about the convection process in the
mantle by indicating the three-dimensional flow directions
but also a discrimination between petrological models. An
application of the method is presented in the next paper
(Montagner & Jobert, this issue).
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