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Résumé. — Nous étudions Ia convection dans un système a deux couches liquides superposées: huile
au silicone au-dessus de glycerol, en particulier. Nous avons mené deux types d’études. (1) En labo
ratoire, nous analysons le role dynamique de l’interface, en induisant, par un système de deux cylindres
en rotation inverse, des mouvements en rouleau dans une des couches. Grace a des paillettes d’alu
minium en suspension dans les liquides, nous suivons les lignes de courant et mesurons les vitesses de
part Ct d’autre de l’interface. Nous obtenons des résultats trés différents selon le sens de rotation des
cylindres (convergence ou divergence), et selon l’amplitude de Ia vitesse imposée. Nous en déduisons
l’existence d’une résistance interfaciale qui est du mème ordre que Ia contrainte visqueuse volumique,
et que l’on peut associer a une forte viscosité d’interface. (2) Nous avons étudié numeriquement Ia
stabilité marginale d’un système convectif a deux couches. Nous utilisons les proprietes physiques
du système huile silicone/glycerol, et nous analysons en detail l’influence de Ia viscosité d’interface.
Nous passons en revue le rOle de Ia variation des epaisseurs des deux couches, de Ia déformabilité
de l’interface, de Ia dépendance en temperature de Ia tension interfaciale et du rapport de densité.
Nous montrons qu’aucun de ces effets, s’il reste dans une plage réaliste, n’est capable de modifier le
couplage préféré au seuil: ii s’agit du couplage “mécanique”, dans lequel les courants descendants
de Ia couche du haut sont situés au-dessus des courants montants de Ia couche du bas. Par contre,
l’introduction d’une viscosité d’interface, compatible avec les observations expérimentales, modifie
le type de couplage: le couplage “thermique” (courant montant au-dessus de courant montant) de
vient le mode préféré. Ce résultat lève Ia contradiction qui existait jusqu’alors entre I’observation du
couplage “thermique” dans les experiences de convection en laboratoire, et Ia prediction de couplage
“mécanique” des etudes de stabilité marginale et des simulations numériques.

Abstract. — Convection in a two-layer system (silicone oil over glycerol, in particular) is studied.
Two types of studies have been performed. (1) In the laboratory, we analyse the dynamical role of the
interface, by inducing roll-like motions in one of the liquid layers, using a system of two inversely ro
tating cylinders. Streamlines and velocities on both sides of the interface are measured, by observing
suspended aluminum particles. The results strongly depend upon the sense of rotation of the cylin
ders (convergence or divergence), and upon the amplitude of the imposed velocity. This implies an
interface strength, which is of the same order as the volumic viscous strength, and that can be associ
ated to a large interface viscosity. (2) A numerical study of convective marginal stability in a two-layer
system has been performed. The physical properties of the silicone oil/glycerol system are used, and
special attention is given to the influence of interface viscosity. The role of varying the depth ratio, the
deformation of the interface, the temperature-dependence of interface tension, and the density ratio
is reviewed. It is shown that none of these effects, when realistic values are taken, is able to modify



600 JOURNAL DE PHYSIQUE II N°6

the preferred type of coupling at the threshold: it remains “mechanical” coupling (downwellings in
the upper layer remain above uprisings in the lower layer). However, the type of coupling is changed
when the interface viscosity is introduced, with values compatible with the experimental observations:
“thermal” coupling (uprisings above uprisings) becomes the preferred convective mode. This result
removes the contradiction there was until now between the observation of “thermal” coupling in lab
oratory convection experiments, and the prediction of “mechanical” coupling obtained from marginal
stability analysis and numerical experiments.

Introduction.

Rayleigh-Benard convection in a system of two superposed liquids has received considerable
attention. Geophysicists have become interested in this problem because convection in the Earth’s
mantle might be layered, with the upper mantle convecting above the lower mantle [1]. Physicists
have also been attracted by layered convection, because of the expected wealth of possible dynam
ical behaviours. In particular, layered convection has been the framework for a major theoretical
study of coupling with non-linear interaction terms [2].

Even at the threshold of convection, the system exhibits a wide variety of behaviours, as demon
strated by a series of marginal stability analyses [3-9]. Richter & Johnson [5] discovered a regime
with oscillatory critical convection, when the densities of the two fluids are almost equal. Honda
[4] noted the existence of two superposed marginal stability curves: one corresponds to “mechan
ical” coupling (i.e. convection rolls rotate in a gear-like fashion, with uprisings of the upper layer
above downwellings of the lower layer), the other one corresponding to “thermal” coupling (with
uprisings above uprisings). There are therefore several possible marginally stable states, anal
ogous to the different overtones for convection in a single layer. The essential difference from
the single layer case is that these two curves are very close to each other, and they correspond to
two different types of coupling. Honda [4] found that “mechanical” coupling was the mode that
should develop first (i.e., it has the lowest Rayleigh number), when the two liquids have similar
properties. The other curve, corresponding to “thermal coupling”, is also marginally stable, but
requires higher values of the Rayleigh number. Other contributions have dealt with the role of
interface deformation, and interfacial tension. A rather thorough analysis has been conducted
by Rasenat et aL [9]. These authors show that, for suitable choices of the properties of the two
liquids, convection can be oscillatory at the threshold, the oscillations being between a “mechan
ical” and a “thermal” extreme. Finally, Wahal & Bose [8] introduced several additional interface
parameters, including interface viscosity, but did not report on the type of coupling produced.

Finite amplitude numerical experiments have also been carried out in two dimensions [10,11].
They show that “mechanical” coupling remains stable for individual Rayleigh numbers up to 106.

Thermal coupling is only obtained in cases where the viscosities of the two liquids are very different
(by more than a factor of 30). Three-dimensional numerical experiments [12] have confirmed and
extended these results.

Laboratory experiments have also been performed. In two previous studies [13,14] we reported
observations for two pairs of working liquids: silicone oil over glycerol, and two different silicone
oils. In both cases, the experimental results are in contradiction with the numerical predictions:
“mechanical” coupling is not stable in the lab (even when induced at the threshold), and “thermal”
coupling is observed instead. Nataf et aL [13] show that the effects of the interface deformation
and interface tension cannot explain this paradox. They postulate that some kind of interface
viscosity is present, and propose that it would favor “thermal” coupling.

In the present contribution, we report on two separate developments that give support to this
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interpretation. First, we designed some mechanical entrainment experiments, in order to evaluate
the mechanical role of the interface for our working liquids. We observed that the interface played
a very significant role in the transmission of the velocities from one liquid to the other, as much as
to totally inhibit the transmission of motion in some cases. Second, convinced of the existence of
some interface viscosity, we conducted a marginal stability analysis, using the physical properties
of our working fluids and including this new ingredient. In the analysis, we examine the role of
several effects, such as interface deformation, interface tension, and interface viscosity, in order
to better assess their actual influence on the type of coupling. The most striking result is that

“thermal” coupling takes over “mechanical” coupling when interface viscosity is introduced.
This resolves our paradox, and demonstrates that Rayleigh-Bdnard convection can be used as

a good revealer for the presence of interface viscosity.

I. MECHANICAL ENTRAINMENT EXPERIMENTS.

Since we suspected that interface viscosity was responsible for the observed thermal coupling
in our Rayleigh- Bénard convection experiments, we tried to assess more carefully the mechanical
role of the interface. The measurement of interface viscosity and elasticity is not yet something
standard, and we found no values in the literature for the particular pairs of liquids we used.
Although several methods have been proposed for these measurements [15-17], there is no simple
and well established method.

From a mathematical point of view, interface viscosity enters the balance of the tangential
stresses at the interface, which is written as [18]:

aU t9Ub 82u
(1.1)

where p and Pb are the volumic shear viscosities of the top and bottom liquids, and u and u,
their horizontal velocities (here in thex direction), E the interface tension, ,jand e the dilatational
and shear interface viscosity, respectively. All right hand side terms specifically refer to interface
(molecular) properties, and are ignored in most studies of layered convection. Interface viscosity
is introduced when a thin film of surfactants is present at the interface. Note that both the interface
tension and the interface viscosity depend upon the local concentration of surfactants. Interface
viscosity could also exist at the interface between pure liquids [19].

One of the difficulties in measuring interface viscosity is that for it to play a role, the motion
82u

at the interface must have a divergent (or convergent) component (—- 0). We designed our

own apparatus for assessing the mechanical role of the interface. It is not really quantitative, but
its geometry is very close to that of the thermal convection experiments.

1. The experimental set-up.

The principle of the apparatus is the following: we force roll-like motions in one of the liquid
layers, and we observe the resulting induced motions in the other layer. The actual set-up is

shown in Figure 1. The two liquids are contained in a lucite tank, whose inner dimensions are the

same as for the convection experiments: 50 (height) x 125 x 250 mm3. The interface lies at mid-

height. Roll-like motions are generated by two horizontal brass cylinders placed at mid-depth of
one of the liquid layers. The axes are horizontal and parallel to the short side of the tank. The

spacing between the axes is 25 mm, equal to the depth of each liquid layer. The two cylinders,
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Fig. 1. — Perspective view of the experimental set-up. A thin vertical slice of light is emitted by the strobo
scopic lamp on the left (slit). It enters the rectangular lucite tank, and lightens the liquid. Part of the light
beam is reflected down by a mirror at 45°. Long exposure pictures are taken of the illuminated aluminum
flakes in the superposed liquids. The interface between the two liquids is indicated by a dashed line. The
bass cylinders rotate around their horizontal axis with opposite vorticity. The arrows indicate the sense of
triotion: here a “convergent” case. The different components are not drawn to scale.

vhose diameter is 13.9 mm, rotate in opposite senses, driven by a single stepping motor, with
appropriate shafts.

Aluminum flakes are introduced in each liquid. A stroboscope Lightens a slice of the liquids,
perpendicular to the cylinders. A mirror is used to reduce the extent of the cylinders shadows.
Streak photographs are taken on a camera aligned with the cylinders. Streamlines and velocities
are measured from these photographs.

Two pairs of liquids have been used: 47V500 Rhone Poulenc silicone oil above glycerol (as
in the convection experiments of Nataf et aL [13] ), and olive oil above diluted glycerol. Bulk
properties, for the first pair are given us lhble I, together with the properties of the two silicone
oils (47V100 and 550) that were used to make the silicone “light” over silicone “dense” convection
experiments of Cardin & Nataf [14]. These will be used in the marginal stability analysis, in the
second part of this paper. Within each pair, the volumic viscosities of the two liquids are almost
equal.

2. Silicone oil over glycerol.

2.1 OBSERVATIONS. — Figure 2 shows the streamlines observed for a 3.3 mm/s tangential veloc
ity on the cylinders (placed in the upper layer). This velocity is comparable to typical convective
velocities. In Figure 2a, the forced motion is convergent at the interface, between the cylinders, as
indicated by the white arrows (we call this a convergent case), while in Figure 2b the forced motion
is divergent. The first order result is that motion is transmitted across the interface. A closer look
at the velocities shows that the velocity beneath the interface in the induced rolls is comparable
to that of the lateral induced rolls in the upper layer. At first sight, the interface therefore plays
no mechanical role per Se.

However, we observe that the cell pattern depends upon the entrainment velocity. Figure 3
shows two pictures. The top one is a convergent case, with tangential velocity on the cylinder of
33 mm/s. By comparing with Figure 2a, we observe that two side counter-rotating cells are now
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rflble I. — Physicalproperties of the liquids.

Rhodorsil Rhodorsil Rhodorsil
S.I. Units Glycerol silicone silicone silicone

47V500 550 47V 100

k Thermal conductivity W m’K1 0.294 0.16 0.146 0.16

p Density (25°C) kg m3 1.26 x 0.97 x 1& 1.07 x 0.97 x i03

C, Specific heat J kgK1 2.62 x 1.46 x i03 1.50 x 1.46 x

i Thermal diffusivity m2 s_i 0.89 x i0 1.13 x i0 0.91 x i0 1.3 x i0

ii Kinematic viscosity m2s 7.45 x i0 4.99 x i0 1.25 x i0 1.00 x i0
(25°C)

a Thermal expansion K1 4.9 x i0 9.45 x i0 7.5 x i0 9.45 x i0

Interfacial tension N m 25 x i0 < 5 x i0

(25°C)

lbmp. derivative N m1 K—’ 1.3 x i0

of E

present in the lower layer.
Even more striking is the role of the sign of the velocity. Figure 3b is a divergent case, with the

same absolute entrainment velocity as in Figure 3a. The counter-rotating cells are not present in
the divergent case.

A careful analysis of the streamlines reveals another difference: in the convergent case (Figure
2a), there is a triangular zone beneath the interface between the cylinders, where velocities are
more reduced than in the divergent case (Figure 2b). This shows up in horizontal profiles of
the vertical velocity derived from the streak photographs. Figure 4 compares two such profiles
obtained in the convergent and divergent cases. Both run horizontally at the level of the centers
of rotation of the induced rolls of the lower layer, about 12 mm below the interface. The absolute
velocity is clearly smaller in the convergent case.

2.2 INTERPRETATION. — The observation that is most suggestive of a specific mechanical role
of the interface is the lack of symmetry between the convergent and the divergent cases. No
volumic property can explain this observation. Indeed, the only ‘sense’ is given by the gravity
vector, which plays no role in these purely mechanical experiments, in the volume of the liquids.
The deformation of the interface does depend upon the sense of rotation: the interface is uplifted
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Fig. 2. — Streak photographs for two entrainment experiments with tangential velocity V = 3.3 mm/s. The.
upper liquid is silicone oil, and the lower one is glycerol. The two rotating cylinders are at mid-deptli,in
the upper layer. (a) Convergent case: the motion between the cylinders is up. The aluminum flakes show
roll-like motion in the lower layer. (b) Divergent case: the motion between the cylinders is down. Note that
the vertical velocity in the entrained rolls below the interface is smaller in the convergent case than in the
divergent case. The end of the cylinders are seen as light circles, with the sense of motion superimposed. The
dark circles are corks on the lucite frame; there is no cylinder in the bottom liquid layer. The stroboscopic
light had 6 pulses, each 4 seconds long. The total exposure time is 40 seconds. Lines AA are the positions
of the two horizontal profiles shown in Figure 4.

between the cylinders in the convergent case. However, the deformation is very small. We can
estimate its amplitude h from a simplified balance of the normal stress at the interface:

t9W ÔWb
(pf — pb)gh = — (1.2)

where g is the acceleration due to gravity, p are the densities, and w the vertical velocities. We
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Fig. 3. — Same as Figure 2 but with an entrainment velocity of 33 mm/s. (a) Convergent (b) Divergent.
Continuous lightning. The exposure time is 60 seconds. Note that two counter-rotating rolls on the sides
in the bottom layer are visible in the convergent case, but not in the divergent one. On the contrary, the
streamlines are “rounded” near the central stagnation point, in the convergent case.

have neglected the interface tension terms that would reduce h, and will look for an upper bound

by setting the induced dynamical pressure Po to zero. We then get:

h <
(Pt —p)g

(1.3)

where V is now the imposed tangential velocity on the cylinder, and d is the thickness of a liquid
layer. This yields an upper bound deformation of 0.1 mm when V = 3.3 mm/s, as for the runs of
Figure 2. This value is in agreement with the small deflection observed in the streak photographs.
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Fig. 4. — Horizontal profiles of the vertical velocity in the lower liquid layer. The profiles (whose positions
are indicated by lines AA’ in Figure 2) run through the motionless centers of rotation of the entrained rolls.
Their horizontal position is noted C and D for the convergent and divergent cases, respectively. The hori
zontal distancex is measured from the vertical line that lies at equal distance from the two rotating cylinders.
The up-triangles are the up-going velocities of the divergent case, the down-triangles are for the convergent
case. Note that the vertical velocity at x = 0 is much smaller in the convergent case than in the divergent
case.

Its effect on the velocity field is veiy small. Furthermore it should probably have an effect opposite
to the one we observe, by inducing slightly larger velocities in the lower layer in the convergent
case.

Inertial effects would not explain the lack of symmetry either: the Reynolds number is written
as:

(1.4)

where v = 1uIp is the kinematic viscosity. We get a value of 0.9 for the high velocity runs of Figure
3, so that inertial effects are negligible.

We conclude that the lack of symmetry can only be explained through mechanical properties
of the interface. Note, however, that a constant interface viscosity does not explain it either. We
propose a simple model that accounts, qualitatively, for all the observations mentioned above.
Suppose that some unknown surfactant is present at the interface. Its concentration depends
upon velocities at the interface : the molecules are swept away from places where flow is diver
gent at the interface, and accumulate in zones of convergent flow. We further assume tliat high
concentrations of surfactants lead to a large interface viscosity. Then the interface tends to act as
a barrier to stress transmission where flow is convergent on the interface.

This explains the triangular zone of reduced coupling between the cylinders in the convergent
case. On the contrary, the interface is cleaned between the cylinders in the divergent case, and
the surfactants pile up on the sides, thereby inhibiting the formation of the induced side counter-
rotating rolls. Finally, increasing the entrainment velocity results in narrowing the zones of high
concentration, which permits an overall better transmission of motion.

We have chosen here to present an explanation based on concentration-dependent interface
viscosity. One could as well propose one with a concentration-dependent interface tension, with
high tension in zones of high concentration. Indeed, this is the classical explanation for contam
ination of liquid bubbles rising into water [20,21]. We have no experimental evidence that would
dismiss one or the other.

‘lb get a more quantitative assessment of the mechanical role of the interface would require
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knowledge of the velocity field induced when the interface is purely passive. We do not know
it in this geometry. However, if we assume that the interface viscosity is zero in the zones of
low concentration, we can derive a lower bound for the interface viscosity in the zones of high
concentration, by comparing the vertical velocity profiles of the convergent and divergent cases.
Since the vertical velocity drops by a factor of about 2.5 in the convergent case, we deduce a rough
lower bound for the interface viscosity in high concentration zones:

Ti + 0.6pd - 0.6 x 10_2 kg s

At this stage, we think that we have demonstrated the existence of some interface viscosity of
the order of pd in our mechanical experiments. Since the liquids tested are the same as in the
Rayleigh-Benard convection experiments that featured thermal coupling, and that the velocities,
the geometry, and the experimental procedure are similar in the two cases, we think that this
interface viscosity is present as well in the convection experiments. We will show in the next section
that it is indeed responsible for thermal coupling to be preferred over mechanical coupling.

It remains that we do not know what is at the origin of the interface viscosity. We have postu
lated the existence of surfactants, but we ignore their exact nature. The lucite tank was cleaned
with ethyl alcohol, and the liquids were poured directly from the manufacturer’s container, but no
special care was taken for avoiding contamination. We do not think that the aluminum particles
introduced are the contaminating agent. They did tend to cluster at th, interface, but not in a
continuous fashion. In addition, these aluminum particles have been shown not to be tensioactive
in other experiments [22].

Fig. 5. — Streak photograph for olive oil over diluted glycerol. The rotating cylinders are now in the lower
layer. The tangential velocity is 3.3 mm/s. The exposure time is 60 seconds. No motion is observed in the
upper (olive oil) layer.
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3. Olive oil over diluted glycerol.

47V500 silicone oil is made of rather long polymeric chains. This is known to enhance interface
effects. It was therefore suggested that using a vegetable oil, with much shorter chains, could re
move the interface viscosity effect. We experimented with olive oil over a mixture of 85% glycerol
and 15% water (so that the volumic viscosities of the two liquids are identical; we measured v =

6.8 x 105m2/sat 25 °C for olive oil). The rotating cylinders were placed in the lower layer. As
shown in Figure 5, the result was rather disappointing: whatever the entrainment velocity up to
65 mm/s, no motion was transmitted across the interface! This means that the entrainment shear
stress is entirely balanced by interface tension or viscosity. This yields an overall interface strength

up to r = p 0.7kg m’s2,significantly larger than for the silicone oil over glycerol case,

a somewhat surprising finding.

II. MARGINAL STABILITY ANALYSIS.

The above experimental study demonstrates the need for introducing interface viscosity, in or
der to model properly the mechanical interaction of the two superposed liquid layers. We will
now introduce it in a study of convective marginal stability. Marginal stability in a layered system
has been studied by many investigators, and papers by Rasenat et aL [9] and Wahal & Bose [8]
are rather exhaustive. We will restrict our analysis to the two pairs of liquids for which we have
experimental data, and in particular to the silicone oil over glycerol system. We will show that clas
sical ingredients do not predict thermal coupling, but that when interface viscosity is introduced,
thermal coupling does dominate over mechanical coupling.

We start with a brief recall of the equations and method, with special emphasis on the modeli
sation of the interface.

1. Equations and method.

1.1 EQUATIONS. — We consider two superposed immiscible liquids. The average position of
the interface is at z = 0. The thicknesses of the two liquid layers are d and db, the indices t and
b standing for top and bottom, respectively. Each layer is governed by the classical equations [23]
that derive from the conservation of mass, momentum, and energy, and an equation of state of
the form:

= po,(l + c(T — T0)) (11.1)

where p is the density, r is the coefficient of thermal expansion, T is the temperature, and i equals
t or b. We use the Boussinesq approximation in the Navier-Stokes equation. The equations are
non-dimensionalized, using the properties of the bottom layer with scales db for length, d/Kb for
time, and/3bdb for temperature, where i is the thermal diffusivity, and 3 the temperature gradient.
The equations in the bottom layer then are written as:

div ub = 0 (II.2a)

+ ub.V)ub = Vpb + 7a Tbk + Aub (II.2b)

= Ub.k + fTb (II.2c)
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where u is the non-dimensional velocity vector, and k the unit vector in the vertical direction. The
Rayleigh and Prandtl numbers are defined using the material properties of the bottom layer:

i.a
= crbg/3bd’

Pr = (11.3)
ICbL’b Kb

For the top layer, the equations become:

divu=O (II,4a)

Pr’( + u.V)ut = pVp1 + afla Tk + vu (II.4b)

(II.4c)

where p, a, v, j3, K are the “top over bottom” ratios:

Pt at
p=—, a=—, ... (11.5)

Pb

‘lb the motionless solution of these equations are added sinusoidal pertubations in vertical velocity
w and temperature:

= W(z)exp(iax + oi) (II.6a)

O(z)exp(iax + oi) (II.6b)

where a is the horizontal wave number of the pertubation, and the complex growth factor. The
perturbations are supposed small, and second order terms are ignored. One then gets the usual
system of linear equations:

(D2 — a2 — _)(D2
—a2)Wb = ‘R.aa2Ob (II.7a)

(D2 — a2 — 0)Ob = —Wb (II.7b)

(D2 — a2 — _-—)(D2
— a2)Wt = 7Zaa20: (II.7c)

(D2 — a2 — )O = _!.w (II.7d)

d
where D = —

dz
We will look for values of Ra, o-and a, such that this system of equations has non-zero solutions.

Only solutions with o 0 or o = iw with w real will be kept (i.e. marginally stable solutions).
Note that although there are two layers, only one Rayleigh number must be introduced. Here,
we have chosen to define the Rayleigh number using the properties of the bottom layer. Once a
solution found for this Rayleigh number, one can of course compute the corresponding Rayleigh
number for the upper layer, knowing the “top over botom” parameters.

We now have to solve this double set of sixth order differential equations. For this, we need the
boundary conditions.

1.2 BOUNDARY CONDITIONS. — We have 12 boundary conditions to specify. The upper and
lower boundaries provide 3 each, and 6 are provided by the interface between the two liquids.
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1.2.1 The top and bottom bozmdaries. — Both boundaries are assumed rigid and isothermal, as
in the laboratory setting. We get:

at z=—db a z=d

Wb =0 W =0 (II.8a)

DWb=0 DW=0 (II.8b)

eb =0 O =0 (II.8c)

1.2.2 The interface. — This is where most of the physics comes in. Indeed, we will see that
depending upon the physical hypotheses made, the convective solutions change drastically. We
consider here the general case of a deforming interface, with interface tension and viscosity. Let

be the interface deformation around the mean position z = 0. The kinematic condition at the
interface then implies that it should be of the form:

= exp(iax + ot) (11.9)

with
= Wb(z = 0) = Wt(z = 0) (11.10)

Also at z = 0, we have:
— Continuity of tangential velocity:

DWb = DW (11.11)

— Continuity of tangential stress:

(a2 + D2)Wb = p(a2 + D2)W — Ma(O — E)a2 —N1DWa2 (11.12)

— Continuity of normal stress:

_i(D2 — 3a2 — —)DWb = .(D2
— 3a2 — ——)DW + (R.a +a2Sc)E (11.13)

— Continuity of temperature:
= (11.14)

— Continuity of heat flux:
DOb = kDO (11.15)

where k is the top over bottom ratio of thermal conductivities.
Other dimensionless numbers are:

The Marangom number:
8E /3bd

Ma = —— (11.16)
ÔT VbI’bpb

The Schmidt number:

Sc = £
d

(11.17)
1bb Pb

A “density Rayleigh number”:
(p

— Pt)
= 7Za (11.18)

pbbI3bdb
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And the interface viscosity number:

N1 = (11.20)
Vb db

where v, is the “kinematic” interface viscosity:

(7i+)int
vin.t —

Pb

In the following, we will sometimes use the approximation that the deformation of the interface
is negligible.

We then have:
E=W1(z=0)=W(z=0)=0 (11.21)

Note that the normal stress is then no longer Continuous at the interface, and the corresponding
continuity equation is dropped.

1.3 THE ALGORITHM. — We use a classical shooting method and fourth order Runge-Kutta
integration, such as described, for example, in Krueger et aL [24,25]. In each layer, the sixth order
linear differential equation has a 6-dimensional solution space. The general solution F1(z) (with
i = t or b) is a vector with components (W, DW, D2W, D3W, 0, DO). It is found as a linear
combination of six independent basis functions f2:

F2 = [a1fj + a2f2 + ... +a6f6]1 (11.22)

The f,functions are computed by integrating (with 30 to 100 steps) the vectors (1,0,0,0,0,0),
(0,1,0,0,0,0), ..., (0,0,0,0,0, 1), from z = d to z = 0. In order to determine the particular solu
tion F, in each layer, we have to determine the six coefficients a3. The boundary conditions (11.8)
imply that a1 = a2 = a5 = 0.There remain three unknown a3 in both layers. The six boundary
conditions at the interface (11.10 to 11.15) provide the required constraints. Non-trivial solutions
are obtained when the determinant of the resulting system is zero. For each fixed value of a, we
look for values of iZa and o• that cancel the determinant. When = 0, this is done by converging
to a zero determinant using a Newton-Raphson method. When ci is pure imaginary, we look for
the minimum of the modulus of the complex determinant. The eigenvalues and eigenfunctions
are then computed.

A numerical problem arises when a complex (i.e., oscillatory) solution bifurcates into two real
(i.e., steady) solutions, as the wave number is increased or decreased. The determinant is then the
small difference of large values, and the solution for 7?a and ci is poorly constrained. For a given
precision threshold, it is even possible to obtain a complex ‘solution’ where there should not be
any, as shown by the existence of two real solutions for the same wave number. Since we are not
especially interested in these regions of the solution space, we have kept both solutions, with no
special attempt to resolve the ambiguity.

1.4 CHECKOFTHEALGORITHM. — We checked the algorithm by reproducing the marginal sta
bility curves obtained by Honda [4] for the case:

k=d=k=f3=a=p=p=1,Ma=N=Sc=0.
We mentioned that two curves are obtained in an Ra versus wave number plot. The lower

one corresponds to “mechanical” coupling, and the upper one to “thermal” coupling. Note that
this case corresponds to two completely identical liquid layers. This may be somewhat confus
ing, since the system can then be viewed as one single layer. Indeed, the lowest curve, which
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exhibits mechanical coupling is simply the first overtone of a single layer, as determined by Pellew
& Southwell [26]. However, the upper curve, corresponding to thermal coupling (as well as the
suppression of the fundamental of a single layer) can only be obtained if the deformation at the
interface is assumed to be negligible. This violates the condition p = 1. In fact, this condition
should be seen as meaning: “the density ratio is large enough for the layering to be stable and the
deformation of the interface to be negligible (R.a —* oo), but is close to 1 in other respects”. The
previous case displays no overstability (i.e. oscillatory solutions). We therefore also checked our
algorithm against another case, treated by Rasenat et aL [9], which exhibits overstability.

For that case also, which has:
a = = p = 1(but7?.a — ), p = 0.1, 3 = 25, d = 0.25, Ma = N1 = Sc = 0,
we reproduce adequately the published curves.

2. Marginal stability results.

We now look at the effect of different terms in the interface continuity equations. We start from
the simplest case with no deformation, no interface tension, and no interface viscosity. Then, we
include one of these effects, which we want to understand, and analyse the change in the marginal
stability curves and eigenfunctions.

The other parameters are taken equal to their experimental values, as listed in ‘Table II. Most
results are for the silicone oil over glycerol case; the silicone oil “light” over silicone oil “dense”
case is only introduced when investigating the role of interface viscosity.

In order to clarify the presentation, we always show marginal stability curves in the same format:
Rayleigh number 1a versus non-dimensional wave number a. Also drawn is the non-dimensional
pulsation w of the oscillations, where the marginal solution is oscillatory. The “reference” curve
with no interface effect is recalled in all figures (solid line). We sometimes “label” the curves with
a drawing of the vertical velocity eigenfunction, which best describes the prevailing coupling.

2.1 VARYING ThE DEPTH RATIO. — Rasenat et aL [9] showed that, for certain combinations of
parameters, convection can be overstable. They note, as did Mutabazzi et aL [25] for a related
problem, that this happens when the “individual” Rayleigh numbers of each layer are similar. We
are interested in finding this regime for our silicone oil over glycerol system (see also Cardin &
Nataf [14]). Since physical properties are fixed, this can only be achieved by changing the depth
ratio d. Indeed we find a region of overstability ford = 0.76 (the glycerol (bottom) layer is thicker
than the silicone (top) one). The corresponding marginal curves are shown in Figure 6. The
region of overstability is for values of a between about 2 and 2.9. The case d = 0.76 (with no
interface properties added) will be our reference case in the following. Also drawn are cases
d = 0.743, when the upper and lower curves barely separate, and d = 0.72. Note that the set of
upper curves for large a all join to a single curve, and so do the set of lower curves for small a. They
all correspond to convection that is driven by the lower layer. By this we mean that convection is
more vigorous in the lower layer, and that the upper layer is almost passively dragged, as we will
show below. On the contrary, the two other sets correspond to convection driven by the upper
layer, as can be seen from the insets showing the vertical velocity eigenfunctions. Had we chosen a
non-dimensionalisation based on the parameters of the upper layer, we would have obtained the
complementary pattern shown in Figure 7. In this figure, the curves that correspond to convection
driven by the lower layer are now well separated, and the corresponding eigenfunctions do display
a more vigorous lower layer. The physics of the two figures is the same: only the way to present
the results has changed. Although the curves are very close, the corresponding vertical velocity
eigenfunction can be fairly different. Note, for example, that the upper curve for d = 0.72 is



N°6 INTERFACE VISCOSITY IN LAYERED CONVECTION 613

Thble II. — Numerical data.

Non-dimensional
top 47V500 silicone “light”

bottom glycerol silicone “dense”

k Thermal conductivity 0.54 1.10
(/3= 1/k)

p Density (25°C) 0.77 0.91

i Thermal diffusivity 1.27 1.43

v Kinematic viscosity 0.67 0.8
(25° C)

a Thermal expansion 1.92 1.26

Ma Marangoni number —40

Sc Schmidt number 5 x io io

Pr Prandtl number 8400 1800

Ru,, Density Rayleigh number 1.4 x i09 7 x 10

Interface viscosity number > 1

associated with thermal coupling.
The overstability regime occurs when the two sets of marginal stability curves would cross. As

mentioned by Rasenat et aL [9], the oscillations are between a rather thermal coupling extreme
and a mechanical coupling extreme. Indeed, if we examine the vertical velocity at mid-depth
of each layer, we find that they display a sinusoidal amplitude variation with time, but with a
phase difference. When the two velocities have the same sign, the coupling is thermal, and it
is mechanical when the velocities are of opposite sign. This example illustrates the diversity of
convection in a two-layer system, with competition not only between mechanical and thermal
couplings, but also between the strengths of convection in the two layers.

We note that, for our particular liquids, convection always should start with mechanical cou
pling. Oscillations are not expected to be observed, since the overstability region does not yield
the lowest Rayleigh number.
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Fig. 6. — Marginal stability curves computed in the silicone oil/glycerol system, for different depth ratios

d = d/db. Other values as in lhble II. No interface effect (Ma = = 1Za1 = Sc = 0). The
Rayleigh number 1?a is plotted against the non-dimensional horizontal wave number a. The solid line is
for our reference case with d = 0.76. It displays two superposed branches at low and large values of the
wave number. For a between 2 and 2.9, we get a single marginal stability curve, which is overstable. The
corresponding non-dimensional pulsation is drawn at the bottom, with its axis on the right side. It seems
that the pulsation does not vanish at a = 2.8, where two stationary branches are actually found. This is a
numerical artefact (see text). The insets are the vertical velocity eigenfunctions. They show that the lower
curve for large a is mechanical coupling driven by the top layer, while the upper curve for small a is a quasi-
thermal coupling also driven by the top layer. The dashed curves are ford = 0.743. Note that the two curves
almost meet in the middle. The dotted curves are for d = 0.72.

2.2 DEFORMATION OF THE INTERFACE. — In the previous section, the interface was assumed

to be underformed. We now relax this assumption and investigate the effect of the deformation

of the interface. Deformation is multiplied by a sum of two terms in the continuity equation of

normal stress (11.13): one scales with 1?.a, the other with Sc. From ‘Thble II, we see that the

former is of the order of i0 and the latter of about iO. We will therefore neglect the second

term, and look at the effect of R.a. Figure 8 gives the results for R.a values of iOu, iO, iO.

For the largest value, the marginal stability curves are undistinguishable from the no-deformation

case. We can therefore already confirm that the deformation of the interface is negligible in our

experiments, as mentioned by Nataf et aL [13]. It is interesting however to analyse the results with

low 7?.a values. For R.a = iO, the large wave number end of marginal stability is unaffected, but
overstability now extends to very low a values, where the pulsation shows a peak. For 7a = iOn,

convection is predicted to be oscillatory at the threshold. The pattern of oscillations is shown in

Figure 9. The vertical velocity does not vanish at the interface, which implies that the interface

actually deforms with time, as predicted by Richter & Johnson [3]. We note however that the

results of Figure 8 and 9 indicate a smooth transition from the interface dominated oscillations
to the oscillations between thermal and mechanical extremes, which we discussed previously. For
even lower values of 7?.a, the critical Rayleigh number tends to 171, and the critical wave number

to 1.7, which correspond to convection of the whole system as a single layer (we recall that the
non-dimensionalisation is based on the lower layer). Note that the density ratio only enters in

equation (11.13), multiplied by the interface deformation. Therefore, it has no effect in regimes

other than overstable.

3000

2500

- 2000

.c 1500
0)

>,

500

10.0

7.5

5.0

2.5

0.0

C
0
4-’

Cu
Cl)

a-

0

wave number



N°6 INTERFACE VISCOSITY IN LAYERED CONVECTION 615

C30

Ci)

20 ci

10.0

7.5

C
0

50

2.5

1.0 1.5 2.0 2.5 3.0 3.5
wave number (upper layer)

3000

ci)
>
03 2500

0)
0
Cl 2000
D

(1)
1500

E
D

1000
.C
0)
0)

500
03

0 0.0

Fig. 7. — Same results as in Figure 6, but with the Rayleigh number, wave number, and pulsation non
dimensionalized using the properties of the upper layer. The curves that correspond to convection driven by
the lower layer now separate, and show a wide variety of eigenfunctions.
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Fig. 8. — Marginal stability with interface deformation. The solid line is our reference case with no interface
deformation. The dotted line is the overstable curve (and the corresponding pulsation curve at the bottom)
for iZap = i04. The dashed curve is for iZap i0: overstability extends over a large range of wave
numbers (the axis starts at a = 0). Note that the range on the pulsation axis has been increased by a factor
of 5 as compared to Figure 6.
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Fig. 9. — Vertical profiles of the vertical velocity at different times for the overstable regime with l.Up = 1

(7a = 938, a = 2.5, w = 9.5). The horizontal line is the position of the interface at rest. Note that the velocity
at the interface can get quite large, and that the coupling goes from rather thermal (same sign in both layers)
to rather mechanical (velocities are of opposite sign), depending on the time within the oscillation cycle. (the
eigenfunction fort = T12 is the same as for t = 0, with the opposite sign).

2.3 MARANGONI CONVECTION. — We now let interface tension be a function of temperature.

This introduces a coupling between the velocity field and the temperature field, the so-called

Marangoni effect. For most liquids, the Marangoni number is positive. Wahal & Bose [8] report

that the Marangoni effect is rather stabilizing: it tends to decrease the extent of the overstabiity

region. Figure 10 shows that this is also true in our case for moderate Marangoni numbers. In

deed, for a Marangoni number as low as 10, the overstability region has completly disappeared.

However, Nataf et aL [13] measured an increase of interface tension with temperature in the sili

cone oil over glycerol system, which yields a negative Marangoni number. The case with a value of

—200, which is typical, is also shown in Figure 10. The dashed curves in the insets are the profiles

of the horizontal velocity eigenfunctions. Because of incompressibility, the horizontal velocity is

equal to the derivative of the vertical velocity with respect to depth. This time, the overstability

region is quite wider. The upper branch for large wave number now corresponds to mechanical

coupling, but with a much reduced horizontal velocity at the interface. The slope discontinuity of

the horizontal velocity profile is reminiscent of experimental results of Villers & Platten [27].

Note that depending upon the phase shift between the temperature and the velocity fields, the

Marangoni effect is resistive or driving. This is well seen in the horizontal velocity profiles, and it

explains why the marginal stability branches tend to get closer or to move away from each other,

depending upon the sign of the Marangoni number.

2.4 INTERFACE VISCOSITY, AND THERMAL COUPLING. — None of the effects we have studied

so far — depth ratio, interface deformation, temperature-dependent interface tension — enables

thermal coupling to be the preferred mode of convection. In fact, for the most realistic parameter

values, stable mechanical coupling is expected. Our only hope for explaining thermal coupling as

observed by Nataf et aL [13] now rests upon the effect of interface viscosity.

We now introduce this effect. We will examine both the silicone oil over glycerol case and the

silicone oil “light” over silicone oil “dense” case.

vertical velocity
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Fig. 10. — Marginal stability with temperature-dependent interface tension. The solid lines are our ref
erence case with zero Marangoni number. The dotted curves are for Ma = 10. Note the disappearance
of the overstability region. The dashed curve is for Ma —200. The overstability region occupies the low
wave number end. Two branches are found for larger wave numbers. Both display mechanical coupling, as
shown by the insets. The lowest Rayleigh number is obtained for Ma = —200. The dashed line in inset is the
horizontal velocity eigenfunction. It shows a clear slope discontinuity.

2.4.1 Silicone oil over glycerol — Figure 11 summarises the effect of interface viscosity on our
reference case. For values of less than 1, we observe a small widening of the overstabffity
region, and an increase of the Rayleigh numbers of all branches. For values of larger than
1, things get quite different: the overstabiity region disapears; the lower curve does not move
much, but the upper curve moves to higher Rayleigh number values quite significantly. Wahal &
Bose [8] looked at the effect of interface viscosity. They mention that for > 10—1, it tends to
reduce the overstability region. We find here a more contrasted behaviour. However, the most
interesting finding rests with the eigenfunctions. While the lowest curve was always associated
with mechanical coupling so far, the lowest curve for > 2 corresponds to thermal coupling, as
shown in Figure 11. It is important to note that, although the lower curve has not moved much,
the eigenfunction that goes with it has changed dramatically. Figure 12 displays in more detail
the mechanical coupling vertical velocity eigenfunctions for increasing values of N1. Note that
for N1 > 1, this eigenfunction is not associated with the lowest curve. Also drawn is the thermal
coupling eigenfunction for N1 = 10. As increases, the stress transmission at the interface
becoming less efficient, the lower layer is not “dragged” anymore; the vertical velocity in the lower
layer increases, as the increase in critical Rayleigh number allows it. Horizontal velocity is shown
in Figure 13. It tends to zero at the interface as increases. The liquid layers see the interface
more and more as the rigid boundaries at the top and bottom. For even larger values, the
marginal stability curves do not move anymore, and the eigenfunctions are very similar, until the
interface is actually seen exactly as a rigid boundary.

2.4.2 Silicone oil ‘7ight” over silicone oil “dense’ — These two oils have been used by Cardin &
Nataf [14]. The properties of the two silicone oils (47V100 and 550) that were used to make them
are given in Thble I and the corresponding ratios in ‘Thble II. In the experiments, thermal coupling

wave number
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Fig. 11. — Marginal stability with interface viscosity. The solid lines are for our reference case with zero
number. The dotted curves are for = 1, and the dashed curves for = 10. The vertical velocity

eigenfunctions show that the lowest critical Rayleigh number is for thermal coupling in that case.
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Fig. 12. — Vertical profiles of the vertical velocity for different N1 values. Solid line: Thermal coupling
(preferred) for = 10; chain line: mechanical coupling (higher 1?tz) for = 10; dotted line: mechanical
coupling for = 2; dashed line: mechanical coupling (preferred) for N1 = 1. Note that in the = 1
case, mechanical coupling is preferred, and the lower layer is dragged by the upper one. For = 10,
thermal coupling is preferred; it “works” with low velocity in the lower layer, while mechanical coupling for
the same needs a higher Rayleigh number, which allows for higher velocity in the lower layer.

was also observed for this pair, although interface tension is very small, and all properties are very

similar. Overstability is obtained for d = 1. The effect of interface viscosity is shown in Figures

14 and 15. In the first figure, we have plotted the marginal stability curves that correspond to
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Fig. 13. — Same as in Figure 12, but for horizontal velocity. The different line styles have the same meaning
as in Figure 12, except that the dashed line is for = 0 (preferred mechanical coupling). As increases,
the horizontal velocity at the interface decreases, which is why thermal coupling becomes more advantageous.

mechanical coupling, and in the second, those that give the rma1 coupling. The overstable branches
are reported in both figures. The results are even simpler than in the silicone oil over glycerol
system. We see that the thermal coupling curves move very little, while the mechanical coupling
curves move up as the interface viscosity increases. While mechanical coupling is the most critical
coupling for N1 0, thermal coupling takes over for N1 > 1.7. An interesting phenomenon
is observed for N1 = 1: the two curves would be superposed, so that their interaction yields
overstabiity (oscillations) over most of the wave number range.

Let us summarize the results with interface viscosity. Without interface viscosity, mechani
cal coupling is usually preferred over thermal coupling, because it minimizes shear stress at the
interface. As the interface viscosity goes up, the interface resembles a thin undeformable film;
therefore horizontal velocity vanishes at the interface and the shear stress increases. This has lit
tle effect on the thermal coupling case, but it makes mechanical coupling much less advantageous.
In fact, thermal coupling is then preferred, because it has better thermal efficiency. This reversal
takes place for N1 values between 1 and 2.

Discussion.

In the first part of this paper, we presented results obtained from mechanical experiments in
a layered system. These observations demonstrate that the interface plays a specific dynamical
role. We could explain most of the observations by introducing an interface viscosity. Defining
the interface viscosity number as

vint
JVVI —

where V11 is the interface viscosity, ii the volumic shear viscosity, and d the thickness of the layer,
we estimate that this non-dimensional number is of the order of or larger than 1, for the pairs of
liquids we investigated.

In the second part of the paper, we reported on marginal stability computations, which we

-0.5

horizontal velocity
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Fig. 14. — Marginal stability in the silicone “light” over silicone “dense” system, with interface viscosity
(other paramaters as in 1ble II). Only the mechanical coupling branches and the overstable ones are shown.
The thermal coupling branches are shown in Figure 15. Solid line: = 0; dotted: = 1; dashed:

= 1.7; chain: = 5. Note that the overstable region occupies the whole wave number range shown
for = 1. Mechanical coupling requires higher and higher Rayleigh numbers as the number goes up.
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Fig. 15. — Same as Figure 14, but the thermal coupling branches (and the overstable ones) are drawn. Note
that the Rayleigh numbers increase only slightly as the N1 number goes up. Thermal coupling is the pre
ferred mode for > 1.

performed in order to explain the convection experiments described by Nataf et aL [13] and Cardin

& Nataf [14]. These, which were carried out with the pairs of liquids used in the first part of
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the present paper, all show thermal coupling to be the preferred mode of convection. Using
the physical properties of these liquids, we computed the marginal stability curves. We found
that mechanical coupling should be obtained, even when the effects of interface deformations
and temperature-dependent interface tension are included. However, when interface viscosity
is introduced, we find that thermal coupling overtakes mechanical coupling when the interface
viscosity number N0 exceeds about 1.5.

Therefore, we think that interface viscosity is present, and is responsible for the thermal cou
pling observed in the experiments of Nataf et aL [13] and Cardin & Nataf [14]. Nevertheless,
we must keep in mind that the mechanical experiments also give evidence for a concentration
dependent effect. This was not taken into account in the marginal stability analysis. One could
have an interface tension that varies with concentration, and hence with the velocity field. Intro
ducing the supplementary concentration equation [8], and assuming that diffusion of the unknown
surfactant is small, this would yield a term exactly similar to the interface viscosity term in equa

tion (11.12), except that it contains the time factor 4—. Its effect, like that of density ratio, is

therefore limited to the overstability regime, because the fluctuation of concentration, as well as
the interface deformation, is zero in the reference state. It would not yield stationary thermal
coupling by itself, whereas interface viscosity does.

However, non linear effects can be important even very close to the threshold of convection
[14], so that the role of concentration-dependent interface tension cannot be ruled out.

We must also mention that we do not know which surfactant is responsible for the observed
interface viscosity or concentration-dependent interface tension. If its presence, and its con
centration, could be better controlled, it would be possible to reduce the number, and to
observe mechanical coupling experimentally, or possibly the overstability regime. Alternatively,
these regimes could be reached by increasing the volumic shear viscosities and/or the depths of
the layers.
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