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We describe the results of a benchmark study of numerical codes designed to treat problems of high Prandtl

number convection in three-dimensional Cartesian geometry. In addition, quantitative results from

laboratory convection experiments are compared with numerical data. The cases of bimodal convection at

constant viscosity and of square cell convection for temperature-dependent viscosity have been selected.
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We compare the Nusselt number, local velocity, temperature, heat flow, topographic and geoid anomalies

for stationary solutions. A case of transient time-dependent behavior and the stability limit of bimodal

flow are also subject to a comparison. We obtain reasonable agreement among the eight tested codes; and

some solutions, which agree within narrow limits, are taken to define a reference for further testing of codes.

The results from laboratory experiments agree with the numerical data within the expected range of

uncertainty.

KEY WORDS; Thermal convection, numerical analysis, benchmark

1. INTRODUCTION

Thermal convection in the solid mantle of the earth and of terrestrial planets is

extensively studied using numerical model calculations. In addition, laboratory experi

ments with high viscosity fluids are another tool to understand those aspects of thermal

convection which are relevant for mantle flow.
In contrast to convective flow in other branches of geophysical fluid dynamics,

inertial forces are strictly negligible, but spatial variations of viscosity are of interest.

In the past, most of the numerical calculations have been done in two dimensions.

However, in recent years the speed of computers has increased sufficiently to make

three-dimensional calculations feasible, and many numerical codes have been

developed. Because analytical solutions for the convection problem are not available, it

is desirable for the verification of codes to establish a “benchmark”, i.e., a solution

to some standard problem, which is well constrained by a variety of numerical

approaches and independent computer programs. In addition, such benchmark com

parison can serve to determine advantages that the different numerical codes

may have. The present study is part of an ongoing attempt to establish various

benchmarks for high Prandtl number convection problems. Blankenbach et at. (1989)

calculated results for several stationary and time-dependent cases in two-dimen

sional Cartesian geometry for constant and for variable viscosity. In a similar attempt,

Travis et al. (1990a) concentrated on comparing in more detail the differences

in resolution between the various employed methods. In this paper, we describe the

results of a benchmark study for three-dimensional thermal convection in Cartesian

geometry.
For a case study of bimodal flow with constant viscosity we get a good coverage with

eight different codes. They comprise pure finite difference (FD) techniques, a spectral

Galerkin method, and in the majority hybrid spectral and FD techniques. For a case of

square cell convection with variable viscosity, three solutions obtained by different

techniques provide sufficient coverage to define a benchmark standard.

Three laboratories contributed experimental data on the benchmark cases. The

goal was not to try and compete with the 4 digits accuracy to be reported for some

quantities in the next section. But the benchmark provided an opportunity to test the

abifity of various experimental methods to resolve quantitatively the three-dimen

sional structure. In addition, it was felt interesting to see how different quantities

of the numerical solutions were affected by the unavoidable imperfections of the

“real world”.
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2. DEFINITION OF THE BENCHMARK CASES

2.1 General

Consider thermal convection at infinite Prandtl number using the Boussinesq approxi
mation. All material properties are constant, except the viscosity in case 2. Non-
dimensional quantities are used according to the scaling in Table 1. The temperature is
fixed to T 0 on the upper boundary and T = 1 on the lower boundary, and both
boundaries are rigid. All side boundaries are planes of mirror symmetry.

2.2 Requested data

All participants have been asked to supply the following results:
(i) The Nusselt number Nti (defined in the usual way as total over conductive heat

flow) and the rms-velocity Vrms for the entire volume;
(ii) values of the vertical velocity w and the temperature T at specified points at

half-depth of the convecting layer;
(iii) the heat flux (temperature gradient) Q = — cT/cz at specific points at the surface,

surface topography Z and geoid anomaly N (including contributions from the
deflection of upper and lower boundary but without effects from self-gravitation),
where topography and geoid are given in dimensional values, using the dimen
sional parameters listed in Table 1, with no overlying medium (i.e. no ocean water)
assumed, and the mean elevation set to zero;

Table I Notation and Scaling

Symbol Quantity Scaling factor Dimens. value SI-units

x. y, z Cartesian coordinates h
a, b length, width of cell h
6 height of cell 6 = 2700,000

(0< x <0,0< y < b,0 < z < 1, z positive upwards)
t time h2/K
v = (u, v, w) velocity K/h
T temperature AT
AT temperature contrast AT= 3700
m viscosity
m reference viscosity 8.0 198 x 1023 (case 1)

1.20165 x 1024 (case 2)
r viscosity contrast (case 2 only) r = 20
k thermal conductivity k = 3.564
mc thermal diffusivity mc= 1.0 x l0
c,, specific heat c,, = 1080
a thermal expansion coeff. a = I x 10 -

p density p=3300
g gravity constant q = 10
Ra Rayleigh number Ra = agpA Th3/(mc0)
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(iv) the following integral, which is related to the deflection of a laserbeam passing in
y-direction through a laboratory tank, for specific values of x and z;

t(x,z) $8 T/0z dy,

(v) the mean temperature Tm in a horizontal plane at given depth z;
(vi) in case 2 vertical vorticity Q at specific points.

2.3 Case I

Case Ia: We consider stationary bimodal convection with constant viscosity. The size
of the cell is a = 1.0079, b = 0.6283 with height normalized to one (this geometry had
been studied by Frick et al. (1983)). The Rayleigh number is 30,000. A stationary
solution with a single upwelling located at (x, y) (0,0) and a single downwelling at
(a, b) is calculated. An appropriate initial condition for the temperature could have a
perturbation of the conductive state of the kind

= A [cos(irx/a) + cos(ny/b)]sin(mz).

The data (ii)—(v) were requested for the following coordinates:
(ii) and (iii) (x, y) (0,0), (a, 0), (0, b), (a, b).

(iv) (x, z) (0,0.25), (a/2, 0.25) (a, 0.25)
(v) z = 0.75.

Case Ib: The transition from roll-like convection to bimodal flow is studied as a
function of time. First a single stationary roll with the upwelling flow at x = 0 and the
downwelling at x = a 1.0079 is established. This can be done, for example, by
calculating it for a value of b where no bimodal solution exists, like b 0.1, and then the
solution is mapped onto the full cell with the specified b-value of 0.6283. Next a
perturbation of the temperature of the form

T= 0.01 cos(ny/b)sin(tz)

is added, and the system evolves towards bimodal flow. The difference in temperature
AT= T(0,0,0.5)— T(0,b,0.5) at the non-dimensional times t = 0.4 and 1.0 is reques
ted, scaled by A T, which is the value for the stationary bimodal flow.

Case ic: For a 1.0079 the maximum value of b = bent, for which rolls are unstable
to bimodal flow, is to be determined. This can be done, for example, by calculating a roll
solution first for different values of b, adding a small perturbation in the v-direction,
and recording its growth or decay.

2.4 Case 2

We study stationary square cell-convection with a b 1.0 for temperature-depend
ent viscosity. For the viscosity we adopt the following law

= exp [Q/(T+ G) — Q/(0.5 + G)]

A
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where for a given ratio of maximum to minimum viscosity r=(T=0)/(T= 1),
Q and G are obtained as:

Q = [225/ln(r)] — 0.25 In(r), G El 5/ln(r)] —0.5.

This formula is a good representation for the temperature dependence of laboratory
fluids such as corn syrup, which have been employed in the experimental part of this
study. The reference viscosity (i.e., the non-dimensional value , = 1) is for the mean of
top and bottom temperatures and the Rayleigh number is defined to this value.

We calculate the stationary solution for a Rayleigh number of 20,000 and a viscosity
contrast of r = 20. A single rising plume is located at (x, y) = (0,0). For the data (ii)—(iv)
the same coordinates as listed for case 1 are taken. For (v) we take z = 0.5 and z = 0.75,
and for (vi) take the point (x, y, z) (0.75,0.25,0.75).

The original definition of the benchmark comprised a case 2b, in which the stability
of square cells depending on the viscosity ratio r was to be studied. However, only a
single contribution dealt with this case, which is therefore omitted.

3. DESCRIPTION OF NUMERICAL CODES

A short description of each numerical code is given here. More details can be found in
the references. The codes CB, Ch, and Og can treat lateral viscosity differences, while
the others do not.

CB—supplied by Clever and Busse is a purely spectral method, employing the scalar
potentials for describing the flow. The dependent variables are expanded in all three
directions in harmonic functions, where NT is the total number of modes employed,
and the solution to the stationary equations is determined by a Galerkin method.
Newton-Raphson iteration is used to solve the resulting non-linear equations (Frick
et al., 1983; Busse and Frick, 1985).

Ch—supplied by Christensen is a hybrid spectral and finite difference (FD) method
(differences in the vertical direction) employing the scalar potentials for the floW field.
For the temperature equation a pure centered FD scheme using the ADI method is
employed. To obtain stationary solutions pseudo time-stepping with a step size of
10—30 times the Courant step is used. Solutions for temperature-dependent viscosity
are obtained by iteratively determining the coupling of modes of the velocity potentials
(Christensen and Harder, 1991).

Cs—supplied by Cserepes is similar to Ch for the case of constant viscosity. The main
difference is that the mesh points for temperature and the poloidal potential are not
identical, but offset in the vertical direction by 1/2 mesh interval (Cserepes et a!., 1988).

Ga—supplied by Gable is a hybrid spectral and FD method applied to the primitive
set of flow variables. The temperature solver is the same as in Tr (Gable, 1989; Gable
et al., 1991).

Ho—supplied by Houseman is a hybrid spectral and FD method which solves two
coupled second-order equations in the vertical (using vector potential components and
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vorticity as intermediate variable). An explicit time- and space-centered FD method is

used for the temperature equation (Houseman, 1987; Houseman, 1990 a, b).

Og—supplied by Ogawa is a pure FD method employing a non-uniform grid and

using primitive variables for the flow field. Momentum and continuity equation are

solved by an iterative scheme called SIMPLER algorithm (Patankar, 1980). Implicit

central differences are used for the energy equation for the results reported here (Ogawa

et al., 1991).

PS—supplied by Parmentier and Sotin solves two coupled Poisson equations (for the

poloidal potential with vorticity as intermediate variable) in a pure FD scheme using a

multigrid iterative method. Explicit time stepping with a weighted upwind discreti

zation for the advective terms is used for the energy equation (Sotin et a!., 1993;

Parmentier et a!., 1993).

Tr—supplied by Travis employs scalar potentials for the flow in a hybrid spectral

FD representation. The temperature equation is solved by an explicit FD scheme
which includes a tensor diffusion term to cancel numerical diffusion (Travis et a!.,
1990b).

4. NUMERICAL RESULTS

4.1 Casela

The planform of bimodal steady convection is illustrated in Figure 1. It can be
considered as a set of primary convection rolls with their axis perpendicular to the
x-direction, which are perturbed by weaker cross-rolls in the y-direction. Ga and Tr

Figure 1 Case la: Isotherms at a horizontal plane at z = 0.5 taken from a numerical solution by 0g. While
the calculation has been performed on a block of size a x b x 1, the symmetry of the solution is used to expand
it here to region of 3a x 3b.
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reported that other planforms are possible depending on the initial condition, like
bimodal flow with the stronger roll axis oriented perpendicular to the y-direction, and a
kind of distorted hexagonal pattern. Although the pattern shown in Figure 1 is not
unique for convection in a box of size a x b x 1 with mirror symmetry at the side walls,
we prefer to study this solution, because numerical work (Frick et al., 1983) and the
laboratory results reported later suggest that it is the only stable planform in a layer
whose horizontal extent is large compared to its depth.

All participants reported results for case la; and most of them did so for more than
one grid size. When at least two results for numerical meshes which differed in all three
directions by the same factor were provided, an extrapolation of the data was done,
assuming a leading error term of second order. Where a sequence of data for suc
cessively refined meshes was available (Cs, Ch), a Romberg extrapolation was carried
out. Table 2 summarizes the convergence behaviour for some selected quantities, and
in Table 3 the “best” results for all requested data are shown, either the value reported
for the highest employed resolution, or the extrapolated value. The agreement of the

Table 2 Convergence behavior for selected quantities—case la

Resolution Nu u’(0.b,0.5) Q(0,b) Z(0,b) N(0,b) t(0,0.25)

CB N = 8 3.6529
CB NT=12 3.5641
CB N= 16 3.5477
CB NT=22 3.54171
Ch 16 x 16 x 32 3.5617
Ch 24 x 24 x 48 3.5496
Ch 32 x 32 x 64 3.5445
Ch 48 x 48 x 96 3.5407
Ch Extrapol. 3.53741

Cs 16 x 16 x 24 3.6112
Cs 24 x 24 x 36 3.5702
Cs 32 x 32 x 48 3.5558
Cs 40 x 40 x 60 3.5492
Cs Extrapol. 3.53740

Ho 32 x 16 x 32 3.541
Ho 64 x 32 x 64 3.538
Ho Extrapol. 3.537

Ho 32 x 32 x 32 3.559

Ga 16 x 16 x 16 3.4012

Ga 24x24x48 3.5160
Ga 32 x 32 x 64 3.5245
Ga Extrapol. 3.355

Og 36 x 22 x 36 3.5488

PS 32 x 16 x 32 3.6242
PS 64 x 32 x 64 3.5575
PS Extrapol. 3.53528

Tr 24x24x48 3.580
Tr 32 x 32 x 64 3.5636
Tr Extrapol. 3.543

40.5003 3.17118
48.418 3.4916 3039.9
43.67 1 3.2938 2633.6
42.225 3.2378 2511.6
41.249 3.2013 2430.0
40.4992 3.17399 2367.8

37.300 3.0927 2109.7
39.118 3.1382 2255.9
39.729 3.1539 2305.3
40.007 3.1611 2327.8
40.4986 3.1739 2367.4

42.172 3.3217 2650.4
40.940 3.2111 2444.5
40.529 3.1742 2375.9

39.954 3.2035 2409.1

47.745 3.5977

41.636 3.2715
41.206 3.2320
40.653 3.1812

39.53 3.151 2282

37.404 3.0319
38.379 3.1017
38.704 3.12496

38.57 3.0890
38.937 3.1070
39.41 3.1301

—0.3675

— 0.3820
—0.3775
—0.3760

—0.3677
— 0.3670
—0.3 662

187.47
173.82
169.62
166.79
164.60

156.07
160.89
162.50
163.23
164.51

174.10
167.46
165.25

165.92

—0.34 39
—0.3565
—0.3603
—0.3628
—0.36473

—0.3623
—0.3636
— 0.3641
—0.3643
—0.3 6476

—0.3 663
—0.3649
—0.3644

—0.3 689
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extrapolated values by Ch and Cs is remarkable. Although the two codes are similar, Cs
calculates the temperature on grid points which are offset from the points for the velo
city potential, whereas the points are the same in Ch. As a consequence Ch underesti
mates the strength of the cross-roll with low resolution, and Cs overestimates it, and for
most data the results converge from different sides. The extrapolated values from Cs
and Ch are corroborated by the extrapolated data supplied by Ho, and the results by
CB. In the latter case the convergence behaviour is not known, which prevents an extra
polation of their data. Also for the other contributions the overall agreement is good,
indicating that all participating codes perform satisfactorily and are free of serious
error. The “best” results for most requested quantities fall within a range of typically
1%, whereas data which are sensitive to the strength of the cross-roll perturbation, such
as w(0, b, 0.5), show a larger scatter on the order of ±4%. The mid-plane temperatures
and velocities should exhibit symmetry, such that for example w(a,0,0.5)=
—w(0, b,0.5) and T(a,0,0.5) 1— T(0,b,0.5). Redundant values are therefore not
reported in Table 2. Most participants found that the symmetry condition was satisfied
within 0.1% or better. Ga reports differences between w(a, 0,0.5) and — w(0, b, 0.5) of
about 1—2%, however, they decrease as the square of the mesh interval. Therefore
the asymmetry behaves as other truncation errors and is not a serious defect of the
method.

The benchmark problem necessarily requires anisotropic mesh spacing
(zx ty # Az). Limited experimentation with different mesh ration (Ho, Table 2)
suggests that slightly better results are obtained if the mesh ratios are as near to unity
as possible. In particular, Ho-32 x 32 x 32 (Ax/Az 1.0079 and Ay/Az = 0.6283)
generally gave poorer results than Ho-32 x 16 x 32 with Ay/Az = 1.2566, even though
the resolution is nominally better.

In Table 3 we also try to give an estimate for the exact solution. The data supplied
by CB, Ch, Cs, and Ho have been used to derive it. This does not imply that we consider
the respective codes as superior compared to others. They have been selected because
these contributors supplied a sequence of results with increasing resolution, showing a
well-documented convergence behaviour, which allows (except for CB) the extrapola
tion to the asymptotic value. The best estimate has been picked from the two closest
results, oftern Ch and Cs. The generally close agreement of the results from further
independently conceived codes is a safeguard against minor systematic errors, The
uncertainty quoted in Table 3 covers the range of the three extrapolated solutions Ch,
Cs, Ho, and (except for the Nusselt number) the best result by CB.

4.2 Case lb

The typical evolution of the temperature difference at the mid-plane due to the growth
of the cross roll is characterized by an initial oscillatory behaviour (Figure 2). The
reason for this is most probably that the imposed depth-dependence of the perturba
tion does not agree with the characteristic depth-dependence of the cross-roll (or its
eigen-function for infinitesimal amplitude). The oscillations die out within 0.1 thermal
diffusion times, with a smooth growth of the cross-roll, which is completed within 95%
after one thermal diffusion time.

I
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0.05

0.00

Figure 2 Case ib: Evolution of the temperature difference /T T(O,0,O.5) — T(0,b,0.5) as a function of

time. Results by Cs with 16 x 16 x 24 grid points for the upper line and 32 x 32 x 48 for the lower line.

The quantitative comparison (Table 4) reveals a quite large scatter. A systematic

study by Ch showed that the result is mainly sensitive to the spatial resolution, and

much less to the choice of the time-step (in terms of fractions of the Courant time step),

even for a method which is only first order correct in time. Because the results by Ch

and Cs converge from different sides and the extrapolated values agree well, they have

been taken to derive a best estimate. However, because of the deviation of the other

Table 4 Results for case lb

Resolution 5T(t = 0.4)/AT(x) z\T(t = 1.0)jAT(x.)

CB NT = 14 0.5470 0.9674

Ch 16 x 16 x 32 0.4389 0.8574

Ch 24 x 24 x 48 0.5096 0.9398

Ch 32 x 32 x 64 0.5381 0.9562

Ch 48 x 48 x 96 0.5595 0.9652

Ch Extrapol. 0.5772 0.9O8

Cs 16 x 16 x 24 0.5879 0.9765

Cs 32 x 32 x 48 0.5782 0.9721

Cs Extrapol. 0.5750 0.9706

Ho 32 x 32 x 32 0.5495 0.9630

PS 32 x 32 x 32 0.6790 0.9917

Tr 24 x 24 x 48 0.6058 0.9883

Best estimate 0.5 76 ± 0.03 0.9706 ± 0.0 10

0.20

0.15

0.10

t
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data, we must allow for larger error limits than in Case la. The cause for the large
deviations is not clear.

4.3 Case ic

When determining the instability of rolls against a cross-roll perturbation in the way
suggested in Section 2, at first transient oscillations are found as described in the
previous section. After they have died out within about 0.15 diffusion times, a clear
exponential growth or decay of the perturbation was found. The agreement for the
critical value b for the instability of the rolls between the five contributing codes is
good (Table 5) and allows to determine a best estimate within a reasonably narrow
uncertainty range.

4.4 Case 2

The planform for the case of temperature dependent viscosity is shown in Figure 3. It
consists of isolated hot rising plumes imbedded in a square of sheet-like descending
flow with concentrations at the junctions between sheets. According to the laboratory
experiments by White (1988), the square pattern would be stable in a layer of large
horizontal dimensions up to a Rayleigh number of 20,000, as considered here, but it
would evolve into a spoke pattern at higher Rayleigh number.

As would be expected, fewer contributions deal with this case, but the agreement
between the three submitted solutions is remarkably good. The data from CB and Ch
show clear convergence, which allows for Ch again an extrapolation to values, which
are in good agreement with the trend visible in the CB data, for which a formal
extrapolation is not possible (Table 6). The resolution for the two data sets supplied by
Og is not sufficiently distinct to allow an extrapolation, however, the agreement with
the other results is satisfactory. The agreement is also good for such aspects of the
solution, which are peculiar to the temperature dependence of viscosity, as local values
of the vertical vorticity (Table 7). Because the three numerical approaches are com
pletely different, we think that we can define the benchmark solution also for this case

Table 5 Results for case Ic

Resolution bri

CB N=l4 0.813
Ch 16 x 16 x 24 0.7538
Ch 24 x 24 x 48 0.7858
Ch 32 x 32 x 64 0.7917
Ch 48 x 48 x 96 0.8053
Ch Extrapol. 0.8120
Cs 16 x 16 x 24 0.8045
Cs 32 x 32 x 48 0.8074
Cs Extrapol. 0.8084
Ho 32 x 32 x 32 0.8155
Tr 32x26x32 0.8131
Best estimate 0.8 12 ± 0.04
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with great confidence. The extrapolated values from Ch are taken as the best estimate
for the exact solution (Table 7). The difference to the results by Og, and, where
available, by CB, have been used to set the uncertainty limits, except where the close
agreement of Ch and Og appeared to be accidental:

Table 6 Convergence behavior for selected quantities — case 2

Resolution Nu w(0,0,0.5) Q(O,0) Z(0,0) N(0,0)

CR = 12 3.0553 150.9
CR NT=l8 3.0464 163.6
CB NT=26 3.0420 165.6

Ch 16 x 16 x 32 3.0729 162.41 5.8969 11384 554.0
Ch 24 x 24 x 48 3.0547 163.99 5.8652 11111 542.3
Ch 32 x 32 x 64 3.0480 164.72 5.8522 11009 538.1
Ch 48 x 48 x 64 3.0432 165.34 5.8423 10932 535.0
Ch Extrapol. 3.03927 165.91 5.8339 10869 532.49

Og 30 x 30 x 30 3.0466 166.02 5.910 10898
Og 36 x 36 x 36 3.0441 166.95 5.903 10890 535.6

Figure 3 Case 2: Isotherms at the horizontal plane at z = 0.5 taken from a numerical solution by 0g. The
domain size is 3a x 3a.
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Table 7 Best results for all quantities-case 2

CB Ch Og Best estimate

Resolution NT Extrapol 36 x 36 x 36
Nu 3.0420 3.03927 3.0441 3.0393 ± 0.0050
vs-ms 35.132 35.165 35.13 ± 0.05
w(0, 0,0.5) 165.6 165.91 166.95 165.9 ± 1.0
w(0, b, 0.5)

— 26.72
— 26.72 — 26.72 ± 01

w(a, b, 0.5)
— 58.23

— 58.25 — 58.23 ± 0.1
T(0, 0,0.5) 0.90529 0.9059 0.90529 ± 0.0010
T(0, b,0.5) 0.49565 0.495 1 0.49565 ± 0.0010
T(a, b,0.5) 0.23925 0.2386 0.23925 ± 0.0010
Q(0,0) 5.8339 5.903 5.834±0.015
Q(a,b) 1.7136 1.702 1.714±0.015
Q(a,b) 0.7684 0.754 0.768±0.015
Z(0,0) 10869 10890 10870± 150
Z(a,b) —4145 —4203 —4145±150
Z(a,b)

— 12811 — 12933
— 12810± 150

N(0, 0) 532.5 535.6 532.5 ± 10.0
N(0,b)

— 137.6 — 140.4 137.6± 10.0
N(a,b) —626.2 —635.3 —626.2± 10.0
r(0,0.25) —0.5059 —0.5060 —0.5059±0.0040
t(a/2,0.25)

— 0.1921 —0.1955 —0.1921 ±0.0040
t(a, 0.25)

— 0.1388 —0.1376 —0.1388 ± 0.0040
Tm(0.75) 0.56593 0.5660 0.56593 ± 0.00100
Tm(0.50) 0.58158 0.5807 0.58158 ± 0.00100
cNO.75,0.25,0.75) — 11.125 — 11.36 — 11.125±0.25

5. COMPARISON OF LABORATORY DATA AND NUMERICAL RESULTS

5.1 Experimental set-ups

In all three contributing labs, the working fluid is enclosed in a transparent rectangular
frame sandwiched between thick horizontal metal plates. The temperature in these
plates is measured with imbedded thermocouples. A transparent working fluid is used:
silicon oil for the isoviscous case (case la), and sugar syrup for the case with tempera
ture-dependent viscosity (case 2a).

Simple visualisation techniques are used to give a rough idea of the convection
pattern: the shadowgraph method gives access to temperature variations, though
integrated along the x or y direction, while the ve)ocity structure is obtained
using passive tracers (aluminum flakes or hollow glass spheres). The number of
convection cells in the x and y directions can usually be deduced from these crude
observations.

In all cases, the system was left free to choose the aspect ratio which developed from
an initial temperature condition which could not be accurately regulated. Therefore,
the dominant aspect ratio was usually different from the one specified in the benchmark
definition.
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5.2 Quantitative techniques

In the lab, there is no problem obtaining a three-dimensional convective structure. The

problem rather rests in its identification and measurement. Very few techniques yield

local values everywhere in the fluid. Nevertheless, more global quantities, such as the

Nusselt number, or the vertical profile of horizontally-averaged temperature, are often

as important for applications to geophysical problems.

In this report, results from several different techniques are presented. Local velocities

w(x, v, z) are measured from stroboscoped streak photographs of passive tracers.

Vertical profiles of horizontally-averaged temperature Tm(Z) are obtained by measur

ing the electrical resistance of a platinum wire. Integrated (over y) temperature

gradients t(x, z) are deduced from the deflection of a laser beam. The Nusselt number is

derived from the Tm(Z) profile, or measured directly from the total heat power fed into

the tank. The techniques will be discussed further and evaluated with the presentation

of the different results.

5.3 Case Ia (Isoviscous bimodal convection)

This case was treated in only one lab (Nataf). The experimental parameters are listed in

Table 8. The fluid is silicon oil. The set-up and procedure are similar to those described

in Natafet at. (1988).
The measurements were taken between 2.5 and 5 days (30 and 60 diffusion times)

after convection started. The pattern was seen to be bimodal with 7 rolls in the x

direction, and Sin they direction. But the width of the rolls could differ by as much as a

factor of 2, with smaller rolls on the side-walls. This situation appeared to persist during

the entire run.

5.3.1 Velocity measurements

Local velocity measurements were taken, using a very simple method: the fluid contains

tiny aluminium flakes; a y = const. slice of fluid is illuminated; a long-exposure photo

graph is taken. The length of the streak on the picture is proportional to the projection

of the velocity vector in the illuminated xz-slice. The light is stroboscoped, so that by

counting the number of dots in the track, one can check that the flake remained in view

during the complete exposure. Figure 4 gives an example of a slice near y b, with x

between — a and a. The velocity in the central uprising current (x = 0) is clearly much

Table 8 Experimental parameters

Laboratory depth aspect fluid viscosity at Ru T r

(cm) ratio mean T(P as) (K)

Case Ia
Nataf 2.9 8.6 x 4.3 silicon oil 0.93 30,000 14.4 (1.33)

Case 2a
Giannandrea 6.5 7.3 x 7.3 sugar syrup 18.11 16,880 22.4 18.5

Guillou 4.07 8 x 8 sugar syrup 3.82 20,400 27.9 19.6
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Figure 4 Case Ia: streak photograph of an xy-slice of fluid near y = b. There is an uprising current in the
center (x = 0), and downwellings on both sides (x = ± a). The picture was obtained by taking a 16
second-exposure of the tank, while the xz-slice was illuminated by light pulses of 1 sec duration interrupted
by dark intervals of I sec. Aluminum flakes entrained in the fluid leave tracks, consisting of 8 bright dots. The
length of a track is proportional to the component of the local velocity in the xz plane.

smaller than in the downwelling currents on the sides (x = ± a). This a consequence of
the three-dimension pattern: the slice is close to a downwelling sheet of the cross-rolls.

A tedious analysis of a series of pictures for different y values yield the following
information: the flow is bimodal, with a 1.17, and b 0.63. The axes of both sets of
rolls appear, locally, to deviate by about 100 from being parallel to the walls of the tank,
and there are indications of some asymmetry. The vertical velocities w(0, 0,0.5) = 106,
w(a, 0,0.5) = 45, and w(0, b, 0.5) = —45, and w(a, b, 0.5) = — 112 were derived from the
streak photographs. They agree within 12% with the numerical values of Table 3,
which can be considered as good given the experimental uncertainties. They indicate,
however, that the cross-rolls are less developed in the lab than in the numerical
experiments.

5.3.2 Vertical profile of horizontally-averaged temperature

The horizontally-averaged temperature at a given depth can be obtained from the
average electrical resistance of a platinum wire suspended at a given depth and cutting
the convection pattern at an oblique angle (e.g., Richter et al., 1983). By moving the wire
to different depths (with about 5 sec. time delay) one gets a vertical profile. The method
requires some calibration. Here, this was done by measuring a reverse (conductive)
profile, and an isothermal one. Figure 5 shows two profiles obtained for case la: one
when moving the wire up, the other one when moving it down. Details of the numerical
profile are nicely reproduced, but there appears to be a systematic difference between
the up- and down-profiles, as well as a global shift to lower temperatures. The latter is

-a 0 xa
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N

case la

Figure 5 Case la: vertical profile of the horizontally-averaged temperature. The asc (desc) profile is

obtained by moving up (down) a platinum wire, which runs in a horizontal plane in the fluid. The wire rests

for 5 seconds after each move, before the measurement is taken. The electrical resistance of the wire is

proportional to temperature. Note the systematic difference between the two profiles.

probably due to a calibration error. The former effect is more serious: it indicates tha;

the flow is perturbed by the presence of the wire, as one could expect indeed in a very

viscous fluid. Note that this effect is even more pronounced in experiments with a

nearly stress-free surface (Giannandrea and Christensen, 1993).

The Nusselt number can easily be measured from the slope of the profile at the

top or bottom. Both profiles yield a mean value Nu = 3.5, compatible with the

numerical result. However, there appears to be again a strong bias, since for the

descending profile, the top and bottom boundary layers yield very different values (3.0

versus 4.0).

5.3.3 Profiles of y-integrated temperature gradients

The deflection of a laser beam, entering the tank horizontally parallel to the y

direction, is proportional to the temperature-gradient vector in the xz-plane, integrated

along the y-direction (e.g., Nataf et al., 1981). Some calibration is needed. It is easily

obtained by running a reverse (conductive) gradient, and an isothermal one. The

x-profiles have been measured at different depths. Although no direct information is

available from these data on structure in the y-direction, it is interesting to note that the

horizontal gradients should only reflect structure in the x-direction, whereas vertical

gradients are, in addition, sensitive to rolls in the y-direction.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Tm
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Figure 6 compares experimental and numerical profiles of the horizontal and
vertical gradients of temperature at two different depths: z = 0.25 and z = 0.5. The
numerical profiles were computed by Ch on a 32 x 32 x 64 grid, using the a and b
values derived from the experimental velocity measurements (a = 1.17, b = 0.63). For
comparison, numerical profiles for two-dimensional-rolls with the same a value are
also given.

On the z 0.25 profile of horizontal temperature gradient, one recognises the
signature of an uprising current at x = 0: isotherms aie nearly vertical and closely
packed, giving rise to high values of the horizontal gradient, changing sign in the center
of the uprising. The gradients in the core of the convection cells are much smaller.

Overall, the agreement between the numerical and experimental profiles is very
good. Especially interesting is the profile of vertical gradient at z = 0.25. The numerical
experiments show that the shape of this profile is very sensitive to the existence of
cross-rolls. This is well recovered by the experimental profile. However, there is again
some indication, from all profiles, that the cross-roll structure is slightly less developed
in the lab than in the computations. This is probably a consequence of the stronger
confinement in the v-direction imposed by the size of the tank.

5.4 Case 2a (Temperature-dependent viscosity square convection)

This case was treated in two labs (Giannandrea, and Guillou). Both used sugar syrup as
a working fluid. The experimental parameters are given in Table 8.

A square pattern was probably obtained by Giannandrea. From the limited streak
observations it is not clear if the dimension of the squares was approximately
a = b = 1.5 or 0.75; at any rate it differed from unity as prescribed in the benchmark
definition. Guillou did not obtain any steady-state, even after 8 days (50 diffusion
times). At some point a fairly regular pattern, possibly squares, with a = 0.8 was
observed, but did not stay.

5.4.1 Nusselt number

The apparatus of Giannandrea was especially designed for measuring the Nusselt
number. A description can be found in Giannandrea and Christensen (1993) the bottom
plate is heated by a thin foil, which consists of a precision resistance alloy. A guard
heating system ensures that all the heat entering the foil goes into the tank. Heat
flowing into the side-walls is corrected for. The Nusselt number is then deduced from
the total ohmic heat of the foil, and the measured temperature of the top and bottom
plates. The Nusselt number obtained for case 2a was Nu = 3.03 ± 0.05. This value is the
interpolation of several experimental results with neighbouring values of Rayleigh
number and viscosity ratio (Giannandrea and Christensen, 1993). The closest actual
experiment is summarized in Table 8. It yielded a Nusselt number of 2.93. The
interpolated Nusselt number is apparently in very good agreement with the numerical
experiments, however, for the likely cell size in the experiment of a = b = 0.75 numerical
calculations by Ch gave a Nusselt number of 3.18, i.e., a deviation of 5% from the
experimental value. Given the uncertainty in physical properties of the fluid, such as its
thermal conductivity, an error of this order is plausible.
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As mentioned above, the experiment by Guillou did not reach a steady state. In his

case, temperatures are measured at fixed positions in the tank by thermocouple probes

running in the fluid (see a description in Guillou, 1992). Conceivably the unsteadiness

may arise because (1) the temperature probes perturb the flow, or (2) because the tank

dimensions cannot accommodate the preferred wavelength of stationary square cell

convection. It may also play a role that accoring to White (1988) square cells are close

to their stability limit at a Rayleigh number of 20,000. The Nusselt number was deduced

from the temperature difference between the upper plate and a row of 6 thermocouples

at a depth z = 1 — 0.075. The Nusselt number showed large variations with time, with

values from 2.6 to 4.6, and these variations appear to correspond to the spatially

unstable pattern.

6. CONCLUSIONS

Our comparison study has shown that today reliable technical means for modeling

high Prandtl number convection in three dimensions are available. For steady convec

tion, the agreement among the participating codes concerning global properties, such

as the Nusselt number, is typically of the order of 1 ,/o or better. As would be expected,

data which are sensitive to slight differences in the three-dimensional pattern, such as

the strength of the cross-rolls in bimodal convection, are subject to larger differences,

but these are still at a tolerable level for geophysical applications. Our study also shows

the power of extrapolating a sequence of successively higher resolved results to obtain

very high precision data. The very good agreement of extrapolated data obtained by

various codes makes us very confident of the correctness of the “bench mark solution”

which should be useful for the future verification of three-dimensional convection codes

Also the case of temperature-dependent viscosity can be reliably resolved, as is demon

strated by the good agreement of results from three completely different methods.

A special interest in performing three-dimensional modeling lies in the determina

tion of the planform of convection. The agreement for the critical wavelength of cross-

rolls suggests that the issue of pattern selection is probably well taken by all codes

contributing to case ic. However, the difficulty that some participants had to obtain

the same bimodal pattern for case Ia shows that a given solution can be non-unique

and dependent on the initial conditions.

Compared to the previous two-dimensional benchmark study (Blankenbach et al.,

1989), the level of difference between the reported results is some-what larger at a

similar level of numerical resolution. One explanation is that in the two-dimensional

benchmark most codes were finite element methods which employed higher resolution

in the boundary layers, which enhances the accuracy, whereas in the present study the

resolution is always uniform. Another explanation is that in a small two-dimensional

domain the possible geometry of the flow is strongly constraints. The additional degree

of freedom in three-dimensional weakens the constraints on the precise distribution of

the flow, which is evident for case la in the rather large differences found for the

strength of the cross roll.
The comparison of the numerical results with laboratory measurements brings to

light several interesting issues.
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Most often the physical system appears to be fairly “lazy”, in that it can accommo
date a somewhat non-symmetrical pattern for a very long period of time. Conversely,
small perturbations, such as sidewall effects or those induced by plunging thermo
couples may have a strong influence on the system. By analogy with crystallography,
the numerical experiment can be seen as the “ideal” brick of the physical system, which
contains all kinds of defects in the real world.

Despite these differences in the pattern of convection, the values of those parameters
that could be measured in the lab agree quite well with the numerical results.

Several experimental methods could be tested. Streak photographs of passive tracers
are a very good tool for determining the pattern of convection (when it cannot be
observed more directly from the top of the tank). It also yields a surprisingly good
quantitative velocity field. However, for many geophysical applications, the tempera
ture field is often more important. Vertical profiles of the horizontally-averaged
temperature were obtained using a platinum wire. The method is very sensitive and
nicely picks up details of the numerical profiles. However, there are clear indications
that the moveable wire perturbs the flow, thereby producing systematic biases.
Considering how useful the method proves to be in many applications, it is important
to assess how large these biases are in particular experiments. The deviation of a laser
beam is very sensitive to the thermal structure of convection. Although it integrates the
information along one direction, it was found that it could be used to discriminate
between rolls and bimodal convection. The determination of the Nusselt number based
on the measurement of the total heat power input was found to give results within the
expected experimental uncertainty. Our comparison study suggests that numerical and
laboratory experiments can complement each other in many applications, and that
semi-quantitative or better agreement can be achieved.
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