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4 Laboratoire de Gëophysique Interne et de Tectonophysique, Baª timent IRIGM, LBP 53, 38041 Grenoble cedex 9, France

Accepted 1999 June 7. Received 1999 May 31; in original form 1998 October 27

SUMMARY
The lowermost 200^300 km of the Earth's mantle, known as the D@ layer, is an
extremely complex and heterogeneous region where transfer processes between the core
and the mantle take place. Di¡racted S waves propagate over large distances and are
very sensitive to the velocity structure of this region. Strong variations of ampli-
tudes and waveforms are observed on recordings from networks of broad-band seismic
stations.We perform forward modelling of di¡racted S waves in laterally heterogeneous
structures in order to analyse whether or not these observations can be related to lateral
inhomogeneities in D@.

We combine the di¡raction due to the core and the scattering due to small-scale
volumetric heterogeneities (10^100 km) by coupling single scattering (Born approximation)
with the Langer approximation, which describes Sdiff wave propagation. The in£uence
on the direct as well as on the scattered wave¢elds of the CMB as well as of possible
tunnelling in the core or in D@ is fully accounted for. The SH and the SV components
of the di¡racted waves are analysed, as well as their coupling.

The modelling is applied in heterogeneous models with di¡erent geometries: isolated
heterogeneities, vertical cylinders, horizontal inhomogeneities and random media.
Amplitudes of scattered waves are weak and only velocity perturbations of the order of
10 per cent over a volume of 240|240|300 km3 produce visible e¡ects on seismograms.
The two polarizations of Sdiff have di¡erent radial sensitivities, the SH components
being more sensitive to heterogeneities closer to the CMB. However, we do not observe
signi¢cant time-shifts between the two components similar to those produced by aniso-
tropy. The long-period Sdiff have a poor lateral resolution and average the velocity
perturbations in their Fresnel zone. Random small-scale heterogeneities with +10 per
cent velocity contrast in the layer therefore have little e¡ect on Sdiff , in contrast to
their e¡ect on PKIKP.

Key words: D@, di¡raction, polarization, S waves, scattering, synthetic waveforms.

1 INTRODUCTION

The core^mantle boundary (CMB) is a major discontinuity
in the Earth with strong contrasts in density, viscosity and
chemical composition. The core appears very homogeneous
to seismic waves (Souriau & Poupinet 1991), in contrast
with the lowermost 200 or 300 km of the mantle, known as
the D@ region, where strong lateral heterogeneities are present
at small (*10 km) to large (*1000 km) scales [for reviews
on D@, see Loper & Lay (1995), Weber et al. (1996) and Lay
et al. (1998)]. In particular, precursors of short-period PKIKP

or PKKP waves have been interpreted as scattering by
small-scale heterogeneities located in the D@ region (Bataille
et al. 1990; Haddon & Cleary 1974; Husebye et al. 1976)
as well as the coda of short-period di¡racted P waves (Bataille
& Lund 1996; Tono & Yomogida 1996, 1997). In the case
of precursors, the source of scattering is inferred to be
either volumetric inhomogeneities with P-velocity £uctuations
of several per cent and scale lengths of 10^100 km, or core^
mantle topography bounded by 500 m £uctuations (Doornbos
1976, 1978). A more recent analysis seems to indicate that
small and weak volumetric heterogeneities (*8 km, 1 per cent
velocity perturbation) may exist throughout the mantle
(Hedlin et al. 1997).
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As they propagate a long distance along the CMB, di¡racted
waves, mainly Pdiff and SHdiff , have been used to study
the velocity structure in the D@ layer (Doornbos & Mondt
1979a; Mula 1981). Large-scale lateral heterogeneities have
been found (Hock et al. 1997; Souriau & Poupinet 1994;
Sylvander et al. 1997; Wysession & Okal 1988) with 4 per cent
maximum velocity perturbations and strong variations of the
Poisson coe¤cient, favouring chemical anomalies (Wysession
et al. 1992). A promising procedure for investigating both
radial pro¢les and lateral variations of lower mantle shear
velocity is to model simultaneously SH^SKS di¡erential
traveltimes, amplitude ratios of SV/SKS and Sdiff wave shapes
(Ritsema et al. 1997). In the Paci¢c region, SVdiff signals
exhibit considerable waveform and amplitude variability.
Signi¢cant small-scale (100^500 km) shear velocity hetero-
geneity (0.5^1 per cent) is required to explain scatter in the
di¡erential times and amplitude ratios. Moreover, observations
of time delays between SHdiff and SVdiff have revived the idea
of the possible presence of anisotropy in the D@ layer (Garnero
& Lay 1997; Kendall & Silver 1996; Maupin 1994; Ritsema
et al. 1998; Vinnik et al. 1989, 1995, 1998).
In this paper, our scope is to study the e¡ects of lateral

heterogenity in D@ on the characteristics of the di¡racted
S waves; in particular, how their waveforms are distorted and
their polarizations possibly modi¢ed. Following Doornbos &
Mondt (1979a) and to avoid confusion in terminology, we will
use the word `scattering' to indicate wave interaction with
relatively small-scale irregularities. The word `di¡raction' will
be used here in connection with the interaction of the wave-
¢eld with a smooth boundary, in this case the CMB. The
combination of scattering by small-scale inhomogeneities and
di¡raction by the core is not easy to study. The di¡raction
will be modelled using the full wave theory (also called the
Langer approximation) developed by Richards (1973, 1976).
This approximation is an extension of the high-frequency
WKBJ theory. It is accurate in the turning-point region of
the ray, which is situated near the CMB interface, and has
been used to study SmKS waves (Choy 1977), PKnIKP waves
(Cormier & Richards 1977) and di¡racted waves (Doornbos
1981; Doornbos & Mondt 1979a,b; Maupin 1994; Mondt
1977). The main di¡erence with theWKBJ approximation is the
frequency dependence of transmission^re£ection coe¤cients.
These coe¤cients incorporate the e¡ects of curvature of
the discontinuity and the tunnelling phenomenon at grazing
incidence (Richards 1976). In tunnelling, rays that turn just
above or below a boundary can interact with the boundary at
¢nite frequency. For rays bottoming just above a boundary,
transmitted real rays can be excited below the boundary
(Cormier & Richards 1988). Moreover, the Langer approxi-
mation is valid if a unique turning point exists for each wave
type in a layer. This condition implies that the velocity gradient
must satisfy the relation do/dz < 0 or do/dr < o/r (Doornbos
& Mondt 1979a). A satisfactory comparison between the
full wave theory and the re£ectivity method (Fuchs 1968;
Fuchs & Mu« ller 1971) has been made by Choy et al. (1980).
The scattering is described within the Born approximation. The
simplicity of this theory and its implementation have guided
our choice: it can be considered as a ¢rst step before taking into
account more complete theories. In the Born approximation,
the incident wave interacts only once with each heterogeneity
(¢rst-order scattering), and multiple interactions between
heterogeneities are assumed to be negligible. Details about the

validity of the Born approximation can be found in Hudson
& Heritage (1981). In this study we ¢nd that the scattered
¢elds remain small compared to the direct ones. This shows
a posteriori that the Born approximation should give us
reasonably accurate results in the ¢rst instance.
In the ¢rst part of this paper, we combine the full wave

theory with the Born approximation in order to develop an
adequate theory to model the scattering of di¡racted waves.
In the second part, we analyse the characteristics of Sdiff

waves in some simple geophysically relevant situations such as
a vertical plume, a localized low-velocity zone and small
inhomogeneities distributed in a random way in the D@ layer.

2 THEORY

2.1 Scattering in the Born approximation

Our aim is to model the e¡ects of a point heterogeneity on
di¡racted S waves (Fig. 1). The propagation of Sdiff waves
is treated with the Langer approximation and we only con-
sider single scattering (Born approximation). We focus on
the coupling between the two polarizations of S waves by
volumetric heterogeneities. Indeed, scattered P waves have a
shorter traveltime than Sdiff waves. These scattered P waves
cannot interfere with the primary Sdiff wave.
The general equation of motion in a spherical earth can be

written as

o�ui~fizpij, j , (1)

where u is the displacement vector, ó the stress tensor and f the
source force vector. For an isotropic medium, the stress and
strain tensors are related by

pij~jdijekkz2keij , (2)

where

eij~
1
2

Lui
Lxj

z
Luj
Lxi

� �
(3)

is the strain tensor. The e¡ect of lateral heterogeneity is
treated in a linearized way by using the Born approximation

Figure 1. Coordinate systems used in this study. In (rª , xª , yª ), r
corresponds to the radius, x to north and y to east.
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for the scattered wave. Suppose that the structural parameters
in the medium can be written in the following way:

k(r)~k(r, h, �)~k0(r)z*k(r, h, �) ,

j(r)~j(r, h, �)~j0(r)z*j(r, h, �) ,

o(r)~o(r, h, �)~o0(r)z*o(r, h, �) .

(4)

The parameters k0, j0 and o0 de¢ne a laterally homogeneous
background medium. All calculations are performed in the
frequency domain. Combining eqs (1), (2) and (4), the equation
of motion of the laterally heterogeneous system can be written
as

Lijuj~fi , with Lij~{dijou2{LijLj{LjkLi{dijLkkLk (5)

(Snieder 1986a). The operator can be developed as L~L0zÄL
and the displacement ¢eld u~u0zÄu. If these expressions are
inserted in eq. (5), the terms of zeroth order and ¢rst order in
perturbation lead to the relations

L0u0~f , (6)

L0Äu~{ÄLu0 . (7)

Eqs (6) and (7) can both be solved with the Green's function
G of the background medium. This leads to the following
expressions for the direct wave:

udir~u0~Gf , (8)

and for the scattered wave:

uscat~Äu~{GÄLudir~{GÄLGf . (9)

The previous equations are an abbreviated notation for

udiri (r, u)~GijFj~

�
dVsGij(r, rs, u) fj(rs, u) , (10)

uscati (r, u)~{

�
dVh

�
dVsGij(r, rh)*Ljk(rh)Gkl(rh, rs) fl(rs, u) ,

(11)

where Vs is the source volume and Vh the volume of the
inhomogeneity. The operator representing the heterogeneity is

*Ljk(rh)~{djk*o(rh)u2{Lhj *j(rh)Lhk

{Lhk*k(rh)Lhj {djkLhl *k(rh)Lhl . (12)

The di¡erentiations Lh are all with respect to the rh coordinates
of the heterogeneity. Note that the di¡erentiations apply both
to the Green's function on the right of ÄL and to the lateral
heterogeneities *j(rh) and *k(rh). The di¡erentiation over
these last quantities can be removed by partial integration (e.g.
Snieder 1986a). For example, the *j(rh) term can be rewritten
as follows:�

dVhGij(r, rh)Lhj [*j(rh)LhkGkl(rh, rs)] fl

~{

�
dVh[Lhj Gij(r, rh)]*j(rh)[LhkGkl(rh, rs)] fl

z

�
dShGij(r, rh)]*j(rh)[LhkGkl(rh, rs)] fl . (13)

The partial integration yields a surface integral, which is zero
for buried scatterers as in our case (Snieder 1986a) [for a more
general justi¢cation, see Snieder (1986b) or Tarantola (1987)].
We suppose that the heterogeneity is localized in a region Vh

with characteristic lengths small compared to the wavelength
(Rayleigh scattering). In this case, we can consider the Green's
function to be constant over the volume Vh. Doing the same
partial integration for the *k(rh) terms, we ¢nally obtain

uscati (r, u)~[*ou2VhGij(r, rh)Gjl(rh, rs)

{*jVh(Lhj Gij(r, rh)) (LhkGkl(rh, rs))

{*kVh(LhkGij(r, rh)) (Lhj Gkl(rh, rs))

{*kVh(LhkGij(r, rh)) (LhkGjl(rh, rs))] fl(rs, u) , (14)

which we can write in a more compact form with an operator
ÄM,

uscati (r, u)~Gij(r, rh)*Mjk(rh)Gkl(rh, rs) fl(rs, u) , (15)

or, in a matricial form,

uscat(r, u)~G(r, rh)ÄM(rh)G(rh, rs)f(rs, u) , (16)

where the derivatives in the operator ÄM act only on Green's
functions. This is a completely general expression for the
scattered ¢eld in the Rayleigh^Born approximation (Snieder
1986a). We now have to introduce in this expression a Green's
function that is appropriate for representing the di¡racted
S waves.

2.2 Green's function for di¡racted S waves in a
laterally homogeneous medium

In the following, we calculate the Green's functions needed in
eq. (16). Di¡racted waves cannot be modelled by ray theory.
Within D@, the Sdiff waves are close to their turning point. At
the frequencies we are interested in, the most appropriate
method to model them is the Langer approximation, which is
an extension of the WKBJ approximation for waves close to
their turning point (Richards 1973, 1976). The Sdiff waves
are the poles of the re£ection coe¤cients at the CMB. We
need, therefore, to account for the interaction of the direct and
scattered wave¢eld with the CMB. This will be achieved
by inserting the boundary conditions on D@ in the Green's
functions using a re£ectivity-like scheme (Kennett 1983).
Although it is used here primarily to account for the CMB, we
note that this procedure models properly the whole propagation
process within D@, even for complicated models of D@. In a
model with a discontinuity at the top of the D@ layer, for
example, it would handle the interaction of the wave¢eld with
that discontinuity as well as multiple re£ections within D@. In
the lower mantle above D@, the wave¢eld is assumed to be a
simple downgoing incident wave and two upgoing waves, the
direct and scattered waves. The WKBJ approximation will be
used to describe the wave¢eld in this part of the model (Fig. 2).
We assume that the inhomogeneity is situated exclusively in the
D@ layer.
We will ¢rst recall some elements concerning the Langer

approximation.We will then combine them with the boundary
conditions and source terms to express the Green's functions.
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2.2.1 The Langer approximation

In spherical coordinates, displacement, radial stresses and
source terms may be expanded in terms of spherical harmonics
(Chapman & Orcutt 1985). In the high-frequency approxi-
mation (equivalent to large l, small m and the receiver away
from the poles), the spherical harmonic vectors align with the
unit vectors of the coordinate system and the expansion may be
reduced to

u

ô/u

� �
~
X
l

X
m

Bm
l Y

m
l (h, �) . (17)

Keeping only the terms that represent the waves moving away
from the source, the asymptotic form for Ym

l is

Ym
l (h, �)~(i)mYl(h) exp (im�) , (18)

with

Yl(h)~

������������
2lz1
4n

r
Q(2)

l (cos h) (19)

and

Q(2)
l (cos h)~

exp i lz
1
2

� �
h{i

n
4

� �
�����������������
2nl sin h
p . (20)

In the case of a point force at the pole,

f(r, h, �)~F
d(r{rs)

r2
lim
hs?0

d(h{hs)d(�) , (21)

the expansion of the source terms becomes, in the same
conventions as in eq. (17),

FmT
l ~(Hm

l Iml Jm
l )

~
d(r{rs)

r2
lim
hs?0

FT . (Rm
l
1(hs, 0) iSm

l
1(hs, 0) {iTm

l
1(hs, 0)) ,

(22)

where Rm
l , S

m
l and Tm

l are the spherical harmonic vectors. The
expansion has non-zero values only for m~0, z1 and {1:

H0
l ~

d(r{rs)
r2

������������
2lz1
4n

r
Fr ,

Iml ~
d(r{rs)

r2

������������
2lz1
4n

r
1
2
(+iFh{F�) , m~+1 , (23)

Jm
l ~

d(r{rs)
r2

������������
2lz1
4n

r
1
2
(Fh+iF�) , m~+1 .

Combining eqs (1), (2) and (3), we express the equation of
motion for a perfectly elastic, isotropic and spherically sym-
metric medium. The spherical harmonics decomposition is
such that this equation reduces to an equation in the radial
coordinate only:

dBm
l

dr
~uABm

l z
0

{Fm
l /u

 !
. (24)

A is a 6|6 matrix related to the properties of the medium,
independent of the angular frequency u and of the index m
(given in Chapter 9.5 of Aki & Richards 1980a). Since A is
independent ofm, the solutions of the di¡erential equation (24)
are independent of m, except for the forcing terms. Using
eq. (18), eq. (17) can be transformed into

u

ô/u

 !
~
X
l

blYl(h) , (25)

with

bl~
X
m

(i)mBm
l exp (im�) . (26)

Inserting this expression into eq. (24) and using the expression
(23) for the expansion of the source term, one can show that bl
satis¢es the di¡erential equation

dbl
dr

~uAblz

0

0

0

{Fr

{Fh cos�{F� sin�

Fh sin�{F� cos�

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

1
ur2

������������
2lz1
4n

r
d(r{rs) .

(27)

In the epicentral direction �~0, this equation reduces to

dbl
dr

~uAblz
0

{F/ur2

 ! ������������
2lz1
4n

r
d(r{rs) . (28)

In the following, (lz1/2) will be replaced by k~up, where
k is the horizontal wavenumber and p the horizontal ray
parameter, and the index l on b will be omitted. A solution of
eq. (28) can be obtained by transforming the displacement^
stress vector b to the amplitudes a of down- and upgoing
elementary waves, which leads, in the absence of a source, to

b~DËa . (29)

Figure 2. Use of the Langer approximation in the D@ layer and of
the WKBJ approximation in the rest of the mantle to calculate the
wave¢eld.
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The columns of the D matrix are formed with the eigen-
vectors of the Amatrix and correspond to displacement^stress
vectors of elementary down- and upgoing P, SV and SH waves
(or a combination of down- and upgoing waves below the
turning point). Ë is a diagonal matrix whose elements are
vertical wave functions. As far as possible, we have used the
same conventions and normalizations as Cormier & Richards
(1988) for the notation in these matrices. In the Langer
approximation, P and S waves travel independently except at
layer boundaries, leading to constant amplitudes in each layer.
The goal of this study is to analyse the e¡ect of lateral

heterogeneities on the waveforms of S-di¡racted waves. In the
framework of the Born approximation, multiple scattering
such as SPS scattering cannot be studied. Scattered waves
involving one conversion from S to P or from P to S have
traveltimes quite di¡erent from those of the pure S phases,
and will not interfere with the direct S wave. We can there-
fore restrict our analysis to SS scattering. In the models
we are using, the S-di¡racted waves depend on the P-wave
velocity only through the P-wave velocity dependence of the
re£ection coe¤cients at the CMB. Except when calculating
this re£ection coe¤cient, we can therefore reduce the dimen-
sions of the amplitude vectors a and of the D and Ë matrices,
working only with their elements related to the S waves.
Not doing so would introduce undesirable numerical noise
in the calculations. In situations where P waves would be of
some importance, for example in the presence of an ultra-
low-velocity zone, or in order to study SPdiffKS waves, the
derivation can be performed with the full a, D and Ë matrices.
In models with discontinuities at the top of or inside D@, the full
D and Ë matrices can easily be introduced in the calculation of
the propagators at the level of the discontinuities, in order to
account for the P-wave velocity dependence of the re£ection
and transmission coe¤cients.
We also de¢ne two matrices Ë{1 and D{1 that are not

exactly the inverses of Ë and D, but are such that Ë{1D{1 is
the inverse ofDË. In the following, we only need the part of the
matrices related to S waves:

Ë~

�p

�p

�p

�p

2666664

3777775 ; Ë{1~
{iu2r2

2osb
3
s

�p

�p

�p

�p

2666664

3777775 , (30)

where os and bs are the density and the S velocity at the source.
In the Langer approximation, the vertical wave functions are
expressed in terms of Airy functions:

�p

�p

" #
~

os

o

� �1=2 b3=2
s

b
2
ur

n
s

� �1=2

f1=4
Ai({e{2in=3f) ezin=3

Ai({ez2in=3f) e{in=3

" #
,

(31)

with

f~
3
2

uq ; q~
�r
rpb

sdr ; s~
1
b2 {

p2

r2

� �1=2
. (32)

Below the turning point of the wave, the descending wave �p is
replaced by a stationary wave �p ~�pz�p (Cormier & Richards
1977) in order to take into account multiple re£ections
(Doornbos 1981). At the level of the turning point, the wave

function tends to a non-zero limit (Langer 1949). The generalized
vertical slownesses are de¢ned as

�g~
1

iu�p
d�p
dr

; �g~{
1

iu�p
d �p
dr

. (33)

In the WKBJ approximation, the Airy functions reduce to
exponentials:

�p

�p

" #
~

os

o

� �1=2 b3=2
s

b
1
ur

1
s1=2

e{iuq ezin=4

eziuq e{in=4

" #
. (34)

The generalized vertical slownesses become, above the
turning point, �g*�g*s, and below the turning point,
�g*{�g*{i( p2/r2{1/b2)1=2.
The D matrix, built in a convention that is convenient for

calculating re£ection and transmission coe¤cients, with the
¢rst two columns for downgoing SV; and SH; waves and
the last two for upgoing waves SV: and SH:, can be written

D~

bp/r 0 bp/r 0

b�g 0 {b�g 0

0 1 0 1

{2iobb�g 0 2iobb�g 0

{ioba 0 {ioba 0

0 {iob2�g 0 {iob2�g

2666666666664

3777777777775
, (35)

D{1~

2iobb�g ioba 0 {bp/r {b�g 0

0 0 iob2�g 0 0 {1

2iobb�g {ioba 0 bp/r {b�g 0

0 0 iob2�g 0 0 1

26666664

37777775 ,

(36)

where a~1{2b2( p2/r2) and b~b2( p/r).
Following the formalism developed by Gilbert & Backus, the

propagator P between radii r1 and r2 can be de¢ned by

b(r2)~P(r2, r1)b(r1)~D(r2)Ë(r2)Ë{1(r1)D{1(r1)b(r1) . (37)

In the same way and using eq. (29), we can de¢ne the
propagator S to link the wave amplitudes between r1 and r2 by

a(r2)~S(r2, r1)a(r1)~Ë{1(r2)D{1(r2)D(r1)Ë(r1)a(r1) . (38)

2.2.2 The Green's function

We are now going to use these propagators together with
the boundary conditions and source terms to express the
Green's function. Eq. (16) involves two Green's functions,
one for the direct wave, and one for the scattered wave. The
boundary conditions at the top of D@ are di¡erent for these two
functions (see Fig. 3). On the other hand, they have the same
lower boundary condition. Since the di¡racted S waves are
associated with the poles of the re£ection coe¤cient at the
CMB (Chapman & Phinney 1972; Cormier & Richards 1988),
the lower boundary condition for both Green's functions reads

�aCMB

�aCMB

 !
~

I2

RCMB

 !
�aCMB , (39)
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where a contains the amplitudes of the SH and SV waves
propagating downwards and upwards in the bottom part of D@,
RCMB is a diagonal matrix containing the re£ection coe¤cients
for the SV and SH waves at the CMB and I2 is the 2|2 identity
matrix.

2.2.3 Green's function for the incident wave¢eld

For the direct wave, the source is located above D@, implying
that there is both an incident wave¢eld on the top of D@ and a
wave¢eld propagating upwards back into the lower mantle.
The amplitudes aM above D@ are related to those aCMB in D@ by
the propagator S (eq. 38):

�aM

�aM

 !
~S(rzD , r{D )

I2

RCMB

 !
�aCMB . (40)

Recall that, in the Langer approximation, the wave amplitudes
are constant in each layer. rD is the radius of the top of D@
and the z/{ signs indicate that the elements are evaluated
right above or right below the top of D@. In the slowness range
appropriate for this study, the elements evaluated at r{D can
be calculated using the Langer approximation, and those
evaluated at rzD can be calculated using the WKBJ approxi-
mation (Fig. 2). Decomposing the matrix S into four
submatrices corresponding to the downgoing and upgoing
directions of propagation,

S~
Sdd Sdu

Sud Suu

 !
, (41)

eq. (40) can be used to express the total wave¢eld as a function
of the incident waves only. We have

�aCMB~(SddzSduRCMB){1�aM (42)

and

�aM~(SudzSuuRCMB)�aCMB , (43)

and therefore

�aM~RD@�aM , (44)

with

RD@~(SudzSuuRCMB)(SddzSduRCMB){1 . (45)

RD@ is a diagonal matrix built up of the generalized re£ection
coe¤cients for SV and SH waves at the top of D@ in the laterally
homogeneous model. It takes into account the re£ection at the
CMB as well as the whole propagation process within the D@
layer, including possible multiple re£ections. The amplitudes
of the waves above D@ can therefore be written as a function of
the incident waves only:

�aM

�aM

 !
~

I2

RD@

 !
�aM . (46)

These incident waves are generated by a source assumed to
be located far above D@. This source is equivalent to a dis-
continuity in the displacement^stress vector *b at a radius rs.
Up to a factor

����������������������
(2lz1)/4n

p
(1/ur2s ) from eq. (24), we have

*b~
0

{F

" #
. (47)

This discontinuity corresponds to a discontinuity in the wave
vector (Kennett 1983):

*a~
{�as

�as

" #
~Ë{1(rs)D{1(rs)

0

{F

" #
. (48)

Assuming a simple downwards propagation, from the source
level to the top of D@, we can then relate the amplitudes of the
waves incident on D@ to the source terms:

�aM~�as~TdF , (49)

with

Td~(I2 0)Ë{1(rs)D{1(rs)
0

I3

� �
, (50)

where I3 is the 3|3 identity matrix. In this expression, Td is
calculated using the WKBJ approximation. For clarity, we
keep the vector F as the source term in this expression. In order
to obtain the Green's functions, the vector Fmust ultimately be
replaced by the 3|3 identity matrix.
Using eq. (46) and propagating the wave¢eld from the

top of D@ to the depth rh of the heterogeneity, we obtain
the displacement associated with the wave¢eld incident on the
heterogeneity,

u(rh)~(I3 0)U{1
I2

RD@

 !
TdF , (51)

with

U{1~D(rh)Ë(rh)S{1(rzD , r{D ) . (52)

Combining the spherical harmonics components, one obtains
the Green's functions:

G(rh, h)~
1

ur2s

X?
l~0

������������
2lz1
4n

r
u(rh)Yl(h) . (53)

Using k~lz1/2 and eq. (19), this can be transformed into the
wavenumber integration:

G(rh, *h{s)~
1

2nur2s

�
ku(rh)Q(2)(k cos*h{s)dk , (54)

where *h{s is the epicentral distance between the source and
the heterogeneity (Fig. 2).

Figure 3. Detail of the boundary conditions used at the top of the D@
layer and in the core for the incident and scattered waves.
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2.2.4 Green's function for the scattered wave¢eld

The scattered wave¢eld has its source at the location
of the heterogeneity, in the D@ layer. Up to a factor����������������������
(2lz1)/4n

p
(1/ur2h), we have a discontinuity in the

displacement^stress vector:

*b~
0

{F

" #
, (55)

where, as for the incident wave¢eld, we must ultimately replace
F by the 3|3 identity matrix to obtain the Green's functions.
Using propagators to relate the boundary condition (39) at

the CMB, the displacement^stress discontinuity at the source
level, and the fact that there is no scattered wave propagating
downwards above D@ (Fig. 3), we obtain the relation

0

�aM

 !
~U

0

{F

 !
zS

I2

RCMB

 !
�aCMB , (56)

where U is the inverse matrix de¢ned in eq. (52). Decomposing
U and S into submatrices, the system (56) can be decomposed
into two subsystems:

0~U12({F)z(SddzSduRCMB)�aCMB , (57)

which gives the amplitudes at the CMB as a function of the
source term,

�aCMB~(SddzSduRCMB){1U12F , (58)

which can be used in the second subsystem to obtain the
amplitudes of the scattered waves at the top of D@ as a function
of the source term only:

�aM~U22({F)z(SudzSuuRCMB)(SddzSduRCMB){1U12F ,

(59)

where we recognise the generalized re£ection coe¤cient RD@

de¢ned in eq. (45). The amplitude of the scattered wave¢eld
above D@ therefore has the form

�aM~(RD@ {I2)U
0

F

 !
. (60)

In the lower mantle, we can propagate this amplitude to any
depth using a WKBJ propagator. The displacement at the
receiver depth is equal to

u(r0)~Tu�aM , (61)

where

Tu~(I3 0)D(r0)Ë(r0)
0

I2

 !
. (62)

The integration in wavenumber completes the calculation of
the Green's function:

G(r0, *r{h)~
1

2nur2h

�
ku(r0)Q(2)(k cos*r{h)dk , (63)

where *r{h is the epicentral distance between the heterogeneity
and the receiver.

2.3 Total scattered wave¢eld

Inserting the expressions for the Green's functions for the
incident and scattered waves into eq. (16), we obtain the
expression for the di¡racted S wave scattered by a heterogeneity
in D@:

uscat~
1

4n2u2r2s r
2
h

�
kscatTu(kscat)(RD@(kscat) {I2)U(kscat)

|
0

I3

0@ 1AQ(2)(kscat, cos*r{h)dkscatÄM
�
kinc(I3 0)

|U{1(kinc)
I2

RD@(kinc)

0@ 1ATd(kinc)Q(2)(kinc, cos*h{s)dkinc ,

(64)

where we have made explicit the dependence on k of the
di¡erent elements. kinc is the wavenumber of the incident ¢eld
and kscat is the wavenumber of the scattered wave¢eld. An
integral over u is necessary to calculate the displacement in
the time domain. The integrals over kinc, kscat and u can be
evaluated in any order. In practice, we have performed the
integrals over u last.
This expression is a combination of di¡erent elements with

di¡erent functions. In order to emphasize these functions, we
can reorganize eq. (64) in di¡erent ways. The propagatorU can
be separated into propagators

U~SWh , with Wh~Ë{1(rh)D{1(rh) . (65)

Except for the factor (1/ur2h),Wh contains all the elements that
depend on the depth of the heterogeneity. S is the propagator
used in eq. (45) to calculate the generalized re£ection coe¤cients
RD@. The scattered ¢eld can be rewritten as follows:

uscat~
1

4n2u2r2s r
2
h

� �
kscatkincTu(kscat)(RD@(kscat) {I2)S(kscat)

|C(kscat, kinc)S{1(kinc)
I2

RD@(kinc)

 !
Td(kinc)dkscatdkinc ,

(66)

whereC is the coupling matrix at the level of the heterogeneity,

C(kscat, kinc)~Q(2)(kscat, cos*r{h)Wh(kscat)
0 0

ÄM 0

 !

|W{1
h (kinc)Q(2)(kinc, cos*h{s) . (67)

Recall that the di¡erentiations in the coupling operator ÄM
are all with respect to the position of the heterogeneity. With
this formulation, all the elements that depend on the location
of the heterogeneity are grouped in the coupling matrixC. This
matrix expresses the coupling between di¡erent wave types
and between di¡erent wavenumbers due to the presence of the
inhomogeneity. It is built up of coupling coe¤cients between
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di¡erent wave types:

C(kscat, kinc)

~Q(2)(kscat, cos*r{h)

|

SV;
scSV

;
in SV;

scSH
;
in SV;

scSV
:
in SV;

scSH
:
in

SH;
scSV

;
in SH;

scSH
;
in SH;

scSV
:
in SH;

scSH
:
in

SV:
scSV

;
in SV:

scSH
;
in SV:

scSV
:
in SV:

scSH
:
in

SH:
scSV

;
in SH:

scSH
;
in SH:

scSV
:
in SH:

scSH
:
in

0BBBBBBBB@

1CCCCCCCCA
|Q(2)(kinc, cos*h{s) , (68)

where the element SV:
scSV

;
in, for example, corresponds to the

coupling between a downgoing incident ¢eld polarized in SV ,
denoted SV;

in, and an upgoing scattered ¢eld with the same
polarization, denoted SV:

sc. We will analyse this matrix in
detail in the next section.We here note that the matrix contains
elements for both downgoing and upgoing incident ¢elds, as
well as downgoing and upgoing scattered ¢elds. This expresses,
for example, the fact that the incident wave¢eld may reach the
heterogenity from above, or from below after re£ection on
the CMB.
The terms Td and Tu express the propagation in the lower

mantle from the source to the top of D@, and from the top of D@
to the receiver. They are simple terms that are not of special
interest in our problem.We can isolate them from the elements
that relate to the propagation and scattering within D@ and
rewrite eq. (64) as

uscat~
1

4n2u2r2s r
2
h

� �
kscatkincTu(kscat)ÙD@Td(kinc)dkscatdkinc ,

(69)

where

ÙD@~(RD@(kscat) {I2)S(kscat)

|C(kscat, kinc)S{1(kinc)
I2

RD@(kinc)

 !
. (70)

Using eqs (49) and (61), one can see that ÙD@ expresses
the relation between the wave¢eld entering D@ from the
lower mantle and the wave¢eld leaving D@, scattered by the
heterogeneity:

�aM(kscat)~ÙD@(kscat, kinc)�aM(kinc) , (71)

with

ÙD@(kscat, kinc)~
)SV:

scSV
;
in

)SV:
scSH

;
in

)SH:
scSV

;
in

)SH:
scSH

;
in

0@ 1A . (72)

ÙD@ is a matrix of generalized re£ection coe¤cients at the top
of the D@ layer. It models the whole process that occurs below
the top of D@; that is, coupling due to the inhomogeneity,
re£ection at the CMB, propagation and possible tunnelling
in D@. We note that this re£ection coe¤cient matrix is not
diagonal. Like the coupling matrix C, it expresses the fact
that the heterogeneity produces coupling between di¡erent
wavenumbers and between SH and SV waves. However, in

contrast to the coupling matrixC, the re£ection coe¤cients are
calculated only for downgoing incident wave¢elds and upgoing
scattered wave¢elds.

2.4 Analysis of the coupling matrix C

In the following, we detail the calculation of an element of C
de¢ned by eq. (67). We then specify the general form of the
other terms, which are given in Appendix A, and analyse the
properties of the coupling matrix. Let us consider the element
SV:

scSV
;
in. Using eqs (30), (35) and (36) for Ë, Ë{1,D andD{1,

we obtain

CSV:
scSV

;
in
~

{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]�psc(bpsc/rh {b�gsc 0)

|ÄM

bpin/rh

b�g in

0

0BBB@
1CCCA�pinQ(2)[kin, cos (hh{hs)] . (73)

Recall that, in the matrix Ë, �ó and �ó correspond respectively
to the down- and upgoing radial wave functions. On the
other hand, in the matrix Ë{1 the correspondence is inverted
(see eq. 30): that is why �psc appears in eq. (73) for the
upgoing scattered wave. We have chosen to work in a frame
of reference independent of the great-circle paths between
source^heterogeneity and heterogeneity^receiver in order to
check that only the angle (~�2{�1 (see Fig. 1) appears in
the coupling matrix (Snieder 1986a). This frame of reference
is denoted (rª , xª , yª ), where the direction x corresponds to
north, the direction y to east and the angles �1 and �2 to the
azimuthal angles. In this new frame of reference, eq. (73)
becomes

CSV:
scSV

;
in
~

{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]�psc

|(bpsc/rh {b�gsc cos�2 {b�gsc sin�2)

|ÄM

bpin/rh

b�gin cos�1

b�gin sin�1

0BBB@
1CCCA�pinQ(2)[kin, cos (hh{hs)] . (74)

This expression involves the derivatives of the Green's
function with respect to rh, hh and �1,2. Since the Langer
approximation is a high-frequency approximation, we only
need to keep the higher terms in u. We can thus neglect, in the
derivatives with respect to rh, the terms other than those in
d�ó/drh and d �ó=drh. Those can be calculated with the help of the
radial slownesses �g and �g (eq. 33):

d�ó(rh)
drh

~iu�g�ó(rh),
d �ó(rh)
drh

~{iu�g�ó(rh): (75)

The derivatives with respect to hh at highest order in u are

d
dhh

Q(2)[kin, cos (hh{hs)]~iupinQ(2)[kin, cos (hh{hs)] ,

d
dhh

Q(2)[ksc, cos (hr{hh)]~{iupscQ(2)[ksc, cos (hr{hh)] .

(76)
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The derivatives with respect to �1 or �2 have no u factor and
can thus be neglected, as in the case of the coupling of surface
waves by an inhomogeneity (Snieder 1986a; Snieder & Nolet
1987).
In the frame of reference (rª , xª , yª ) (Fig. 1) we need the

derivatives with respect to x and y:

df
dx

~
1
rh

cos�
df
dh

,
df
dy

~
1
rh

sin�
df
dh

. (77)

To be concise, we use the following notations: R1~SV;
in

and R2~SV:
sc. We factorize out of the expression of the

coupling coe¤cient (eq. 73) the terms ({iu2r2h/2ohb
3
h)Q

(2)
l |

[ksc, cos (hr{hh)]�psc and �pinQ
(2)
l [kin, cos (hh{hs)]. As can be

seen in eqs (67) and (73), only part of the matrices D and D{1

intervenes in the calculation of coupling elements. However,
for the sake of clarity, we will use D and D{1 in the following.
The coupling by itself can be written as a sum of four terms.

(1) Term in *o:

*ou2D{1
R2kDkR1

~*ou2Vh[D{1
R2rDrR1zD{1

R2xDxR1zD{1
R2yDyR1 ]

~*ou2Vh[(bpsc/rh)(bpin/rh)z({b�gsc)(b�gin) cos (�2{�1)] .

(78)

(2) Term in {*j:

({*j)Vh[Lhj D
{1
R2 j ][L

h
kDkR1 ]

~({*j)Vh[LhrD
{1
R2rzLhxD

{1
R2xzLhyD

{1
R2y]

|[LhrDrR1zLhxDxR1zLhyDyR1 ]

~({*j)Vh[(bpsc/rh)({iu�gsc)

z({b�gsc)({iupsc/rh)(cos2 �2z sin2 �2)]

|[(bpin/rh)({iu�gin)z(b�gin)(iupin/rh)(cos2 �1z sin2 �1)]

~0 . (79)

This result is in agreement with the fact that a perturbation in
*j does not couple the S polarizations (Wu & Aki 1985).

(3) First term in {*k:

({*k)Vh[LhkD
{1
R2j ][L

h
j DkR1 ]

~({*k)Vh[LhrD
{1
R2rL

h
rDrR1zLhrD

{1
R2xL

h
xDrR1zLhrD

{1
R2yL

h
yDrR1

|LhxD
{1
R2rL

h
rDxR1zLhxD

{1
R2xL

h
xDxR1zLhxD

{1
R2yL

h
yDxR1

|LhyD
{1
R2rL

h
rDyR1zLhyD

{1
R2xL

h
xDyR1zLhyD

{1
R2yL

h
yDyR1 ]

~({*k)Vh[(bpsc/rh)({iu�gsc)(bpin/rh)({iu�gin)

z[({b�gsc)({iu�gsc)(bpin/rh)(iupin/rh)

z(bpsc/rh)({iupsc/rh)(b�gin)({iu�gin)] cos (�2{�1)

z({iupsc/rh)(iupin/rh)({b�gsc)(b�gin) cos2 (�2{�1)] . (80)

(4) Second term in {*k:

({*k)Vh[LhkD
{1
R2j ][L

h
kDjR1 ]

~({*k)Vh[LhrD
{1
R2rL

h
rDrR1zLhrD

{1
R2xL

h
rDxR1zLhrD

{1
R2yL

h
rDyR1

|LhxD
{1
R2rL

h
xDrR1zLhxD

{1
R2xL

h
xDxR1zLhxD

{1
R2yL

h
xDyR1

|LhyD
{1
R2rL

h
yDrR1zLhyD

{1
R2xL

h
yDxR1zLhyD

{1
R2yL

h
yDyR1 ]

~({*k)Vh[(bpsc/rh)({iu�gsc)(bpin/rh)({iu�gin)

z[({b�gsc)({iu�gsc)(b�gin)({iu�gin)

z(bpsc/rh)({iupsc/rh)(bpin/rh)(iupin/rh)] cos (�2{�1)

z({iupsc/rh)(iupin/rh)({b�gsc)(b�gin) cos2 (�2{�1)] . (81)

(5) Summary (we set (~�2{�1):

CSV:
scSV

;
in
~

{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]�pscVh

|[*ou2(bpsc/rh)(bpin/rh)

{3*k(bpsc/rh)({iu�gsc)(bpin/rh)({iu�gin)

z cos([*ou2({b�gsc)(b�gin)

{*k[({b�gsc)({iu�gsc)z(bpsc/rh)({iupsc/rh)]

|[(b�gin)({iu�gin)z(bpin/rh)(iupin/rh)] ]

{ cos 2(*k({iupsc/rh)(iupin/rh)({b�gsc)(b�gin)]

|�pinQ(2)[kin, cos (hh{hs)] . (82)

This expression is very similar to that obtained by Snieder
(1986a) for surface waves.

2.4.1 General form of the coe¤cients of the coupling matrix

Completing this with the other elements of the coupling matrix
presented in Appendix A, we can write the coupling coe¤cients
between the di¡erent wave types in a general and compact form
by not specifying the directions of wave propagation. For
example, gsc may correspond to either �gsc, or �gsc, and similarly
for gin, psc and pin.

(1) Case SVscSVin:

CSVscSVin~
{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]pscVh

|[*on1(ksc, kin){3*kn2(ksc, gsc, kin, gin)

z cos((*on3(gsc, gin){*kn4(ksc, gsc, kin, gin))

{ cos 2(*kn5(ksc, gsc, kin, gin)]pinQ(2)

|[kin, cos (hh{hs)] . (83)
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(2) Case SVscSHin:

CSVscSHin~
{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]pscVh

|[ sin((*on6(gsc){*kn7(ksc, gsc, gin))

{ sin 2(*kn8(ksc, gsc, kin)]pinQ(2)[kin, cos (hh{hs)] .

(84)

(3) Case SHscSVin:

CSHscSVin~
{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]pscVh

|[({ sin()(*on9(gin){*kn10(gsc, kin, gin))

{({ sin 2()*kn11(ksc, kin, gin)]pinQ(2)

|[kin, cos (hh{hs)] . (85)

(4) Case SHscSHin:

CSHscSHin~
{iu2r2h
2ohb

3
h

Q(2)[ksc, cos (hr{hh)]pscVh

|[ cos((*on12{*kn13(gsc, gin))

{ cos 2(*kn14(ksc, kin)]pinQ(2)[kin, cos (hh{hs)] .

(86)

n1 to n14 are de¢ned in Appendix A.

2.4.2 Analysis of the coupling matrix

(1) As for plane waves, the interaction of the wave¢eld with
an inhomogeneity, characterized by a perturbation in *o or
*k, introduces a coupling between wavenumbers and wave
types (SV and SH). A factor u2 is present in all terms, imply-
ing that the scattered wave spectrum equals the incident wave
spectrum multiplied by u2 in the case of Rayleigh di¡usion
(Aki & Richards 1980b).
(2) A heterogeneity in *j has no in£uence on S waves.

This result is well known since the secondary force which
corresponds to this type of perturbation is an explosion (Wu &
Aki 1985).
(3) The polarization vectors for SV and SH depend on the

azimuthal angles �1 and �2 separately, while the coupling
matrix depends only on the scattering angle (~�2{�1
(Snieder 1986a). In ray theory, it is usual to de¢ne the scatter-
ing angle as the angle between the incident and scattered rays.
In the Langer approximation, the incidence angle i with respect
to the vertical is taken into account in the horizontal ray
parameter p and in the radial slownesses g. Consequently,
the angle ( characterizes the angular di¡erence between the
vertical plane containing the incident ray and the vertical plane
containing the scattered ray (Fig. 1).
(4) There is no conversion between SV and SH waves in

the forward ((~0) and backward ((~n) directions. More
generally, the coupling between wavetypes varies in sin ( and
sin 2(, whereas coupling between waves of the same type
varies in cos ( and cos 2(: This is a well-known property of
S waves (Wu & Aki 1985) and surface waves (Snieder 1986a).

3 RESULTS

In this section, we analyse the characteristics of scattered
Sdiff waves for some simple models such as a vertical plume,
a localized low-velocity zone and small inhomogeneities
distributed in a random way in the D@ layer.

3.1 Computational aspects

When developing the software for the synthesis of the wave-
forms presented in the next sections, we have greatly bene¢ted
from the program package of Cormier & Richards (1988) for
the spectral synthesis of body waves in a radially symmetric
medium. To include the scattering e¡ects, we have e¡ectively
programmed the matrix ÙD@(kscat, kinc) de¢ned by eq. (70).
Depending on the values of kscat and kinc, ÙD@(kscat, kinc) is
calculated with two di¡erent bases of vertical wave functions.
Following Kennett & Illingworth, we choose the basis with the
stationary wave (�ó, �p) if the ray turns above the heterogeneity,
otherwise we choose the basis with the propagating waves
(�ó, �ó) (see Section 2.2). This choice is very important to stabilize
the numerical results. Eq. (69) for the scattered wave¢eld
involves a double integration over wavenumbers kinc and kscat.
We use the same domains for kinc and kscat. The integration
domains are deformed in the complex plane around the poles
of the di¡racted waves. Along the real axis, the slowness
runs from 458:4 s rad{1 to 509:9 s rad{1 in most cases, and to
521:4 s rad{1 for model 1 (see below) and heterogeneities
located at a radius of larger than 3535 km. Integration domains
away from the real axis depend on the model, the heterogeneity
depth and the frequency. See to Emery (1997) for further
details. Numerical problems related to growing exponentials
and large arguments uq of the Airy functions (eqs 31 and 32)
increase with frequency. We must therefore limit the calcu-
lation of the scattered wave¢eld to periods greater than 4 s.
Characteristic periods of di¡racted S waves, between 8 and
20 s, are well within our frequency domain.
Calculations are performed in purely elastic models. The

e¡ect of causal attenuation is added to the waveforms using
the integral along their ray path of a frequency-independent
quality factor. They are convolved with the response of an
IRIS broad-band instrument (station HRV). Source depth is
540 km and various source types will be used in the following
(see Table 1).We use two di¡erent background velocity models.
The ¢rst (model 1, see Fig. 4) is a modi¢cation of PREM
(Dziewonski & Anderson 1981), with a 300 km thick D@ layer
(instead of 150 km in PREM). Model 2 is characterized by a
negative gradient ({0:00088 s{1), which is a realistic model
for a path that samples D@ under the Paci¢c (Garnero et al.
1988; Ritsema et al. 1997).
Heterogeneities have been parametrized by percentages of

relative velocity and density perturbations.We have considered
velocity perturbation rather than shear modulus perturbations
in order to facilitate comparisons with tomographic models.
A systematic study for various scatterer positions and both
background velocity models has shown that scattered wave
amplitudes for a unit velocity perturbation are larger by at
least a factor of 10 than scattered wave amplitudes for a
unit density perturbation (Emery 1997). Consequently, in the
following we will only take into account velocity perturbations
(and *o/o~0 per cent).
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The theory developed in the previous sections is based on
point heterogeneities. In practice, we found by analysing how
the phase of the scattered wave¢eld varies with the position of
the heterogeneity that elementary bricks that have a 20 hori-
zontal dimension (that is, about 120 km at the CMB level) and
10 km thickness can be considered as point heterogeneities for
di¡racted S waves. For larger heterogeneities we divided the
volume into elementary bricks, calculated the scattered ¢elds
for the di¡erent bricks, and added them together.
In the following, we conduct a study of the evolution of

the amplitude ratio between the scattered wave and the direct
wave with epicentral distance. The background velocity model
is model 1. For each epicentral distance, the inhomogeneity is
located at the centre of the great-circle path between the source
and the receiver, just above the CMB for distances larger than
1000, and at the depth corresponding to the turning point for

other distances. The wave amplitudes are measured on seismo-
grams convolved with a broad-band instrument response and
low-pass ¢ltered. In the Born approximation, the amplitude of
the scattered ¢eld for a single heterogeneity is a linear com-
bination of its volume and its strength. For Fig. 5, we choose
elementary brick heterogeneities (Vh~120|120|10 km3)
and *b/b~{10 per cent. We observe that the amplitude of
the scattered wave is very weak, less than 1 per cent of the
amplitude of the direct wave. Amplitudes of the same order
of magnitude have been found by Ji & Nataf (1998a) for
P waves. The two polarizations appear to behave di¡erently:
SHscat/SHdirect is greater than SVscat/SVdirect when the waves
are di¡racted (*§1000).

Table 1. Various sources used in our calculation to obtain di¡erent SV and SH amplitudes on the
great-circle path between source and receiver.

Amplitudes on great-circle path Source

date az baz
SV^SH 860526 520 267,70

Moment MRR MTT MFF MRT MRF MTF
tensor {0,10 1,36 {1,26 {5,08 0,99 1,60

zero SV strike dip rake az
maximum SH 00 900 00 900

maximum SV strike dip rake az
zero SH 00 900 900 900

Figure 4. Velocity models used in the calculations. The thickness of
D@ is 300 km; lower mantle velocities are unchanged from PREM.
Model 1 has no velocity gradient, model 2 a negative velocity gradient
of {0:00088 s{1.

Figure 5. Amplitude ratio between the scattered wave and the direct
wave for di¡erent epicentral distances. The volume of the heterogeneity
is Vh~120|120|10 km3 and its strength *b/b~{10 per cent. The
source is 860526 (Table 1). We note a greater ratio for SHscat/SHdirect

than for SVscat/SVdirect.
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We note that the SV and SH wave¢elds show somewhat
di¡erent sensitivities to the depth of the heterogeneity.We ¢nd
that the SH wave¢elds are more sensitive to heterogeneities
closer to the CMB, in accordance with the results of Doornbos
& Mondt (1979a). In the model with a gradient, the scattered
SH waves have their largest amplitudes when the hetero-
geneities are situated in a 100 km thick zone above the CMB,
whereas the SV scattered waves reach maximum amplitudes
for heterogeneities situated at the top of that zone. In the model
without a gradient, the situation is similar but with a 200 km
thick zone. By putting the heterogeneity somewhat further
away from the CMB,we would have obtained amplitudes ratios
10 times larger for the SV components at 1100 of epicentral
distance and 15 times larger at 1200 in Fig. 5.

3.2 Heterogeneity along the great-circle path

We ¢rst concentrate our attention on heterogeneous areas
situated along the great-circle path between the source and
the receiver. We consider two di¡erent heterogeneous models:
an inhomogeneous area that is 20 wide and extends 100
along the great-circle path with *b/b~{10 per cent; in the
second model, the inhomogeneous area extends over 200 and
*b/b~{5 per cent. In both cases, the heterogeneous area is
30 km thick (Fig. 6). We note that the two models have the
same volume times strength of heterogeneity. By comparing
the scattering produced in the two models, we want to check
whether or not the di¡racted waves can resolve the di¡erence
between the two models.
The results are presented in Fig. 7 for background model 1

and Fig. 8 for background model 2. Although the source is
chosen such that the amplitudes of SH and SV waves at the
source level are nearly equal, we note in Fig. 7 the strong
attenuation of the scattered SVdiff compared to the scattered
SHdiff at both epicentral distances (1100 and 1200).When a low-
velocity zone is added at the base of the mantle, the di¡raction
phenomena is strengthened (in Fig. 8 we note stronger ampli-
tudes and late arrival times for scattered waves) compared
to the case with no negative velocity gradient (Fig. 7). With a
positive velocity gradient in the D@ region, the SVdiff wave
would have disappeared at these epicentral distances.

The two models presented in Fig. 6 produce nearly the same
scattered wave¢eld. For both distances, we can see a maximum
amplitude di¡erence of 5 per cent for SHdiff and 10 per cent for
SVdiff between the two cases. For *~1200, the geometrical
di¡racted line along the CMB is at distances from the source
of between 500 and 700 (see Fig. 6), that is, in the region where
the heterogeneity is located. As the phase variation of the
scattered ¢eld is small in the volume of the heterogeneity,
the amplitude of the scattered wave¢eld is a rather linear
combination of the volume and strength of the heterogeneity. It
is therefore not surprising that both models result in similar
scattered wave¢elds at *~1200. It is more surprising for
*~1100, because the geometrical di¡racted zone spreads only
over 100 (Fig. 6), that is, only half of the heterogeneous zone in
the second model. This illustrates that the Fresnel zone spreads

Figure 6. Two cases considered: (a) {10 per cent velocity perturbation
along 100; (b) {5 per cent velocity perturbation along 200.

Figure 7. Scattered waves for the models depicted in Fig. 6 (case a
shown as thin lines and b as thick lines). The background velocity
model has no gradient in the D@ layer (model 1). The source is event
860526 (Table 1); origin time t0~1470 s for *~1100 and t0~1560 s for
*~1200. The two models produce very similar scattered waves at both
epicentral distances (di¡erence in amplitude at most 10 per cent).
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far beyond this geometrical zone. This shows that a di¡racted
S wave averages nearly linearly perturbations in its Fresnel zone,
which can be considerably larger than the geometric di¡raction
line. The resolution of isolated inhomogeneities located near
the great-circle path seems di¤cult with this wave type.
The next conclusion we can draw from this example is

that a very localized (120 kmwide) thin ultra-low-velocity zone
({10 per cent) does not modify the amplitude of the direct
di¡racted S wave. Such a thin ultra-low P-wave velocity layer
has been proposed in order to explain the characteristics of
SPdiffKS (Garnero & Helmberger 1995, 1996; Helmberger
et al. 1996) or PKP precursors (Vidale & Hedlin 1998; Wen &
Helmberger 1998). In this last study, structures with horizontal
and vertical length scales of 100^300 and 60^80 km, respectively,
and P-wave velocity variations of at least 7 per cent were found.

It seems that di¡racted S waves will be useful in analysing
whether these P-wave velocity anomalies have an S-wave
counterpart only if the thickness of the ultra-low-velocity zone
is signi¢cantly greater than 30 km.

3.3 Variation perpendicular to the great-circle path

In this part, we analyse the variation of the scattered wave
amplitude when the heterogeneity is situated out of the great-
circle path between the source and the receiver. The inhomo-
geneity is situated 25 km above the CMB, in a plane crossing
the great-circle path at 600 from the source. The distance
between the heterogeneity and the great circle varies from 00 to
500 (Fig. 9). Azimuthal variations at the source level are not
taken into account in order to keep an identical amplitude
for SVinc and SHinc in the di¡erent cases and to facilitate
comparisons. As expected, we note conversions between SVdiff

and SHdiff when the heterogeneity is not along the great-
circle path. In order to analyse better the di¡erent waves, the
seismograms are shown in the coordinate system related to
the heterogeneity^receiver great-circle path. The amplitudes of
scattered waves are measured on seismograms convolved with
a broad-band instrument response and low-pass ¢ltered. The
SHinc^SHscat amplitude is always greater by more than a factor
of 10 than SVinc^SHscat. The mechanism producing a scattered
SH wave from an incident SV wave is not very e¤cient. On the
other hand, SVinc^SVscat and SHinc^SVscat amplitudes are
comparable. Since direct SVdiff waves are smaller than direct
SHdiff waves, scattering and coupling are more likely to be
observable on the SV component. In the following, we will
analyse which situation is the most favourable for obtaining
large scattered SV waves.
We will only consider the case of a unit perturbation of

velocity (and *o/o~0 per cent). The behaviour for *~1100
and 1200 is similar. We present here the results at the second
distance only. In Fig. 10 it is seen that SVinc^SVscat amplitudes
decrease gradually when the heterogeneity moves away from
the source^receiver great circle (similar behaviour is observed
for SHinc^SHscat). On the other hand, conversion amplitudes
increase and reach a maximum for a distance of 300. In a model
with no velocity gradient, the most e¤cient mechanism to get a
scattered SV wave is the conversion SHinc^SVscat (at latitudesFigure 8. Same as Fig. 7 but with the background model 2 with a

negative velocity gradient in D@. Again, the two cases (a and b) shown
in Fig. 6 yield almost the same scattered waves, which are stronger and
slower than those in Fig. 7.

Figure 9. Geometry to study the variation in the perpendicular
direction: the inhomogeneities are situated from 00 to 500 away from
the great-circle path between the source and the receiver.
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larger than 200). On the other hand, in a model with a negative
velocity gradient (¢lled symbols), the most e¤cient mechanism
remains SVinc^SVscat.
In summary, SVinc^SVscat and SHinc^SVscat have com-

parable amplitudes and their respective contributions to the
total scattered SV wave¢eld will depend on azimuthal variations
at the source level and on the precise geometry of the hetero-
geneous model. For example, if the inhomogeneity is distri-
buted on both sides of the great-circle path, the conversion
terms SHinc^SVscat from both sides of the model will tend to
cancel each other (for symmetry reasons), whereas the terms
SVinc^SVscat will strengthen.

3.4 Vertical heterogeneity

We analyse whether di¡racted S waves can be used to detect
very localized vertical inhomogeneities such as mantle plumes.
Following the approach for P waves developed by Ji & Nataf
(1998a,b), we adopt an extremely simpli¢ed plume model by
considering a vertical cylinder with constant radius (even
though it is probable that mantle plumes widen near the CMB if
their source is situated at this level). The cylinder is discretized
every 10 km (Fig. 11) and the contributions to the scattered
¢eld of the di¡erent elements summed together. Moreover,
we carry out the calculation only in the D@ layer of 300 km
thickness.

If the plume is situated along the great-circle path, we
observe no variation in the waveforms or arrival times. The
only consequence of the presence of the plume is an increase
in amplitude due to focusing. For *b/b~{10 per cent, the
amplitude increases by about 15 per cent.
If the cylinder is shifted with respect to the great-circle path

between the source and the receiver (Figs 12 and 13), con-
versions between the two polarizations of di¡racted S waves
occur and are included in the seismograms. The seismograms
are presented in the coordinate system related to the source^
station great-circle path. In order to analyse better the con-
versions, we have taken into account two kinds of sources,
the ¢rst with no SH amplitude on the great-circle path and the
second with no SV amplitude (Table 1). No scattered signal is
visible for a cylinder of 60 km radius and a velocity pertur-
bation of ^10 per cent. It is necessary to increase the radius to
120 km to see an e¡ect on the seismograms. Recall that the
global strength of the heterogeneity depends linearly on *b/b
and on the square of the cylinder radius. Several combinations
of (*b/b, R) give the same global strength. We note a com-
plication of the ¢nal part of the direct waveforms because
scattered waves are late compared to the direct wave. SHscat

has a relatively important amplitude in the case with no SH at
the source. However, SVdiff waves are usually small and di¤cult
to observe at *~1200 on real seismograms. SHscat detection
will be pratically impossible. Thus, the most favourable case
for detecting scattered waves is that with no SV at the source.
Convection models of mantle plumes designed to explain

hotspot volcanism are characterized by pipes with diameters
between 100 and 300 km and temperatures excess of 200^600 K.
This excess temperature would correspond to a decrease in
S velocity between{1 and{2 per cent (Wysession et al. 1992).
This thermal anomaly would not have any visible e¡ect on
seismograms. A chemical anomaly may produce stronger
velocity contrasts.Variations for P and S velocity near the CMB
as strong as {10 per cent have been proposed recently (Brëger
et al. 1998; Garnero & Helmberger 1995, 1996; Revenaugh &
Meyer 1997; Sylvander et al. 1997). 10 per cent perturbation
over a su¤ciently large volume (cylinder of 120 km radius) can
modify the amplitudes of di¡racted S waves when the cylinder

Figure 10. Amplitude variation of a scattered SV wave as a function of
the latitude of the heterogeneity for*~1200.*b/b~1 per cent; longitude
of inhomogeneity~600; radius~3505 km; Vh~120|120|10 km3.
At source level SVinc*SHinc. SHinc^SVscat is often greater than
SVinc^SVscat for the background velocity model 1 (open symbols),
while the opposite is true for the background velocity model 2
(¢lled symbols).

Figure 11. Simpli¢ed model of a mantle plume represented by a
vertical cylinder. The results presented in Figs 12 and 13 are for a
cylinder shifted away from the great-circle path between the source and
the receiver. The cylinder is located at 600 longitude, 150 latitude. It has
a total height of 300 km and a variable radius R.
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is on the great-circle path between the source and the receiver
and modify the waveforms if the cylinder is shifted away. The
last case is the most favourable for detecting mantle plumes.
As we have shown in the previous part, amplitudes decrease
quickly if the heterogeneities are moved further than 300 away
from the great-circle path. Consequently, the most favourable
conditions for detecting very localized vertical heterogeneities
seem to be no SV amplitude at the source, a variation of S
velocity of the order of ^10 per cent and a cylindrical volume
(240 km diameter, 300 km thickness) that is shifted with
respect to the great-circle path between 100 and 300.

3.5 Random medium

Finally, we analyse the e¡ects on di¡racted S waves of
randomly distributed small-scale heterogeneities in D@. In
order to limit multiple interactions between inhomogeneities,
we place them in a random way in three planes separated by

100 km (plane radii are 3485, 3585 and 3685 km). The latitudes
are between {200 and 200 and the longitudes between 500 and
700. The minimum distance separating heterogeneities in a
plane is 180 km. Each plane contains about 60 inhomogeneities,
each with a volume of 60|60|10 km3. The velocity contrast
is also determined in a random way and is between {10 and 10
per cent. The moment tensor used corresponds to event 860526
(Table 1); the azimuthal variation at the source level is taken
into consideration. The seismograms are presented in the source^
station coordinate system. We use the model with a negative
velocity gradient in D@ as a background model and consider
the epicentral distance *~1100. The results are presented in
Fig. 14.
The transverse component is more sensitive to the hetero-

geneities close to the CMB (r~3485 km), whereas the
sensitivity of the longitudinal component is maximal 100 km
above the CMB. These e¡ects can be explained by the com-
bination of the low-velocity zone, which acts as a waveguide,
and the di¡erent particle vibrations for SHdiff and SVdiff near
the CMB. Moreover, scattered wave amplitudes are too small

Figure 12. Scattering by a shifted cylinder characterized by its
radius and *b/b perturbation. Synthetic seismograms for longitudinal
and transverse components, calculated in a background model with
no velocity gradient in D@, convolved with an HRV response and low-
pass ¢ltered (origin time t0~1480 s for *~1100 and t0~1559 s for
*~1200). Two kinds of source are used: with no SV or no SH on
the great-circle path (Table 1). Note the complication of the direct
waveforms (especially SVdiff ) and the appearance of converted waves.

Figure 13. Scattering by a shifted cylinder, background model with a
negative velocity gradient. The negative gradient reinforces the direct
waves, and the scattered waves look smaller. As SVdiff is di¤cult to
observe on real seismograms, the most favourable case to observe
scattered waves is the one with no SV at the source.
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(by a factor of 100) to modify direct wave amplitudes. Spheres
distributed in the D@ layer with 35 km radius and velocity
contrasts of the order of 10 per cent for P waves can explain
short-period (1 Hz) PKIKP precursors (Cormier 1995). These
waves are extremely favourable for detecting small-scale
inhomogeneities near the CMB. On the other hand, such
anomalies have negligible e¡ects on Sdiff waves, which have
longer periods (main periods between 10 and 20 s).

4 CONCLUSIONS

In this paper, we have developed a technique to model the
propagation of di¡racted waves in laterally heterogeneous
structures, combining the e¡ects of core di¡raction (with

the Langer approximation) and scattering by small-scale
volumetric inhomogeneities (with the Born approximation).
The treatment presented here includes the conversion between
the two polarizations of di¡racted S waves and the coupling
between incident and scattered wavenumbers. The method
could be extended to an irregular interface or to include the
conversions between S and P waves. It can take into account
very localized heterogeneities (Rayleigh scattering) or wider
ones by performing a summation on scattering points (Mie
scattering). We can describe correctly the e¡ects of hetero-
geneities located in a broad region characterized by a 300 km
thickness above the CMB and 500 width on both sides of the
great-circle path between the source and the receiver. Several
geophysically interesting geometries have been studied: iso-
lated inhomogeneities, a vertical cylinder, a very localized
low-velocity zone, and a random medium. The main advantage
of this method is the separation between the direct and the
scattered wave¢elds, as opposed to a method based on ¢nite
di¡erences, for example.
Strong variations in amplitudes and waveforms of di¡racted

S-waves are observed on recordings from networks of broad-
band seismic stations (Emery 1997; Ritsema et al. 1997). We
have shown that this cannot be explained by weak pertur-
bations of velocity and density, which have a negligible e¡ect
on seismograms. It is necessary to reach strong contrasts
(of the order of 10 per cent) in su¤ciently large volumes to
reach observable waveform distortion.
Lateral heterogeneities with such strong contrasts, but

in P-wave velocity, have been proposed recently by several
independent studies. Based on short-period PKIKP, Cormier
(1995) concluded that random heterogeneities of the order
of +10 per cent with dimensions of the order of 70 km are
present at the base of the mantle. As mentioned earlier, this
kind of model does not produce observable e¡ects on di¡racted
S waves, which lack the resolution to detect small-dimension
random variations. Heterogeneities of the same order of
magnitude, but with larger lateral dimensions, can explain
the traveltimes of short-period di¡racted P waves (Sylvander
et al. 1997) or long-period waveform distortions (Garnero &
Helmberger 1996; Mori & Helmberger 1995). In these models,
the low velocity is con¢ned to a relatively thin layer at the base
of the D@ layer. It is improbable that +10 per cent velocity
contrasts can be related to temperature variations alone, and
one must invoke chemical anomalies or partial melting. To
identify and characterize S-wave velocity heterogeneity near
the CMB might help to discriminate between di¡erent models.
As shown here, it seems that the di¡racted S waves do not have
the resolution to detect a 30 km thick layer with an ultra-
low S-wave velocity. In order to cause observable e¡ects on
di¡racted S waves, the heterogeneities must have relatively
large lateral and vertical dimensions.
We found that the most favourable geometry for detect-

ing large anomalies is if they are situated 150^200 away from
the source^station great-circle path. In such situations, the
scattered wave arrives in the coda of the direct wave, with a
signi¢cant coupling between the SH and SV components. This
could be used to plan experiments to detect the base of mantle
plumes with array deployment and stacking techniques. We
note that the scattered S wave may originate equally from
the incident SH and the incident SV waves, and that a scalar
treatment (without coupling) would be insu¤cient. The di¡er-
ence in sensitivity of SVdiff and SHdiff to the depth of the

Figure 14. Scattered wave¢eld obtained for heterogeneities distri-
buted in a randomway in three planes of radii 3485, 3585 and 3685 km.
Epicentral distance *~1100, background model with a negative
velocity gradient in D@, origin time t0~1470 s. The transverse com-
ponent is more sensitive to inhomogeneities close to the CMB. The
amplitude of the scattered ¢eld is too small to deform the direct
waveform.
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heterogeneity could also be exploited: the ¢rst samples a
thickness of the order of 200 km above the CMB, whereas the
second samples a thickness of less than 100 km.
We did not observe any situation where the e¡ect of

heterogeneities is similar to the e¡ect of anisotropy, that is,
time-delays or coupling between the direct SH and SV com-
ponents. Since we model the scattered waves only for periods
greater than 4 s, thus having a limited resolution on onset
times, and since the waveforms of the di¡erent components are
quite di¡erent, we did not try to measure time delays between
di¡erent components. However, we did not observe strong
delays caused by lateral heterogeneities (for example, the time
delay caused by the strong plume model located on the great-
circle path is less than 1 s), and they were of the same order
of magnitude for the two components. The dominant e¡ect of
signi¢cant lateral heterogeneity located in the Fresnel zone
of the di¡racted wave is to modify its amplitude, but the e¡ect
on the two components is similar. Of course, our analysis may
have some limits due to the Born approximation. We cannot
exclude, in some particular geometries, a delay similar to that
usually attributed to anisotropy being observed, but we believe
that systematic delays observed over a large data set cannot be
explained easily by the presence of lateral heterogeneities.
Conversion between the SH and SV components occurs only

when the heterogeneity is signi¢cantly out of the source^station
epicentral plane. In such cases, the scattered waves arrive in the
coda of the direct waves, which are not directly a¡ected by
the conversion. Therefore, it also seems that coupling of the
SH and SV direct di¡racted waves is more likely to be related
to anisotropy than to lateral heterogeneities.
Despite the di¤culty of observing SVdiff on seismograms for

large epicentral distances, a joint study of the two polarizations
contains a considerable amount of information on the velocity
structure of the D@ layer, including velocity gradient and
anisotropy or depth of lateral inhomogeneities. The separation
of these e¡ects is di¤cult. Abnormal Sdiff waves can be caused
by larger volumetric inhomogeneities, low-velocity zones
spread out near the CMB or anisotropy.
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Vinnik, L., Brëger, L. & Romanowicz, B., 1998. On the inversion of Sd
particle motion for seismic anisotropy in D�, Geophys. Res. Lett.,
25, 679^682.

Weber, M., David, J.P., Thomas, C., Kru« ger, F., Scherbaum, F.,
Schlittenhardt, J. & Ko« rnig, M., 1996. The structure of the lower-
most mantle as determined from using seismic arrays, in Seismic
Modelling of Earth Structure, pp. 399^442, eds Boschi, E.,
Ekstro« m, G. & Morelli, A., Editrice Compositori, Bologne.

Wen, L. & Helmberger, D.V., 1998. Ultra-low velocity zones near the
core^mantle boundary from broadband PKP precursors, Science,
279, 1701^1703.

Wu, R. & Aki, K., 1985. Scattering characteristics of elastic waves by
an elastic heterogeneity, Geophysics, 50, 582^595.

Wysession, M.E. & Okal, E.A., 1988. Evidence for lateral hetero-
geneity at the core^mantle boundary from the slowness of di¡racted
S pro¢les, in Structure and Dynamics of Earth's Deep Interior, AGU
Monog., 46, 55^63.

Wysession, M.E., Okal, E.A. & Bina, C.R., 1992. The structure of the
core^mantle boundary from di¡racted waves, J. geophys. Res., 97,
8749^8764.

APPENDIX A: COUPLING MATRIX

In this Appendix, we detail the elements of the coupling matrix
for a point heterogeneity (eqs 67 and 68). The analysis of
this matrix has shown that only perturbations in *o and *k
a¡ect the S waves. We recall the general form of each term
(eqs 83, 84, 85 and 86) and then take into account the various
propagation directions.

A1 Case SVscSVin

A1.1 General expression

CSVscSVin~
{iu2r2h
2ohb

3
h

Q(2)[ksc cos (hr{hh)]pscVh

|[*on1(ksc, kin){3*kn2(ksc, gsc, kin, gin)

z cos((*on3(gsc, gin){*kn4(ksc, gsc, kin, gin))

{ cos 2(*kn5(ksc, gsc, kin, gin)]pinQ(2)

|[kin cos (hh{hs)] . (A1)
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A1.2 SV:
scSV

;
in

psc~�psc,

pin~�pin,

n1~u2(bpsc/rh)(bpin/rh) , (A2)

n2~(bpsc/rh)({iu�gsc)(bpin/rh)({iu�gin) , (A3)

n3~u2({b�gsc)(b�gin) , (A4)

n4~[({b�gsc)({iu�gsc)z(bpsc/rh)({iupsc/rh)]

|[(b�gin)({iu�gin)z(bpin/rh)(iupin/rh)] , (A5)

n5~({iupsc/rh)(iupin/rh)({b�gsc)(b�gin) . (A6)

A1.3 SV:
scSV

:
in

psc~�psc,

pin~�pin,

n1~u2(bpsc/rh)(bpin/rh) , (A7)

n2~(bpsc/rh)({iu�gsc)(bpin/rh)(iu�gin) , (A8)

n3~u2({b�gsc)({b�gin) , (A9)

n4~[({b�gsc)({iu�gsc)z(bpsc/rh)({iupsc/rh)]

|[({b�gin)(iu�gin)z(bpin/rh)(iupin/rh)] , (A10)

n5~({iupsc/rh)(iupin/rh)({b�gsc)({b�gin) . (A11)

A1.4 SV;
scSV

;
in

psc~�psc,

pin~�pin,

n1~u2({bpsc/rh)(bpin/rh) , (A12)

n2~({bpsc/rh)(iu�gsc)(bpin/rh)({iu�gin) , (A13)

n3~u2({b�gsc)(b�gin) , (A14)

n4~[({b�gsc)(iu�gsc)z({bpsc/rh)({iupsc/rh)]

|[(b�gin)({iu�gin)z(bpin/rh)(iupin/rh)] , (A15)

n5~({iupsc/rh)(iupin/rh)({b�gsc)(b�gin) . (A16)

A1.5 SV;
scSV

:
in

psc~�psc,

pin~�pin,

n1~u2({bpsc/rh)(bpin/rh) , (A17)

n2~({bpsc/rh)(iu�gsc)(bpin/rh)(iu�gin) , (A18)

n3~u2({b�gsc)({b�gin) , (A19)

n4~[({b�gsc)(iu�gsc)z({bpsc/rh)({iupsc/rh)]

|[({b�gin)(iu�gin)z(bpin/rh)(iupin/rh)] , (A20)

n5~({iupsc/rh)(iupin/rh)({b�gsc)({b�gin) . (A21�

A2 Case SVscSHin

A2.1 General expression

CSVscSHin~
{iu2r2h
2ohb

3
h

Q(2)[ksc cos (hr{hh)]pscVh

|[ sin((*on6(gsc){*kn7(ksc, gsc, gin))

{ sin 2(*kn8(ksc, gsc, kin)]pinQ(2)

|[kin cos (hh{hs)] . (A22)

A2.2 SV:
scSH

;
in

psc~�psc,

pin~�pin,

n6~u2({b�gsc)(1) , (A23)

n7~[({b�gsc)({iu�gsc)z(bpsc/rh)({iupsc/rh)]({iu�gin)(1) ,

(A24)

n8~({iupsc/rh)(iupin/rh)({b�gsc)(1) . (A25)

A2.3 SV:
scSH

:
in

psc~�psc,

pin~�pin,

n6~u2({b�gsc)(1) , (A26)

n7~[({b�gsc)({iu�gsc)z(bpsc/rh)({iupsc/rh)](iu�gin)(1) ,

(A27)

n8~({iupsc/rh)(iupin/rh)({b�gsc)(1) . (A28)

A2.4 SV;
scSH

;
in

psc~�psc,

pin~�pin,

n6~u2({b�gsc)(1) , (A29)

n7~[({b�gsc)(iu�gsc)z({bpsc/rh)({iupsc/rh)]({iu�gin)(1) ,

(A30)

n8~({iupsc/rh)(iupin/rh)({b�gsc)(1) . (A31)

A2.5 SV;
scSH

:
in

psc~�psc,

pin~�pin,

n6~u2({b�gsc)(1) , (A32)

n7~[({b�gsc)(iu�gsc)z({bpsc/rh)({iupsc/rh)](iu�gin)(1) , (A33)

n8~({iupsc=rh)(iupin=rh)({b�gsc)(1): (A34)
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A3 Case SHscSVin

A3.1 General expression

CSHscSVin~
{iu2r2h
2ohb

3
h

Q(2)[ksc cos (hr{hh)]pscVh

|[({ sin()(*on9(gin){*kn10(gsc, kin, gin))

{({ sin 2()*kn11(ksc, kin, gin)]pinQ(2)

|[kin cos (hh{hs)] . (A35)

A3.2 SH:
scSV

;
in

psc~�psc,

pin~�pin,

n9~u2(1)(b�gin) , (A36)

n10~(1)({iu�gsc)[(bpin/rh)(iupin/rh)z(b�gin)({iu�gin)] , (A37)

n11~({iupsc/rh)(iupin/rh)(1)(b�gin) . (A38)

A3.3 SH:
scSV

:
in

psc~�psc,

pin~�pin,

n9~u2(1)({b�gin) , (A39)

n10~(1)({iu�gsc)[(bpin/rh)(iupin/rh)z({b�gin)(iu�gin)] , (A40)

n11~({iupsc/rh)(iupin/rh)(1)({b�gin) . (A41)

A3.4 SH;
scSV

;
in

psc~�psc,

pin~�pin,

n9~u2({1)(b�gin) , (A42)

n10~({1)(iu�gsc)[(bpin/rh)(iupin/rh)z(b�gin)({iu�gin)] , (A43)

n11~({iupsc/rh)(iupin/rh)({1)(b�gin) . (A44)

A3.5 SH;
scSV

:
in

psc~�psc,

pin~�pin,

n9~u2({1)({b�gin) , (A45)

n10~({1)(iu�gsc)[(bpin/rh)(iupin/rh)z({b�gin)(iu�gin)] , (A46)

n11~({iupsc/rh)(iupin/rh)({1)({b�gin) . (A47)

A4 Case SHscSHin

A4.1 General expression

CSHscSHin~
{iu2r2h
2ohb

3
h

Q(2)[ksc cos (hr{hh)]pscVh

|[ cos((*on12{*kn13(gsc, gin))

{ cos 2(*kn14(ksc,kin)]pinQ(2)[kin cos (hh{hs)] .

(A48)

A4.2 SH:
scSH

;
in

psc~�psc,

pin~�pin,

n12~u2(1)(1) , (A49)

n13~({iu�gsc)(1)({iu�gin)(1) , (A50)

n14~({iupsc/rh)(iupin/rh)(1)(1) . (A51)

A4.3 SH:
scSH

:
in

psc~�psc,

pin~�pin,

n12~u2(1)(1) , (A52)

n13~({iu�gsc)(1)(iu�gin)(1) , (A53)

n14~({iupsc/rh)(iupin/rh)(1)(1) . (A54)

A4.4 SH;
scSH

;
in

psc~�psc,

pin~�pin,

n12~u2({1)(1) , (A55)

n13~(iu�gsc)({1)({iu�gin)(1) , (A56)

n14~({iupsc/rh)(iupin/rh)({1)(1) . (A57)

A4.5 SH;
scSH

:
in

psc~�psc,

pin~�pin,

n12~u2({1)(1) , (A58)

n13~(iu�gsc)({1)(iu�gin)(1) , (A59)

n14~({iupsc/rh)(iupin/rh)({1)(1) . (A60)
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