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Abstract

A key aspect of the deformation of sedimentary rocks during diagenesis is pressure solution. However, it is often not
clear why some rocks of a given mineralogy, depth, and pressure exhibit a great deal of pressure solution while very similar
rocks under similar conditions do not. To address such difficulties, which we believe arise from the natural, non-linear
physico-chemical processes, a quantitative model for pressure solution applied to sandstones has been developed. This
model subsumes various factors: (1) pressure, temperature, and burial rate; (2) grain size, shape, and packing of the mineral
grains; (3) the variability of water film thickness and coefficient of diffusion between any two grains in contact as a
function of stress across the contact, pore fluid pressure, salinity, pH, and temperature. In this study we distinguish several
types of surface sites over quartz grains in a sandstone with corresponding differences in chemical potential, thus allowing
the diffusive transfer of matter from one site to another. The contact between two grains is divided into two parts. The
actual true contact between two grains is a site of ‘water film diffusion’, and the inclusions inside the contact, the free-face
inclusion contacts, are sites of ‘free-face pressure solution’. On the pore surface site, precipitation occurs. It is shown that
a kinetics transition from a reaction-limited deformation to a diffusion-limited deformation occurs in the upper crust. A
geometric transition occurs too due to the textural evolution of the rock with deformation. The main goal of this paper is
to show the dynamics of the shifting importance of actual and free-face inclusion contacts using a unified model including
both features. The result is a predictive model for porosity variations with depth due to pressure solution in sandstones.
© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction models have been proposed, three models of which

are reviewed in the following:

The deformation of sedimentary rocks by pressure
solution has been recognized for many years (Heald,
1955; Weyl, 1959; Engelder, 1982). This mechanism
is responsible of a viscous creep of rocks in the
upper crust (Urai et al., 1986). Several mechanistic

* Corresponding author. E-mail: francois@geologi.uio.no

In the first ‘water film diffusion’ (WFD) model
mineral dissolution is assumed to take place at the
grain—grain contact area with the solutes diffusing
along an adsorbed water film layer. The precipitation
of the solute occurs on the pore surface (Weyl, 1959;
Rutter, 1976). The driving force for this deformation
is a difference of normal stress between the grain
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contact and the pore. In this case, dissolution at the
contact is stress-enhanced.

In the second, ‘free-face pressure solution’
(FFPS) model, dissolution occurs at the margins of
the contacts, leading to undercutting and the eventual
brittle or plastic deformation taking place within the
contact (Bathurst, 1958; Tada et al., 1987). In this
model, dissolution is strain-enhanced.

In the third model, it is proposed that the nominal
contact between two grains is not flat and can contain
channel and island structures at a nanometer scale
(Raj and Chyung, 1981) or at a micron scale (Spiers
et al., 1990; Gratz and Bird, 1993a,b). Between the
channels, plastic or brittle deformations can take
place.

In this paper, we try to reconcile these three mod-
els by using a formulation of the pressure solution
mechanism that subsumes both ‘water film diffu-
sion’ and ‘free-face pressure solution’ mechanisms
in a framework of channels or corrugated grain con-
tacts. This new model integrates all the steps of the
deformation: dissolution at grain interface, diffusion
of matter along the interface and precipitation in
the pore space. The modification of pore space due
to neck growth (sintering) as observed in an exper-
iment by Hickman and Evans (1991) will not be
incorporated in our model.

A crucial parameter for pressure solution is the
presence of water in the pores because it is the
medium of transport and reaction with the minerals
(Rutter, 1976). If a porous medium is not saturated
with respect to water, pressure solution will be lo-
calized in the pores where water is present. This
effect can create compacted regions in the sediment
whereas the porosity of other regions will not be
modified.

2. Rock texture model

The non-linear dynamics of pressure solution and
compaction process arise from the fact that dur-
ing deformation intergranular contact areas grow. To
take in account such geometric evolution, the rock
is modeled as a cubic array of grains (Dewers and
Ortoleva, 1990; Ortoleva, 1994) and assumed to be a
monomineralic sandstone. The grains of quartz have
a truncated spherical geometry (Figs. 1 and 2) which
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Fig. 1. A cross-section view of a cubic-packed network of trun-
cated spheres. The grain shapes evolve due to pressure solution
as shown: the grain radius L; increases while the grain flattens
(L. decreases) resulting in the porosity and the pore surface
decrease.

is characterized by four geometrical lengths: Ly, the
grain radius, and L, L,, and L., the lengths of the
truncations in the three directions of space (Fig. 2).
The grains have nominal grain—grain contacts with
internal structures (Spiers et al., 1990; Spiers and
Schutjens, 1990; Schutjens, 1991) which consist of
a number of free-face inclusion contacts (similar to
fluid inclusions) that evolve via FFPS. The regions
between these fluid inclusions, the actual true con-
tacts, evolve via a WFD mechanism (Figs. 3 and 4).
When the number of inclusions is small, they are
assumed to be isolated, whereas when their number
increases they can connect together, forming small
channels. Stress-enhanced dissolution, mostly due to
the normal stress effect, occurs in the actual true con-
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Pore surface
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Radius of the sphere: L¢

Fig. 2. Detailed description of the truncated spheres of Fig. 1.
The dark gray region is the pore surface whereas the lighter gray
regions correspond to areas in contact with other grains. Each
contact represents the composite nominal contact of Fig. 3. The
variables are used in Egs. 1 and 3. Grain radius, Ly (Ly > 2L,,
2L, 2L.), can vary from micrometers (siltstones) to millimeters
(sandstones).
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Fig. 3. A view of a structured nominal contact between two
grains. The surface area of the contact is A. as shown. Actual
contacts deform according to the ‘water film diffusion’ (WFD)
mechanism, whereas free-face contacts (inclusions) deform ac-
cording to the ‘free-face pressure solution’ (FFPS) mechanism.
The free-tace contacts can overlap, allowing connection all over
the nominal contact.

tacts. Strain-enhanced dissolution (plastic and elastic
dissolution) occurs in the free-face inclusion con-
tacts and in the pore space. Some of these inclusions
can be located at the outer perimeter of the contact
allowing FFPS there.

The pressure in the pore space is assumed to
be hydrostatic, i.e. there is no overpressure in the
pore. On the opposite, inside the fluid inclusions,
fluid pressure is allowed to build-up if the inclusions
become closed and no more connected to the pore.
With these assumptions and the corresponding driv-
ing forces, a transition between the WFD and FFPS
behaviors is shown to occur due to the modifications
of solute mobility along the water film at the contacts
with stress and temperature variations.

3. Transitional pressure solution approach

Our model takes into account different sites on
the surface of a grain and the exchange of matter
between them (Gratz, 1991; Wakai, 1994; Lehner,
1995; Renard et al., 1997). The overall mechanism
can be described in three steps (Fig. 5). First, dis-
solution occurs in the actual true contacts. Secondly
aqueous silica is transported by diffusion along the

adsorbed water film. This second step comprises two
parts in parallel. It takes into consideration diffu-
sion from the actual contacts to the pore fluid and
ditfusion from the actual contacts to the free-face
inclusion contacts where precipitation or dissolution
can occur, decreasing or increasing the volume and
surface area of the inclusions (Figs. 3, 5 and 6).
This diffusion step is made significantly more effec-
tive if the free-face inclusion contacts are connected
and form channels. As the third and last step, silica
precipitation can take place on the pore surface.

3.1. Geometrical model and compaction

For simplicity of the presentation, we will focus
on the vertically directed grain contacts (normal to
the z-axis) (Fig. 2). Results are identical for the
horizontally directed contacts (normal to x and v
contacts) because one considers an isotropic loading
of the system. This assumption of an isotropic load
is fair in the geological conditions of a sedimentary
basin. As shown in Figs. 3 and 4 the nominal contact
of a grain contains an actual true contact surface and
a free-face inclusion contact surface. The latter is
modeled as an array of conical inclusions (Fig. 4) of
height &. and radius of the base ¥.. The cones are
assumed to have a constant angle of 90°, therefore
&. and Y. are equal (Fig. 4a). This array of conical
inclusions inside a planar actual contact is assumed
to describe the complex contact of the island and
channel model of Spiers et al. (1990). If inclusions
are large enough, they can become connected, allow-
ing for direct matter transport from the grain contacts
to the pore.

To complete the textural descriptions the follow-
ing quantities (Figs. 2-4) are introduced:

A nominal contact area (m”) (Fig. 3).

[ nominal contact area radius (m) (Fig. 3).

L.. L., L. truncations for the spherical grains in the
three directions of space (m) (Fig. 2).

L¢ radius of the spherical grain (m) (Fig. 2).

a. area fraction of one of the actual contacts
within the nominal contact (Fig. 4b).

- number of inclusions (free-face inclusion
contacts) per nominal contact area.

Ap pore surface area (m?).

P, normal stress to a solid surface.

Pp fluid pressure in the open pore (bar).
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(a) side view

(b)

plan view

Fig. 4. (a) An expanded vertical cross-sectional view of a nominal contact containing actual true contacts and inclusions (free-face
contacts). The contact area is filled by a water film of thickness A, and the inclusions are defined by conical shapes. (b) Horizontal view
section of Fig. 4a passing through the center of the water film. The variables shown here are used in Egs. 2A and 2B and following.

Ha

stress tensor at one point of the grain surface
(bar).

nominal stress normal to the nominal contact
(bar).

normal stress across an actual true contact (bar).
macroscopic vertical stress (equivalent to a litho-
static stress) (bar).

fluid pressure within the free-face inclusion parts
of the contact between the actual contacts (bar).
thickness of the water film in an actual contact
(m).

effective diffusion coefficient for migration
along the nominal z-contact (m? s 1),

Dil

diffusion coefficient for migration along an ac-
tual contact {m* s ").

diffusion coefficient of water in the pore fluid
(m” sh).

height of a free-face inclusion contact (m), see
Fig. 4.

radius of a free-tface inclusion contact (m), see
Fig. 4.

half of the distance between the free-face inclu-
sion contacts (m).

angle of aperture of the conic free-face inclusion

contacts, 8 = 2 arctan (£. /)
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Fig. 5. Transitional pressure solution model. Dissolution occurs on the actual true contact sites. The solutes are then transported by
diffusion along the water film to the free-face contacts and the pore space where they can precipitate. Simultaneously, matter can diffuse
from the free-face contacts to the pore where it can precipitate. The system is closed at the grain scale. If there are exchanges inside the

pore tluid with neighboring sediment through diffusion or advection. the closed system constraint is relaxed.

Three concentrations enter the model of contact
dynamics:

¢P concentration of aqueous silica in the pore fluid
(mole m™).

¢! concentration of aqueous silica in a free-face

inclusion contact (mole m™).

concentration of aqueous silica in the center of an

actual contact (mole m™).

e Before deformation

3.2. Geometrical evolution during deformation at a
grain scale

The velocities G, and G¢ (m s!), defined in
Figs. 2-4, describe the geometric evolution of the
z-contact length variables. Gy, which is based on
WFD, and Gy, which describes FFPS, are repre-
sentative of the time evolution of the moving grain
interface (Fig. 6). A third rate, G, (m s7h), takes

s = After an increment of pressure solution
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Fig. 6. View of the grain surface before and after an increment of pressure solution. The rates G,. Gy, and G, correspond (o the velocity

of the moving interface, see Eqs. 1, 24, 2B and 3.
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into account the evolution of the grain radius, Ly,
and represents the thickness of overgrowth on the
pore surface. Given these rates, the textural evolution
of the grains can be characterized by the following
assembly of equations:

dl- ) )
— = G:l((/‘d-o’u-dr) (hH
dr
.
dr
Gy (¢, o, o) . Gy (C(a Pp» 5") e =D
— ) 70 v
tan (——) s ( 5 >
(2A)
0 £ <0
ay.
dr
Gilch, p,, o-
G, (" 0, 0.) — (e [;p ) Y. >0
sin (‘2‘>
(2B)
0 . <0
dly .
Tif_T = G, (ci\, Pp. 0-) 3

where Ly is the grain radius, L. is the length of
the truncation of the spherical grain (Figs. 1 and 2),
and . and & are respectively the radius and the
height of the free-face inclusion contacts (Fig. 4).
The variables G, and Gy give the rate of change
of the length variables characterizing the two sites
inside a nominal contact. Rates are defined positive
when dissolution occurs on the surface and nega-
tive for precipitation. Note that in Egs. 2A and 2B
the dynamics associated with the free-face inclu-
sion contact sites, because of our geometrical model.
depend on both WFD and FFPS rates.

In the model ¢* is related to ¢' by a steady state
assumption (Dewers and Ortoleva, 1990). Letting /,
be the minimum distance between the network of
holes (Fig. 4a), Fick’s Law gives:

271,A, Dy (¢ — ) a-

=—=G, 4
i 7 U (4)

7l =a. (5

where V. is the molar volume of quartz (22.688 x
107" m* mole™"). From Eq. 4:
a.

27 A,D,V,

The relation between ¢’ and ¢ is also obtained
in the present model by a steady state assumption.
However, the consideration is more complex because
material can exchange not only with the pore fluid
but also with the actual contacts (Fig. 5). Fick’s Law
gives:
2l (& + A/2) Dy (cf — cP)

[

= ! (6)

B

1
== [n-a:G, + (1 = n.a)G] A- (7)

Tl = A, (8)

where 2(&. 4+ A, /2) 1s the thickness of the water layer
in the free-face inclusion contact. We have used the
fact that n.a- is the fraction of the nominal contact
area which is actual true contact (WFD) while (1 —
n-a.) is the free-face fraction area (FFPS). Dy is
assumed to contain a tortuosity factor associated with
the need to avoid the actual contacts while migrating
to the pore. This tortuosity coefficient depends on
the fraction between the actual contacts area and
the nominal contact area with a power exponent
(Turcotte, 1992). For continuity of the transition
between pure WFD and FFPS dynamics one must
have:

n.a. — 1 and a. — A_ as £, ¢. — 0 9
Thus the relationship between the actual fraction

and the free-face fraction areas is:

n-a. =1— mz:l,[ff (10)
Finally, we must take into account the conserva-

tion of volume in a closed system:

n-a.G, +n. (n’t/f:\/z//f + S-) Gr+ A,G, =0

(IhH

In Eq. 11, the factor in front of Gy is the surface

area of the conic inclusions constituting the free-face

inclusion contacts. The rate G, represents the pre-

cipitation on the pore surface (Fig. 6) which is equal
to:

cP ;
Gy =k, (‘1 - F) (12)
e
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where k, is the rate of quartz precipitation and K,
the equilibrium constant for quartz. The ratio in
Eq. 12 represents the degree of saturation.

If the size of the inclusions becomes as small as
the thickness of the water film, the above equations
are no longer valid because the influence of Gy
vanishes as the free-face inclusion contacts default to
zero. In this case two processes continue to operate,
one is the diffusion along the water film to the pore,
the other is the conservation of aqueous silica. The
whole dynamics is described by the following two
equations:

27l A D, (¢ — ¢P A
TEAD =) A (13)
I V.

A.G,+A,G,=0 (14)

4, Stresses at different sites
4.1. Normal stresses

For the monomineralic system modeled as a peri-
odic array of truncated spheres. the following equa-
tion allows a feedback between pressure and rock
texture. In Eq. 15 1s described the relationship among
the macroscopic vertical stress (equivalent to a litho-
static stress, for example the effect of overburden),
o, the normal stress on a nominal contact, 0., and
the pore pressure, p, (Dewers and Ortoleva, 1990,
eq. O):

-L\LV\‘G;I,“ — A:()': + (L\ L,\ - A') Pp (15)

Eq. 15 represents a force balance equation that
couples rock texture and stress. As the grain contact
surface area changes during deformation, the local
stresses normal to the actual contact and normal to
the free-face inclusion contacts are modified.

There is also a relationship between the effective
microscopic normal stress on a nominal contact, o.,
the normal stress on an actual true contact, o,, and
the normal stress on a free-face inclusion contact, py
(Fig. 3):

Ao, =n.a.A.0, + (1 —n.a.) A.p; (16)

The normal pressure at the free-face inclusion
contacts should range between p, and o,. If the
free-face inclusion contacts are directly connected

and form channels, fluid pressure inside is the pore
pressure. In contrast, when all the inclusions are
closed, their internal pressure should increase and
should reach a value close to the pressure on the
actual true contacts. Two different relationships can
be used to evaluate the fluid pressure inside the
free-face inclusion contacts: (1) the normal stress
is equal to the pore pressure; (2) the normal stress
can vary between the pore pressure and the normal
stress in the actual true contacts in a transitory
way. Inclusions can be connected for a while, then
they can seal themselves. Therefore, their internal
pressure can vary during deformation. To model this
process, we can use a geometrical interpolation such
as when the free-face inclusion size decreases, pr
goes to o,; and when the inclusion size is increased,
fluid inclusions are connected to the pore and py goes
to p,. This relationship, similar to a percolation law
(Turcotte, 1992), gives another feedback between
stress and geometry:

A.—n-a. | ;
Py = Oq — (Gu - ,Dp> """" T— (17)

When inclusions are connected, the geometry
of the grain contact is assumed to be similar to
an island-and-channel model (Spiers and Schutjens,
1990). The two values for the internal pressure (con-
stant and transitory following Eq. 17) inside the
inclusions will be compared in the numerical model
(Fig. 9).

It remains to specify the variation of n. (the
number of free-face inclusion contacts per nominal
contact). Here, it is assummned to be fixed by its orig-
inal value at the moment of sedimentation although
it might be argued that n. should vary with &, .
(and other variables), and reaction progress. Typical
values for n. are comparable to dislocation densities
on a mineral surface, ranging from 10° to 10'? per
cm” in quartz, depending on the state of strain of the
crystal (Wintsch and Dunning, 1985).

4.2. Stress tensors at the different sites

The stress tensor varies at the different sites over
the grain surface: on the actual contact surface, on
the free-face inclusion contact surface, and on the
pore surface. In these sites, we have already defined
the normal stress; it remains to specify the stresses in
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Table 1

Stress tensor at the solid/liquid interface normal to z—axis; by definition compressive stresses are negative

Actual true contact Free-face contact

Pore surface

=Ty —0y )
—0% —0a
—0y — Pt

-0

._.1175\

the two other directions to evaluate the stress tensors
and the elastic contributions to the Helmholz free
energy of the solid.

We assume the following stress tensors at the
solid/liquid interface in the three sites (Table 1). In
the actual contact the stresses in the three directions
are equal to the actual stress o, . Inside the free-face
inclusion contacts, the normal stress is defined in
Eq. 17 and the stresses in the two other directions
are as in the actual true contacts, ie. o,. In the
pore, the normal stress is the pore pressure, the two
other stresses are equal to o., the normal stress at a
nominal z-contact.

5. Chemical potentials of quartz at different sites

The state of stress of a solid has a significant
effect for its chemical potential. The effect is to
increase the molar free energy of a stressed solid
compared to that at zero-stress state (Sprunt and
Nur, 1976; Heidug and Lehner, 1985). Though the
Gibbs-type free energy cannot be defined for nonhy-
drostatically stressed solids (Shimizu, 1995, 1997),
dissolution/precipitation of solids can be fully de-
scribed by the surface chemical potential 1 (Kamb,
1959; Gibbs, 1961; Paterson, 1973; Shimizu, 1995,
1997). If tangential stress on the grain surface is
zero, the chemical potential can be written:

where p is the chemical potential of the solute com-
ponent, P, is the normal pressure on the solid; it
varies at the three sites of our model. f represents
the molar Helmholz free energy. V, is the molar
volumes of the quartz under stress. Eq. 18 charac-
terizes the chemical potential of quartz at each point
on the surface of the solid and varies over the grain
surface. The driving force for material transfer along
a grain surface is the difference in chemical poten-

tial between two parts of the same crystal surface.
If the compressibility of the solid is neglected, this
difference can be written (Shimizu, 1995):

Ap=Af+ VAP, (19)

where A denotes a difference from a reference state
and P, is the normal stress on the solid. The term
A f contains contributions due to elastic energy, dis-
location energy and surface energy. These different
contributions are explained in the following.

5.1. Elastic energy

The elastic strain energy. U,, depends on the stress
tensor on the surface, g (given in Table 1), the molar
volume of the solid, VS, the pore pressure, pp. and
the elastic compliance of the solid, S (about 100 GPa
for quartz) (Paterson, 1973; Reuschié et al., 1988):

(03 - pf;) vV,
28
The term o in Eq. 20 is equal to —tr(¢)/3, where
the stress tensors, o, are defined at the different sites
in Table 1. Among all the effects considered, the
elastic contribution on the free energy is the smallest
one (Table 2).

AU, = (20)

5.2. Effect of dislocation and plastic energy

Dislocations inside a crystal contribute to the
definition of its internal energy. For high densities of
dislocations (more than 10'® m~2), the free energy
of the solid can be increased significantly, which
in turn increases the chemical potential of minerals
and thus their solubility. If one assumes that the
variation of the free energy of a crystal of quartz is
only due to dislocation energy, Uy, one can calculate
its contribution to the increase in silica chemical
potential. For example, at 400°C and 3000 bar, the
increase of quartz solubility is 1% if p = 10"
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Table 2

Effect of the different energies (J mole™!) on the increase of the equilibrium constant of agueous silica along the grain surface

Site Normal stress effect AU
(J mole™") (J mole™)

Al AU Total effect on the increase of K,
(J mole™ "

eg

(J mole™

Actual contact +1658 +3
Free-face contact +283 to +1658 +170
Pore surface +283 -+3

Lad

5 0 +86%
—4 to —40 418 to +100%
0 +11%

w

The equilibrium constant of reference is for an unstrained and unstressed quartz with a negligible surface energy. The plastic energy due
to dislocations (Uy) is taken from Wintsch and Dunning (1985). The elastic energy., Ue. is calculated from Eq. 20. The surface energy,
Us. is calculated from Eq. 22. The stress was chosen to be a tvpical overburden value at 2 km depth. with lithostatic and hydrostatic
gradients (the pore pressure equals 200 MPa): the temperature is 50°C and the grain size is 1.0 mm.

m™? and 30% if p = 10" m™7, where p is the
dislocation density (Wintsch and Dunning, 1985). In
clean moderately deformed quartz, p is not larger
than 10" m™2, which is not sufficient to induce a
significant chemical effect. On the contrary, in highly
strained rocks, p can be increased by 2 or 3 orders of
magnitude and the increase of Uy (which can reach
800 J/mole) can be sufficient to promote quartz
dissolution.

At the microscopic scale of the grain surface,
the free-face inclusion contacts should localize in
the areas of higher dislocation density. We therefore
assume that p is higher in the free-face inclusion
contacts than in the actual contacts. In the simu-
lations, we have chosen p to be 10 m™ in the
free-face inclusion contacts and 10" in the actual
true contacts. These values correspond to dislocation
energies of 170 kJ/mole and 3 kI/mole, respectively
(Wintsch and Dunning, 1985) (see Table 2).

5.3. Surface free energy

The surface free energy of a solid is the work
needed to produce a unit of new surface by a re-
versible work yielding one equilibrium surface:

oG
y = (——~> 1)
9A ) by

The part of this energy in the total energy of the
solid can be written as:

B 23/—‘7\

r

AU, (22)

where r is the mean radius of curvature and V., the
molar volume of the solid.

The interfacial energy y between quartz and lig-
uid water is estimated to be y = 0.35 ] m™ (Parks,
[984). This value is small so the surface energy ef-
fect 1s almost zero for particles bigger than about 0.5
um. The surface energy creates a solubility variation
which is controlled by the size of the particle. Hunter
(1986, p. 268) gives the following relationship be-
tween y and the activity:

a AT \
()= (23)
o rRT

where ¢ and 4 are the activities of the solid with and
without surface energy, y is the surface energy, V, is
the molar volume of the solid, R the gas constant, 7
the temperature, and r the radius of the particle (if it
is assumed that the two principal radii of curvature
are equal).

In our model the fluid inclusions in the free-face
inclusion contact area can reach sizes where a neg-
ative surface energy can become important. Eq. 23
permits to evaluate this decrease in activity of quartz,
which is —5% for a 0.1 pwm radius inclusion and
—50% for 0.01 wm inclusions. Note that we neglect
here the effects of pH and salinity on the surface
energy although they can modify y by a factor of 2
or 3 (Parks, 1984).

Hickman and Evans (1991) have reported ex-
periments where deformation was measured at the
contact between polished lenses of halite and/or
quartz. They have observed no convergence when
two lenses of halite were in contact but an increase
of the surface area of contact between the lenses due
to ‘neck growth’. The driving force for this process
of transport in the pore fluid is a gradient of surface
curvature along the surface of the lens in contact
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with the pore fluid (Hickman and Evans, 1991). This
gradient induces a redistribution of material along
the surface of the lenses. This mechanism will not
be incorporated in our model of grain deformation
because, on a long time scale, it cannot induce grain
convergence and cannot modify a lot the porosity of
a rock.

5.4. Total energy in the different sites and driving
force for pressure solution

For the three sites used in this model the chemical
potentials are different. thus the equilibrium constant
of quartz, K., varies, allowing for the chemical
diffusive flux of mass from one site to another. From
Eqgs. 18-23, the chemical potential of quartz is:

Mgz = Mo + APnV.s + AU, + AUy + AU (24)

where ft is the chemical potential for an unstrained
crystal of quartz with negligible surface and strain
energies under hydrostatic pressure P,. In the model,
the value of A P, varies along the grain surface. It is
(o, ~ pp) in the actual true contacts and (py — pp) in
the free-face inclusion contacts.

By definition jt, = R7 In(K,). thus the equi-
librium constant varies along the grain surface. At

each site:
APV, Am>
——— | X €Xp
RT RT

AUy AU
X eXp ( ) X exp ( > (25

Koy = Ko(T) x exp

RT RT

where Ko(7) is the equilibrium constant for an
unstrained and unstressed solid whose value depends
most only on temperature. In Table 2 the different
energies have been categorized for their effects on
the equilibrium constant.

Eg. 24 allows estimating the potential drop be-
tween the sites of dissolution and the sites of pre-
cipitation over the grain surface. The driving force
for the multi-step pressure solution mechanism can
be written in terms of a “solubility difference’ along
the grain surface. If pressure solution is limited by
the dissolution at the contact, the solubility differ-
ence acts as an undersaturation in the kinetics law
of dissolution at grain contacts. If pressure solution
is limited by diffusion along the actual contacts, the

solubility difference gives a gradient of concentra-
tion between the grain contact and the pore (Fick’s
Law). And, if pressure solution is limited by pre-
cipitation in the pore, the solubility difference can
be written as a supersaturation in the pore fluid (de
Meer and Spiers, 1995).

6. Structure and properties of the adsorbed water
film

6.1. Existence and thickness of a warer film

Experimental evidences show that a water film
can be trapped between minerals (Pashley and Kitch-
ener, 1979; Pashley and Israelachvili, 1984; Horn
et al., 1988, 1989). The thickness of this film has
been measured or calculated for many minerals and
varies from a few angstroms to several nanometers
(Peschel and Aldfinger, 1971; Heidug, 1995). Under
most basin conditions its thickness decreases expo-
nentially with stress until the lower limit of 0.5 nm is
reached which represents the thickness of two layers
of water molecules (Renard and Ortoleva, 1997).

The main physical origin of this physical depen-
dency is electric surface charge, and the stability of
the film is through an osmotic/Debye~Hiickel model
(Renard and Ortoleva, 1997). The stability of this
fluid film can also be due to hydration forces (Hei-
dug, 1995). In Fig. 7 the thickness of the water filin is
calculated as a function of the effective pressure, i.e.,
the amount by which the fluid pressure acting on the
fluid—-solid interface exceeds the hydrostatic pressure
in the bulk fluid. The curves, for different surface
charge on the mineral, indicate that the water film
thickness is smaller between two grains of quartz
than between two micas and depends therefore on
the rock mineralogy.

6.2. Diffusion along the water film

The diffusion coefficient within the actual grain
contact area is poorly determined. We believe it is
not constant and should vary with the water film
thickness A, such that when A, is thick enough
the diffusion process should be that in free water.
When the water film is only a few angstroms thick,
diffusion is expected to be like that in solid. This
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Fig. 7. Water film thickness between two grains as a function
of effective stress and surface charge € (coulomb m -2y of the
mineral surface (Renard and Ortoleva. 1997). Typical value of
the surface charges are —0.01 C m™ for quartz and —0.1 C
m™" for mica. This difference allows the preservation of a higger
water film between two mica sheets than between two grains of
quartz.

coefficient is important in our model because it
controls the WFD rate compared to the FFPS one.
The diffusivity of a particle in a large volume of
liquid is described by the Stokes—Einstein equation
(Hunter, 1986):
kT
 6mnd

where D is the diffusion coefficient (m® s— 1), k the
Boltzmann constant (1.38 x 107 m® Pas™!), § the
size of the particle, and » the viscosity of the liquid
(Pas). Horn et al. (1989) have measured the viscosity
of a 2-nm water film trapped between silica sheets
and found a value in the order of magnitude of 107
Pas. Taking for & the diameter of a molecule of
hydrated silica to be 0.5 nm, the diffusion coefficient
of silica inside a 2-nm water film at 25°C is therefore
3.5 x 107" m? 57!, within an order of magnitude
less than diffusion in free water (Mullis, 1993).
Other authors have deduced the product coeffi-
cient of diffusion times water film thickness from
pressure solution experiments and found results
from 107" (Gratier and Guiguet, 1986; Spiers et
al., 1990; Gratier, 1993) to 107°" m® s~ (Rutter.

(26)

1976). Their experiments are made at high effective
stress, so the water film thickness should not exceed
0.5 nm, which corresponds to two layers of water
molecules. Thus, assuming an activation energy of
15 kJ mole™!, the diffusion coefficient of a water
film of 0.5 nm thick can be estimated and found to
range from 8 x 10717 10 8 x 107" m* s7! at 25°C,
which is in good agreement with values reported by
Nakashima (1995). Despite the wide range of these
values, they are several orders of magnitude higher
than that for diffusion in solids (Freer, 1981).

A small value of the coefficient of diffusion is
necessary to maintain the stability of the free-face
inclusions and allows the FFPS mechanism to oper-
ate. The coefficient of diffusion along the water film
D, is chosen to be such that it decreases with A, to
take into account the former observations. When the
water film is thick enough (A, > 5 nm) the diffusion
is that in free water, i.e. the coefficient of diffusion
is equal to 2 x 10 Ym? st at 25°C (Applin, 1987);
and when the water film thickness falls to 0.5 am,
the coefficient decreases to 107 m® ¢! at 25°C
(Nakashima, 1995). We have calibrated the coeffi-
cient of diffusion such as it takes into account these
observations and found:

—14

Dy = Dy in -+ (Dp - Z)u.mm>
X : (27
A, =25 x 107 ‘
Irexp <_ 25 % 10-10 )

where Dy min equals 107 m? 7' at 25°C. With
Eq. 27), the coefficient of diffusion takes into ac-
count the high diffusivity in free water (Applin,
1987). the medium diffusivity in a 2-nm-thick water
film (Horn et al., 1989) and the low diffusivity in
a 0.5-nm film (Rutter, 1976; Gratier and Guiguet,
1986). All of these coefficients of diffusion are as-
sumed to have an activation energy of 15 kJ mole™!.

The effective diffusion coefficient between the
free-face inclusion contact and the pore, Dy, must
be addressed for two effects. First, diffusion is more
difficult than in free water because of the obstruc-
tions imposed by the actual true contacts. Second,
diffusion is easier than along the water film because
the free-face inclusion contacts are wider and can
be connected to form small channels where diffusion
is promoted. Here we assume that the variable that
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controls diffusion is the ratio between the free-face
surface area and the nominal surface area through:

‘ [ A o

(28)
A typical choice for o is 3, based on percolation
modeling (Turcotte, 1992).

7. Model testing and calibration

7.1. Solubility of quariz

In the model, the chemical reaction of dissolution
or precipitation of quartz is taken to be:

SiOEm + 2HSO =g H-LSiOJAaq]

The equilibrium constant K. for this reaction is:

A,Si0,

Keq == (29>

Asio, 41,0
where all the a’s are the activity of the species in
solution.

At equilibrium, if we take the reference states of
solid quartz and water to be pure states under stress
states considered, the activities of quartz and water
are equal to 1. The equilibrium constant is related to
silica solubility ¢y, 50, through:

Keq = V4,510, CH,si0, (30)

where yy sio, 18 the activity coefficient, assumed to
be equal to 1 in a dilute pressure free state. Koy
under stress is related to the equilibrium constant K,
in stress-free state by:

ch - KUeXp (MJ (31)

Using these relation and Eq. 25, one can estimate
the solubility in the different sites. In Eq. 25, Ko(T)
is almost only dependent on temperature (Rimstidt
and Barnes, 1980; Rimstidt, 1997). Tt is the equilib-
rium constant for a stress-, dislocation-, elastic- and
surface energy-‘free’ state. We choose its value to be
as follows (Rimstidt and Barnes, 1980):

: 1560
fog (K¢) = 1.881 — 0.002028 x T ~— = (32)

7.4, Kinetics of dissolution/precipitarion

The rate constant for dissolution/precipitation
increases with temperature and varies with pH
and ionic concentrations (Dove, 1994). Some au-
thors have evaluated the kinetics of quartz disso-
lution through laboratory measurements (Rimstidr
and Barnes. 1980; Brady and Walther. 1990; Dove,
1994) and found rates faster than in geological con-
ditions (Oelkers et al., 1996). Walderhaug (1994)
has estimated precipitation rates in sandstones in
the Norwegian shelf from fluid inclusion microther-
mometry and he has found a value much lower.
Because of the large uncertainty about the kinetics
of quartz dissolution/precipitation, we have cho-
sen to calibrate our model with kinetics which are
able to take into account geological observations of
porosity—depth curves in sandstones (Ramm, 1992).
We have tried several models and the values of the
kinetics constant which best fit the geological data
are those of Brady and Walther (1990) which give
intermediate values for quartz kinetics of dissolution
and precipitation.

7.3. Initial geometry of the grains and contacts

A range of grain sizes was investigated. For ex-
ample, in North Sea sandstones, the typical grain
size is between 0.1 and 1 mm. The initial size of
the free-face inclusions inside the nominal contact
is set to be equal to 1 pm. This value is chosen to
represent the initial roughness of the contact surface;
it is a typical size of a fluid inclusion. The constant
angle of the conic inclusions is chosen to be 90°,
50 £ = y.. The number of inclusions is fixed such
that in a nominal contact, 50% of the surface area is
actual true contact and initially deforms with WFD,
whereas 50% of the surface area contain fluid inclu-
sions and deform with a FFPS mechanism (Fig. 8¢).
During deformation, this ratio evolves.

Sedimentology presents an initial wide range of
inclusion sizes inside the contact before deforma-
tion. Initial inclusions that do not contain disloca-
tions have a smaller free energy than those located
near dislocations. The former ones are consumed
faster, whilst those with dislocations survive. Thus
there exist preferred sites for inclusions within the
contacts.
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Fig. 8. Sandstone compaction by a pressure solution model. Constant temperature, pore pressure and lithostatic pressure were used for
this simulation. One can observe the variations of the length variables (see Figs. 1 and 2 for their definitions): L (the grain radius)
increases (Fig. 8a) while grain indentation implies the decrease of L. (Fig. 8a). The overall grain volume is conserved. The free-face
contact radius & increases during compaction (Fig. 8b). The ratio between the free-face contacts and the nominal contact areas evolves
up to an equilibriam value equal to 65% in this simulation (Fig. 8¢). During compaction, porosity decreases from 31% to 4% in 36
million years (Fig. 8d). and the vertical strain rate exponentially decreases (Fig. 8e) because of an increase of the surface area of the
nominal contacts. Physical conditions are chosen to be similar to that of a sediment held at 2 km depth.
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8. Results and discussion

8.1. Grain deformation and stability of the free-face
inclusions

During chemical compaction, dissolution occurs
inside the contact and matter precipitates on the pore
surface, hence Ly (measuring the thickness of over-
growth on the pore surface) increases (Fig. 8a). In
our model, it is assumed that chemical compaction is
isotropic, so grain truncation lengths L., L., and L.
all decrease with deformation (Fig. 8a). The model
is closed at the grain scale with respect to solid
mass, thus the grain volume does not change with
time. The grain evolves as a truncated sphere with
decreasing pore surface area and increasing nomi-
nal contact area (Fig. 1). Simultaneously. porosity
decreases (Fig. 8d).

The size of the free-face inclusions varies during
deformation (Fig. 8b). They can increase because
their internal fluid pressure is higher than the pore
pressure and because they have some free energy
stored in dislocations. They can decrease in size
too with deformation, depending on the physical
conditions.

The ratio between the free-face inclusions surface
area and the nominal contact surface area (Fig. 8c)
evolves in the same way as the inclusion size. This
ratio 1s fixed initially at 50% and increases rapidly
up to 70% in an early stage of deformation, then
decreases slightly to the equilibrium value of 65%
for the case of Fig. 8c.

The macroscopic vertical strain rate ¢,, defined as
the rate at which the grains are shortening (2G,/L-)
decreases during deformation (Fig. 8e) because the
surface area of the nominal contacts increases, and
thereby the local stress on the nominal contacts
decreases. This fact is crucial because it shows that.
as grain geometry evolves and if the rock stays in
the same physical and chemical conditions, the strain
rate does not stay constant. The total deformation
observed on a sample of this rock is not produced
at the same local strain rate. This fact has already
been observed in experiments on pressure solution
(Dewers and Hajash, 1995).

An important point for this rate of deformation is
that it is slower than estimated by Shimizu (1995)
by two orders of magnitude. This difference arises

from the choice to use kinetics constants for quartz
precipitation that fit geological data (Walderhaug,
1994), whereas rates measured in laboratory indicate
faster kinetics (Dove, 1994).

8.2. Fluid pressure inside the fluid inclusions

Depending on the relationship chosen to estimate
the fluid pressure inside the free-face inclusion con-
tacts, the rate for porosity variation is not the same.
It the pressure inside the fluid inclusions is equal
to the pore fluid, i.e. if all the fluid inclusions are
connected to the pore, the driving force for pressure
solution in the free-face inclusion contacts is smaller
than in the actual contacts. Therefore fluid inclusions
tend to vanish because the rate of WFD on the actual
true contacts is higher than the rate of FFPS in the
inclusions. On the contrary, if the pressure inside the
fluid inclusions is transitory, see Eq. 17, the fluid
inclusions stay open and, as the mean distance for
aqueous silica diffusion inside the nominal contact is
small, the rate of deformation by pressure solution is
accelerated (Fig. 9). In Figs. 8, 10 and 11, the transi-

40

204 \

Porosity (%)

Constant fluid pressure

Transitory pressure

05 1015 200 25 30 35 40 45 50
Time (million years)

Fig. 9. Effect of the fluid pressure inside the free-face contacts.
If the fluid pressure inside the free-face contacts is equal to the
pore pressure (i.e. if all the fluid inclusions are connected to the
pore) the rate of porosity decrease is smaller than in the case
where the fluid pressure can vary in a transitory way (Eq. 17).
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Fig. 10. Ratio between the free-face inclusion contact area and the nominal contact area as a function of grain size, for different depths.
Each point on the curves corresponds to a simulation similar to that in Fig. 8, but for different grain size and depths. The initial porosity
is chosen to be 31% and the steady state ratio is evaluated at the end of deformation when the porosity has reached 4% (as in Fig. 8c at
36 million years). For fine-grained sandstones, the ratio is negligible. It increases rapidly for grain size larger than 0.02 cm. This figure

shows the shift between WED and FFPS domains due to the decrease of diffusion rate with increased grain size. The different curves
correspond to different depths. assuming lithostatic and hydrostatic pressure gradients. and a temperature gradient of 40°C km™!.

tory pressure inside the fluid inclusions is chosen to
obey Eq. 17.

8.3. The shifting between the WFD and FFPS fields

Simulations, similar to that in Fig. 8, have been
performed for different grain sizes and physical con-
ditions. When the porosity of the rock has reached
4%, the equilibrium value of the free-face ratio
(Fig. 8c) is reported as a function of grain size and
depth. For grain sizes smaller than 0.02 mm., the free-
face ratio is small (Fig. 10). This ratio increases with
grain size. Below the limit grain size, diffusion from
the actual true contacts to the free-face inclusions
is fast because of a short path length for diffusion.
In this case the fluid in free-face inclusions reaches
saturation, so the inclusions are not stabilized and
vanish. As grain size gets bigger, the actual true

contacts do also and diffusion inside the water film
becomes less efficient, furthermore ¢, diminishes to
o. (Eq. 17), decreasing the driving force for WFD,
then the inclusion size increases and FFPS becomes
dominant. The physical conditions are also impor-
tant: free-face inclusions are less stable at greater
depth because the stress on the actual true contacts is
large and WFD is more efficient.

Simulations such as those in Fig. 10 suggest the
existence of two distinct fields of deformation. For
small grain size, the mechanism of deformation is
only WFD (diffusion-limited), whereas for bigger
grain size both FFPS (reaction-controlled) and WD
operate, the transition being at a grain size between
0.01 and 0.03 cm for quartz, depending on depth.
Note that our model integrates these two regimes in
a coupled way. As already pointed out by Shimizu
(1995). conditions in the upper crust are such that the
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Fig. 11. Porosity—depth relationships in a sandstone. Dots represent data in sandstones from the Norwegian shelf (Ramm, 1992). The
curves are porosity—depth relationships calculated with our model of pressure solution for different sedimentation rates. In the numerical
model, a constant rate of sedimentation is assumed. Grain size, fluid pressure, and temperature gradient (35°C/km) are similar to that in
the Norwegian shelf. Between 0 and 2 ki, pressure solution is inefficient and its efficiency increases rapidly at around 3 km.

two regimes (reaction-limited and diffusion-limited)
can coexist for quartz-rich sediments.

8.4. Effect of grain coating in pore space

Clay coatings can retard pressure solution (Tada
et al., 1987; Ramm, 1992). In this case, quartz
precipitation on the pore surface is hindered because
of the loss of pore surface area in Egs. 11 and 14. The
pore fluid becomes supersaturated with silica so that
the gradient of concentration between the nominal
contact and the pore can disappear in Egs. 7 and 13
and therefore the driving force for contact dissolution
and diffusion is diminished. As a consequence, the
rate of pressure solution by the mechanism ‘water
film diffusion’ is diminished.

8.5. Interaction between pressure solution and the
other mechanisms of deformation

In this study only the mechanism of pressure so-
lution is considered as a process of compaction. It
is well known that other mechanisms of deformation
are also efficient and can interact with pressure so-
fution: brittle deformation such as grain crushing or
stress-corrosion cracking (Onasch and Dune, 1993)
and plastic deformation (Pharr and Ashby, 1983;
Tada et al., 1987). These mechanisms are efficient at
higher strain rates than pressure solution.

After an episode of brittle deformation, the mean
grain size of a rock is decreased. Therefore, distance
for diffusion inside the grain contacts is lowered and
pressure solution becomes more efficient. Interac-
tions between pressure solution and grain crushing
could explain fast rates of deformation as observed
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for instance in indented pebbles (Mac Ewen, 1978;
Gratier et al., 1999).

8.6. Case of an open system

In the calculations presented here, we are assum-
ing that matter that goes outside the nominal contact
precipitates on the pore surface, the system being
closed with respect to solid mass at a grain scale. If
the system is considered to be closed at a decimeter
to meter scale, larger diffusive and advective trans-
port phenomena should not be neglected (Lehner,
1995). Matter can diffuse from a region where pres-
sure solution is inhibited due to coating effects to
a region where grains are cleaner and overgrowths
can form. Such a process can operate in sandstones
where beds with abundant precipitated silica alter-
nate with stylolite-rich regions where quartz dis-
solves (Oelkers et al., 1996). In these systems, the
driving force for pressure solution is the same in the
clean layers and in the stylolites while, in the latter,
precipitation is slower due to clay coating. Further-
more, we believe that free-face inclusions should
be more likely to be present in the clay-free zones
than in the stylolitized ones because, in the latter,
the presence of clays inside the contact between the
grains 1s assumed to promote the WFD mechanism
(Carrio-Schaffhauser et al., 1990; Bjgrkum, 1996).

8.7. Application to sandstone compaction

Up to now, the pressure solution model we have
described considers compaction for a rock at con-
stant depth. Now we apply this model in sedimen-
tary basin conditions, with a constant burial rate.
The resulting 1D model allows to estimate porosity
diminution with depth and time, at a constant sed-
imentation rate. This compaction model is applied
for very simple conditions: constant rate of sedimen-
tation (20 to 100 m per million years), hydrostatic
and lithostatic pressure gradients, constant temper-
ature gradient (35°C/km), and constant grain size
sediment deposition (0.5 mm). We make the assump-
tions that there is no overpressured compartment in
the basin, even if the hypothesis is far from reality
{Ortoleva, 1994), and that porosity variation occurs
only by pressure solution at a grain scale.

The numerical model allows calculating porosity—

depth curves for different rates of sedimentation
(Fig. 11). These curves represent the amount of
compaction induced by pressure solution. Between
0 and 2 km, pressure solution compaction is very
slow because temperature is low and quartz kinetics
are very slow. In contrast, pressure solution becomes
efficient below 2 to 3 km and porosity continually
decreases with depth.

The curves are compared with data from the
Norwegian margin (Ramm, 1992), where grain size,
burial rates, and temperature gradient are similar o
the simulated curves. The pressure solution curves
do not represent porosity variations above 2 km
because only mechanical compaction occurs at this
depth (grain sliding, fracturation of low-resistance
grains). Below 2 km, the numerical curves seem to
fit the porosity—depth data trend.

9, Conclusion

This study shows that the different models of
pressure solution that are described in the literature
can be integrated into a unified model that incorpo-
rates three distinct processes: stress enhanced disso-
lution, transport by diffusion (in one or two steps),
and precipitation.

The complex non-linear dynamics of pressure
solution arises because of two main factors:

(1) Both grain geometry and rock texture evolve
with time and interact with local stress over the grain
surface.

(2) The mechanism of pressure solution can be
divided in different successive steps, the slowest of
which controlling the overall rate of deformation.
During deformation and with grain geometry varia-
tions, this slowest step can vary in a transitory way.
For example, compaction can be limited by reaction
kinetics at one time and by diffusion along the in-
terface at another. The transition appears with time
because the rock texture changes with deformation
and because the physical and chemical parameters
vary during burial.

A transition between the two mechanisms of pres-
sure solution (WFD and FFPS) occurs because of
two factors. First the solute mobility inside the
trapped water film between the grains decrease with
increasing stress. Secondly inclusions inside the con-
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tact between the grains should be localized in the
areas of original high dislocation density.

The transitional pressure solution model is a
combination of these effects and shows that ‘wa-
ter film diffusion’, ‘free-face pressure solution’, and
the model of islands and channels are natural con-

sequences of both kinetic and free energy aspects of

pressure solution.
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