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Introduction
Laboratory Acoustics
Underwater Acoustics
Wave physics
Mathematics
Imaging
Seismology
Seismology as an example
Continuous recording: ambient noise
Scattering
Correlation

Reconstruction of every physical arrivals?

Precision for Imaging and monitoring
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Seismology : huge data sets consisting for a large part of
‘ambient noise’..
Availability: open data centers



Ground velocity

one day of seismic record
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The origin of the noise in the period band 5-10s

VARIABLE SOURCE LOCATIONS Landés et al., 2010



A typical records of a local earthquake (0.1-10Hz)
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Propagation regimes and energy description

single diffraction (short times) |
g / radiative transfer Equation

ENERGY DENSITY

J . . diffusion (long lapse times)
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|Searching for a marker of the regime of scattering... |

Equipartion principle for a completely randomized (diffuse) wave-field: in average, all the
modes of propagation are excited to equal energy.

Implication for elastic waves (Weaver, 1982, Ryzhik et al., 1996): P to S energy ratio stabilizes
at a value independant of the details of scattering!
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5 Energy partition of seismic coda waves
" and application to Pinyon Flats Observatory
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Theory for S-P energy ratio

L. Margerin,! M. Campillo,? B. A. Van Tiggelen® and R. Hennino?>
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high frequency
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This leads to an inversion method to extract the layering from a
single measurement (Margerin et al., 2009; Sanchez-Sesma et
al., 2011;....).



Long range correlations

Source Receiver Source in A = the signal recorded in B characterizes the
M propagation between A and B.

A B

I

Receiver Receiver

A-\’_‘,___ G, can be reconstructed by the correlation of noise or

« diffuse » (equipartitioned) fields recorded at Aand B (C,;)
< \ G

= Green function betweenAand B: G,

A way to provide new data with control on source location and origin time

How, when and why?



Representation theorem for correlation: passive imaging

Arbitrary medium: an integral representation written in the frequency domain

S

/ Volume term Surface term
FT of G(-¢)
Absorption cogfficient . * s
FT of G(1) . 2

Source average over g
« correlation terms » .

e.g. Weaver et al., 2004, Snieder 2007, ....



Surface term: C_]S[Gl.i (G;x ) -V(G,,)G,, } dS

If the surface 1s taken in the far field of the medium heterogeneities
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and we obtain a widely used integral relation:

C_“>|:(;1xV (G;r ) -V (Glx ) G;\‘ :| ES; ~ _21%)? Gle;x s

S /
Source average over
« correlation terms »

=» Derode et al., 2003: Analogy with Time reversal mirrors
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For surface waves: distant sources of noise at the surface of the sphere (2D problem)



Stationary phase and end fire lobes: actual data
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From Gouédard et al., 2008



End fire lobes=>»source noise kernels

Contributions to direct waves
in the GF

scatterer

7

Contributions to scattered waves
In the GF



Several hundreds of applications of surface wave tomography in the last 10 years!

An issue for surface wave tomography:

In practice, the noise sources are not evenly distributed and the field is
not made fully isotropic by scattering.

The absence of isotropy of the intensity of the field incident on the
receivers results in a bias on the measurements of direct path travel
times.



Anisotropic intensity of the noise: the example of the San Jacinto fault

1157 From Hillers et al., 2013 G3
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different components)
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Correlation of direct waves:

Azimuthal
distribution of
source intensity

Travel time
error wrt the
observed Green
function

Bias in the travel time
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From Weaver, Froment, Campillo (2009) and Froment, Campillo, Roux, Gouédard, Verdel and Weaver 2011.



In presence of scattering:
Correlation of coda waves

-isotropy improvedby multiple scattering

Increasing anisotropy of the source intensity B
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From Froment, Campillo, Roux, Gouédard, Verdel and Weaver 2011.
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In presence of scattering: o
Correlation of coda waves Ny : | e”
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Noise records contain direct and scattered waves:

=>» the biases of direct wave travel times are generally small enough for imaging purpose

=>» Importance of processing strategies
From Froment, Campillo, Roux, Gouédard, Verdel and Weaver 2011.



3D shear velocity
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From Zigone, Ben-Zion, Campillo and Roux, 2014



Consider now the problem of body waves at the global scale with noise
sources at the surface:

A problem of a different nature, although indeed the uneven distribution
surface noise sources is still there.

This representation is not formally valid on the free surface: the integral vanishes.
GF reconstruction would require a more complex procedure (Ruigrok et al., 2008)

Here also, the correlation of multiply scattered waves should lead to the Green function.



Short periods 5-10 s =» strong scattering

P and PcP

Japan to Finland

Finland to Japan

Standard (surface-wave) pre-processing (Shapiro and Campillo, 2004; Sabra et al. 2005)
eliminates the contamination by EQ ballistic waves.



=» Earth’s mantle discontinuities from ambient seismic noise
( phase transition = (P,T))
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In agreement with receiver functions (Alinaghi et al. 2003)



Core phases

D”: - different hypotheses for the
nature of the layer

- PdP difficult to observe

- lack of earthquake data

From Poli, Thomas, Campillo and Pedersen 2014

PcP and PdP

A)

B)

Lapnet Array

P wave speed at CMB

44444




Advantage of noise vs earthquake records:
-surface to surface
-impulsive wavelet

-double beam forming

Stacked vespagrams for:
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_

5 | 5
g | :
@ )
o i ()
o o
e | Al e
c

2l &
Za| PdP PcP ®

10 30 40 50

-10 0 10 20 30 40 50 -10 0
Time to P wave [s]

20
Time to P [s]

A 5% increase of velocity at 2530 km depth....

From Poli, Thomas, Campillo and Pedersen 2014



GLOBAL TELESEISMIC CORRELATIONS (periods 25-100s vertical components)
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Vertically incident S
waves on the vertical
component??
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Long periods (25-100s)
Processing: separating EQ and coda from ambient noise

Low daily coherence High daily coherence
(EQs)

STACK 27 DAYS

STACK 366 DAYS STACK 339 DAYS

time (min)

AXISEM
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High amplitude
spurious
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Distance (deg)

High coherence=days following large earthquakes



ume (min)

Long periods (25-100s)
Spurious arrivals and numerical simulation
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Very clear pulses in the correlations, likely holding information about the deep Earth,
but should not be interpreted directly as components of the Green function

From Boué et al., 2014



Hydraulic loads

Monitoring temporal changes in the solid Earth
with seismic velocities




Noise based seismic velocity temporal changes

Because seismic noise is continuous in time, it is possible to reconstruct repeating virtual
seismic sources and perform continuous monitoring of seismic velocities.
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Correlation functions as approximate Green functions
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Direct waves are sensitive to noise source distribution (errors small enough for
tomography (£1%) but too large for monitoring (goal = 104)

Stability of the ‘coda’ of the noise correlations



Detecting a small change of seismic speed: coda waves

Comparing a trace with a reference under the assumption of an homogeneous change
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Precision of the measure of delay/velocity variations in the coda



Measuring slight changes of seismic velocity using coda waves (long travel time)
Numerical simulations in a scattering medium

2D spectral elements, anisotropic intensity of sources
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Colombi, Chaput, Hillers et al., 2014 in press



Effect of scattering (single source)
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Measure of the bias induced by a strong anisotropy

of the wave field

(delay with respect to the Green function)
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Colombi, Chaput, Hillers et al., 2014

Blue: delay

Red: relative delay




Representation of coda waves as the sum of contributions of numerous paths

For a single path:

S, = / \
ly
t=1/V 0 /
A t
A a
5t B

We have to compute the contributions of paths with first scatterers at all distances /and
all azimuths 6



We have to consider that the distribution of distance between scattering events 1s exponential:
b | <l,>=1 t,=11V
P(ly) = 7e [ where / is the mean free path

, B"(6)
0t ~
We make use of 2ty wi B(6)

valid for lf > )



Applications

Numerical simulations

[ = 0.5m, ¢ = 2000m/s,

fo = 30000Hz, By = —0.6 and 7, = 0.002s

> fractional error 2™ of 10~4

m



Relative velocity change ( in %) measured in the band 0.1-0.9 Hz

Calendar time measured in days with respect to March 11 (M9 Tohoku EQ)

From Brenguier, Campillo, Takeda, Aoki, Shapiro, Briand, Emoto and Miyake, Science 2014



Could we show that the late part of the correlation function contains
the scattered waves?

-energy decay (e.g. Sens-Schoenfelder and Wegler, 2006)

-long range correlation (C3: correlation of coda of noise
correlation=2 Green function) (e.g. Stehly, Campillo, Froment and
Weaver, 2008)

-weak localization?



Coherent backscattering/weak localization
and the multiple scattering regime

Energy density is represented by the sum of contributions of scattering paths

RTE for <intensities>, DE for <energy density>,... but the actual signal results from
deterministic waves



If this path exists..



/ N\

If this path exists, the reciprocal path exists too.






//’\/

Phase difference: location of the scatterers...
Except if R and S are at the same place



//’\/

Coherent summation = Spot of intensity enhancement at the source: factor 2

Consequence of first principles, namely reciprocity.



Consider now correlations as virtual Green functions (Julien Chaput et
al. 2015 —see Poster).



Erebus volcano: icequakes
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Coda Correlations

44 ‘large’ events All 3318 events

ZZ correlations: reciporcity holds
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Weak localization can be observed in correlations!
(=»mean free path...)
Not possible from earthquake data (reciprocity)



