Fourier Acoustics: Uncovering the Sources of Sound and Vibration*

Earl G. Williams (earl.williams@nrl.navy.mil) Senior Scientist for Structural Acoustics Acoustics Division, Naval Research Laboratory Washington, D.C. **Cargese Workshop** May 11-15, 2015

* Work supported by the Office of Naval Research

Overview of Material

- □ Consider the general problem wave travelling in and on a substrate of infinite extent in contact with a fluid above.
 - Communication between the two media is the basis of our talk.
- Discuss methods to uncover the sources in the substrate that effectively couple to the contact media.
- □ Provide methods that expose the physics.

OUTLINE

- Slowness surface solutions (also called k-space, angular spectrum) to Helmholtz equations representing the media
- Coupling to the Fluid above
- Radiation to the Far-field
- Sources of radiation on interface
 - Concept of super-sonic imaging
 - Radiation from evanescent near-fields
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate Beaming
- Dispersion Space Bandgaps
 - Application to a metamaterial

Some Relevant Helmholtz equations $(e^{-i\omega t}$ time tag) in an Isotropic Infinite Media

• Electromagnetics: $\nabla^2 \vec{E}(x, y, z) + \frac{\omega^2}{c^2} \vec{E}(x, y, z) = 0$ where $\vec{E} = \{E_x, E_y, E_z\}$ and $c = \sqrt{1/\epsilon\mu}$.

• Acoustics: $\nabla^2 p(x, y, z, \omega) + \frac{\omega^2}{c^2} p(x, y, z, \omega) = 0$ where p =pressure and $c = \sqrt{B/\rho}$.

• Elastic Solids: P waves: $\nabla^2 \Phi + \frac{\omega^2}{c_p^2} \Phi = 0$ where $c_p = \sqrt{(\lambda + 2\mu)/\rho}$ S waves: $\nabla^2 \vec{\Psi} + \frac{\omega^2}{c_s^2} \vec{\Psi} = 0$ where $c_s = \sqrt{\mu/\rho}$. Rayleigh Surface waves: Displacement is $\vec{u} = \vec{\nabla} \Phi + \vec{\nabla} \times \vec{\Psi}$

Helmholtz Equations in Our Problem

* A Simple solution that satisfies the Helmholtz Equations at the interface is a Monochromatic Wave given by $u_z = e^{ik_x x + ik_y y - i\omega t}$ We study this solution in detail

Details of the Monochromatic Wave Solution: Slowness Space

A monchromatic wave solution is $u_z = e^{ik_x x} e^{ik_y y} e^{-i\omega t}$ in a plane z = 0.

If we further define $k_x = \omega/c_x$, $k_y = \omega/c_y$, solutions look like $e^{i\omega(x/c_x+y/c_y-t)}$. For example, when $k_y = 0$ we have $e^{i\omega(x-c_xt)/c_x}$ representing a phase front (wave) travelling to the right with the phase speed c_x .

• Since $k_x \propto \frac{1}{c_x}$ it represents a slowness (m/s) and we can view (k_x, k_y) as a SLOWNESS SPACE and (c_x, c_y) the speed of the Monochromatic wave in the coordinate directions.

6

The Slowness (k-space) Space

We represent spatial field as a sum of Monochromatic Wave Solutions – Two Slowness Spaces

• In general the solution of these Helmholtz equations can be written, with $\Xi \equiv \{p, \Psi, \Phi, E_x, E_y, E_z, B_x, B_y, B_z, \cdots\}$, as a 2D Inverse Fourier transform

$$\Xi(x,y,z) = \frac{1}{4\pi^2} \iint_{-\infty}^{\infty} e^{ik_x x} e^{ik_y y} \left[\underbrace{\tilde{\Xi}(k_x,k_y)^+ e^{ik_z z}}_{\text{up-going}} + \underbrace{\tilde{\Xi}(k_x,k_y)^- e^{-ik_z z}}_{\text{down-going}} \right] dk_x dk_y$$

where $\tilde{\Xi}(k_x, k_y)^{\pm}$ are the slowness space field amplitudes and $k_z = \sqrt{\frac{\omega^2}{c_{\xi}^2} - (k_x^2 + k_y^2)}$.

***** The Amplitude of a Monochromatic Wave $e^{ik_{x0}x}e^{ik_{y0}y}e^{-i\omega t}$ is represented by a delta function in slowness space

$$\tilde{\Xi}(k_x, k_y)^{\pm} = \delta(k_x - k_{x0})\delta(k_y - k_{y0})$$

The Radiation Circle

• Consider up-going term $\tilde{\Xi}(k_x, k_y)^+ e^{ik_z z}$ where we had $k_z = \sqrt{\frac{\omega^2}{c_{\xi}^2} - (k_x^2 + k_y^2)}$. The circle defined by the argument of the square root, $(k_x^2 + k_y^2) = \frac{\omega^2}{c_{\xi}^2}$ defines the break point between up-going propagating wave and an up-going evanescent wave. We call this circle the **radiation circle**.

• Inside radiation circle $(k_x^2 + k_y^2) < k_{\xi}^2$, so k_z is real, $e^{ik_z z}$ is a **phase** change, no amplitude change $(k_{\xi} \equiv \omega/c_{\xi})$

• Outside radiation circle $(k_x^2 + k_y^2) > k_{\xi}^2$, so k_z is pure imaginary and $e^{ik_z z} = e^{-|k_z|z}$, an evanescent decay

- Inside radiation circle is faster than c_ξ so we call the monochromatic waves supersonic
- Outside radiation circle is slower than c_ξ so we call the monochromatic waves subsonic

Cargese

Who does this decomposition?

- 1) In General: Works involving Layered Media involving Electromagnetic, Elastic, Seismic or Fluid waves.
- 2) Weng Cho Chew, *Waves and Fields in Inhomogeneous Media*, (IEEE Press, New York, 1995).
- 3) R. W. P. King, Lateral Electromagnetic Waves; Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing (Springer-Verlag, New York, 1992).
- 4) C. P. A. Wapenaar and A. J. Berkhout, *Elastic Wave Field Extrapolation*, (Elsevier, 1989).
- 5) Earl G. Williams, *Fourier Acoustics, Sound radiation and Near-field Acoustical Holography,* (Academic Press, London 1999).

TEST QUESTION #1

Which is the slower monochromatic wave, left or right picture?

hint:
$$c_x = \lambda_x f$$

OUTLINE

- Slowness space solutions to Helmholtz equations (also called *k*-space, angular spectrum)
- Coupling to the Fluid above
- Radiation to the Far-field
- Sources of radiation on interface (concept of super-sonic imaging?)
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate
- Dispersion Space Bandgaps
 - Application to a metamaterial

Consider Radiation into the fluid above

5/15/2015

How does substrate communicate with the fluid? Mathematically via the Rayleigh Integral

Whatever the wave type, only normal surface velocity $v_n = -i\omega u_z$ is needed to determine uniquely the pressure in the fluid media

• Planar Geometry we have Rayleigh's first integral formula

$$p(\mathbf{r}') = \frac{-i\omega\rho}{2\pi} \int_{S_r} \frac{e^{i\mathbf{k}\cdot\mathbf{r}-\mathbf{r}'}}{|\mathbf{r}-\mathbf{r}'|} v_n(\mathbf{r}) dx dy$$
• Example: Assume again monochromatic wave $v_n(\mathbf{r}) = k = \omega/c\xi = \omega/c$
 $v_0 e^{ik_{x0}x} e^{ik_{y0}y}$ in the plane at $z = 0$ then the solution from the Rayleigh integral is
$$p(\mathbf{r}') = \frac{\omega\rho_0}{k_{20}} e^{ik_{x0}z'} \left(v_0 e^{ik_{x0}x'} e^{ik_{y0}y'} \right)$$
where $k_{z0} = \sqrt{k^2 - (k_{x0}^2 + k_{y0}^2)}$

$$k_y$$
subsonic
(Evanescent)
(Vane (k_x^2 + k_y^2 = k^2))
(

The SuperSonic Wave

$$p(x, y, z) = \left(v_0 e^{ik_{x0}x} e^{ik_{y0}y}\right) \frac{\omega \rho_0}{k_{z0}} e^{ik_{z0}z}, \text{ with } k_{x0}^2 + k_{y0}^2 < k^2, k_{z0} \text{ is real.}$$

The SuperSonic Wave of Infinite Speed

$$k_{x0} = 0, k_{y0} = 0, k_{z0} = k$$

The SuperSonic Wave on the Radiation Circle

$$p(x, y, z) = \left(v_0 e^{ik_{x0}x} e^{ik_{y0}y}\right) \frac{\omega \rho_0}{k_{z0}}, \text{ with } k_{x0}^2 + k_{y0}^2 = k^2, \ k_{z0} = 0.$$

Substrate is a thin Elastic Plate

Circulating Energy paths due to evanescent waves: Experiment with a vibrating plate substrate

OUTLINE

- Slowness space solutions to Helmholtz equations (also called *k*-space, angular spectrum)
- Coupling to the Fluid above

• Radiation to the Far-field

- Sources of radiation on interface (concept of super-sonic imaging?)
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate
- Dispersion Space Bandgaps
 - Application to a metamaterial

Slowness Space and the Far Field

The directivity pattern in the far-field is given by slowness space amplitudes inside the radiation circle (with a simple transformation rule)

We saw that $\mathcal{F}_{xy}[e^{ik_{x0}x}e^{ik_{y0}y}] \rightarrow \delta(k_x - k_{x0})\delta(k_y - k_{y0}).$ $(heta_0,\phi_0)$ Far-field Hemisphere Transformation Rule, slowness space to FF hemisphere (spherical coords): The spherical angles for the far-field are $\sin \theta_0 = \frac{\sqrt{k_{x0}^2 + k_{y0}^2}}{k}, \quad \tan \phi_0 = \frac{k_{x0}}{k_{x0}}.$ With this transformation rule we find for k_x a monochromatic wave radiation circle $\delta(k_x - k_{x0})\delta(k_y - k_{y0}) \rightarrow \delta(\cos\theta - \cos\theta_0)\delta(\phi - \phi_0)$ $k_x^2 + k_v^2 = k^2$ Simply put: Points within radiation circle are projected vertically upwards until they intersect the radiation hemisphere Cargese 5/15/2015 23

Example of the Projection to Far-Field

Example of the Projection to Far-Field

Finite Media Effects in Slowness Space

Example: wave confined in both directions Far-field is a product of sinc functions

Fourier Transform is $sinc[(k_x - k_{x0})L/2] sinc[k_y L_y/2]$

OUTLINE

- Slowness space solutions to Helmholtz equations (also called *k*-space, angular spectrum)
- Coupling to the Fluid above
- Radiation to the Far-field
- Sources of radiation on interface
 - Concept of super-sonic imaging
 - Radiation from evanescent near-fields
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate
- Dispersion Space Bandgaps
 - Application to a metamaterial

But where spatially does the radiation come from?

(Supersonic imaging): what if we inverse transform back to real space, but use only the data in the radiation circle? We know that whatever that spatial field is – it is what radiates to the far-field.

Edge Mode Radiation of Slow waves (kL<1, monopole term)

 $\overset{\circ}{\mathbb{V}}$ The uncancelled volume velocity of slow waves \Leftrightarrow Value at the Origin

Radiation from Evanescent Near-fields

What is an evanescent near-field? Consider thin plate equation, solutions are Traveling: e^{ik_bx} , Evanescent: $e^{-k_b|x|}$ with $e^{-i\omega t}$. An evanescent near-field is created by oscillating loads, discontinuities (thickness change, density change, rib attachments, free ends, etc.)

Radiation from Evanescent Near-fields $(e^{-k_b|x|})$

Example: Point driven plate with a rib attached

OUTLINE

- Slowness space solutions to Helmholtz equations (also called *k*-space, angular spectrum)
- Coupling to the Fluid above
- Radiation to the Far-field
- Sources of radiation on interface (concept of super-sonic imaging?)
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate Beaming
- Dispersion Space Bandgaps
 - Application to a metamaterial

Examples from Research at NRL – Near-field Holography

 SLOWNESS SPACE leading to global diagnostics of fluid-structure interactions to study <u>Vibration</u>, <u>Radiation</u> and <u>Scattering</u> (0-60kHz)

Pool Research Management: Dr. Brian Houston

Naval Research Laboratory 10M\$ Pool Facility

Farfield Directivity

Localization of Hull 'Hot Spots' __using Supersonic Intensity_

Evanescent Waves
Reconstructed nearfield
pressure

Shell

with Internal Shaker Under the

bridge dual hydrophone scanner

> TYPICAL CYLINDRICAL

HOLOGRAM SCAN (128 x 64 points)

5/15/2015

OUTLINE

- Slowness space solutions to Helmholtz equations (also called *k*-space, angular spectrum)
- Coupling to the Fluid above
- Radiation to the Far-field
- Sources of radiation on interface (concept of super-sonic imaging?)
- Slowness surface examples from Experiments at NRL
 - Towards understanding the physics of wave propagation in the substrate
- Dispersion Space Bandgaps
 - Application to a metamaterial

Dispersion Space

Dispersion Space (k_x, k_y, f) 10 8 Frequency Stacking of slowness 6 surfaces with 4 frequency 2 0 -200 200200 200 0 k_y k_x

Metamaterial Example*

SUMMARY

□ Slowness space – Monochromatic waves

- o Supersonic and subsonic waves
- Radiation Circle
- o Far-field Radiation: Directivity pattern
- Radiation from subsonic waves
- Radiation from flexural near-fields
- SuperSonic Imaging: Sources of Sound
- o Dispersion space: Band Gaps, Wave ID
- o Metamaterials

