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Overview of Material

O Consider the general problem — wave travelling in and on a
substrate of infinite extent in contact with a fluid above.
o Communication between the two media is the basis of
our talk.
[ Discuss methods to uncover the sources in the substrate that
effectively couple to the contact media.
O Provide methods that expose the physics.

)20 I Fluid Media
' ?véact /eﬁa (air, water)
A 3D Elastic media, thin

plates, cylindrical shells

________________________________________________
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OUTLINE

Slowness surface solutions (also called k-space, angular
spectrum) to Helmholtz equations representing the media
Coupling to the Fluid above
Radiation to the Far-field
Sources of radiation on interface
« Concept of super-sonic imaging
« Radiation from evanescent near-fields
Slowness surface examples from Experiments at NRL
e Towards understanding the physics of wave
propagation in the substrate - Beaming
Dispersion Space — Bandgaps
« Application to a metamaterial
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Some Relevant Helmholtz equations (e ~**t time tag) in an
Isotropic Infinite Media

® Electromagnetics:
9 — UJ2 — — _
VE(r,y,2)+% E(r,y,2) = 0where ' = {E,, E,, E.} and c = |/1/ep.

® Acoustics:
2.0 . w2 o e 1
Vop(w,y, z,w) + %p(x,y, 2,w) = 0 where p =pressure and ¢ = 1/ B/p.

® Elastic Solids:
P waves: V2® + “;—j@ = () where ¢, = \/()\ +21)/p

S waves: V20 + f—;lf = 0 where ¢, = /u/p. Rayleigh Surface waves:
Displacement is u = VP + V x U
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} Helmholtz Equations in Our Problem |

——————————————————————————————————————————————————————————

2 /’ 2 Fluid Media

Vép(z,y, 2,w) + Sp(z,y,2,w0) =0

> // By

Normal displacement
at the interface

u,(x,y,0)

Substrate (e.g. Elastic)

b

T A Simple solution that satisfies the Helmholtz Equations at the
interface is a Monochromatic Wave given by u, = etfx**ikyy-iot
We study this solution in detail
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_ Details of the Monochromatic Wave Solution: Slowness Space |

A monchromatic wave solution is u, = e?F+%efv¥e=t in a plane z = 0.

If we further define k, = w/c,, k, = w/c,, solutions look like e (@/caty/ey—=t),
For example, when £k, = 0 we have eiw(@=czt)/cx yopresenting a phase front (wave)

Normal displacement at
the interface

Note: For a
left-going
034 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Wave We
putc, <0

- 1 . .
* Since k, « — It represents a slowness (m/s) and we can view (k, k,,) as
X

a SLOWNESS SPACE and (cy, ¢y) the speed of the Monochromatic wave
in the coordinate directions.
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o Circle of
Direction of Kk constant
increasing Y slowness
slowness

slower wave--_

______ faster wave

>~/ Origin corresponds to
¢, and c, infinite
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We represent spatial field as a sum of Monochromatic Wave
Solutions — Two Slowness Spaces

® [n general the solution of these Helmholtz equations can be written, with = =

{p,V,®,E,,E, E,,B,,B,,B,,--}, as a 2D Inverse Fourier transform

1 SR .~ i
=(x,y,2) = 1 // ethe pthyy :(k.’.,ll,,,ky)Jrezk'z" + Z(kz, ky) "€ ik=z dk,dk,
me J J—oco ~ V s ~ ' ) ‘

W

up—going down—going

where Z(k,, k,)* are the slowness space field amplitudes and &, = \/ or — (k2 + k2).

4 N

slowness spaces

E(fg Y, z) l (ks k) [ E(ka, ky) ™

up-gomg down-gomg

I]z

ju}

200 100 0 100 200

p ,
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‘¢ The Amplitude of a Monochromatic Wave etkxox gikyoy g=iwt jg
represented by a delta function in slowness space

é(k:ca ky):t — 5(k$ - kxo)é(ky _ kyo)

0(ky )o(ky — =)

Cy.;]

W
Cr0
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The Radiation Circle |

® Consider up-going term Z(k,, k,)*e™=* where we had k, = \/— — (k2 + k2). The
G

circle defined by the argument of the square root, (k% + kj) = ":’—2 defines the break
£

point between up-going propagating wave and an up-going evanescent wave. We call
this circle the radiation circle.

® Inside radiation circle (k2 4+ k7) < kZ, so k. is real, €*:* is a phase
change, no amplitude change (kg = w/ce)

® Outside radiation circle (k] 4 k7) > kZ, so k. is pure imaginary and
e'h=* = ¢~ Ik=12 an evanescent decay

ky radiation circle
(kx2+ky2:k§2)

= [nside radiation circle is faster than C-SO we
call the monochromatic waves supersonic

Ky = Qutside radiation circle is slower than C: SO

we call the monochromatic waves subsonic
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Who does this decomposition?

1) In General: Works involving Layered Media involving
Electromagnetic, Elastic, Seismic or Fluid waves.

2) Weng Cho Chew, Waves and Fields in Inhomogeneous Media, (IEEE
Press, New York,1995).

3) R.W.P. King, Lateral Electromagnetic Waves; Theory and
Applications to Communications, Geophysical Exploration, and
Remote Sensing (Springer-Verlag, New York, 1992).

4) C.P. A. Wapenaar and A. J. Berkhout, Elastic Wave Field
Extrapolation, (Elsevier, 1989).

5) Earl G. Williams, Fourier Acoustics, Sound radiation and Near-field
Acoustical Holography, (Academic Press, London 1999).
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Which is the slower monochromatic wave, left or right picture?

hint: ¢z = Az f
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Slowness space solutions to Helmholtz equations (also
called k-space, angular spectrum)
Coupling to the Fluid above
Radiation to the Far-field
Sources of radiation on interface (concept of super-sonic
Imaging?)
Slowness surface examples from Experiments at NRL
e Towards understanding the physics of wave
propagation in the substrate
Dispersion Space — Bandgaps
* Application to a metamaterial
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Assume no down-going
waves in fluid medi

1 0 . : .
p(:r:,y, Z) _ - //_ 6‘tkm$6%kyy F(k:c;ky)Jrezkzi‘l‘\P(km, e—fakzz d]{;‘ggdky

down—going

" 4r2

up—going

Vp(z,y, z,w) + Ep(z,y,2,w) =0

5/15/2015
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How does substrate communicate with the fluid?
Mathematically via the Rayleigh Integral

‘" Whatever the wave type, only normal surface velocity v,, = —iwu, IS
needed to determine uniquely the pressure in the fluid media

® Planar Geometry we have Rayleigh’s first integral formula

! —iwp ez’%cr'~-1f-"|
p— a’d
— k

n
® Example: Assume again monochromatic wave v,(r) = =w/ce =w/ec
voek=02ethyo¥ in the plane at z = 0 then the solution from
the Rayleigh integral is

up-going e G I

p(r'):i—m(‘uoe‘”“w“w'eik””yf)
20 i

where k.o = \/ k? — (k20 + k2o)
ky
f
vanescent) i radiation circle

Kk

supersonic X
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| The SuperSonic Wave ||

. . WPy _ _
plx,y,2) = (er“kmomemi’oy) k—pe“k’zoz, with k2, + k‘io < k*, ky is real.
z0

¢y > c thus A, > A

Wavefront direction, this is the
direction of energy transport

‘ K-SPACEkDiAGRAM

Y

N

radiation circle
(k2 +k,2=k?)
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The SuperSonic Wave of Infinite Speed ||

k:c() — OakyO — OakZO =k

¢, — oo and A\, — o0
0.5

- Wavefront direction, Direction of energy transport P

0.4

K-SPAC %D IAGRAM
Y
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The SuperSonic Wave on the Radiation Circle II

p(r,y,2) = (voe

0.5

0.4 ]

0.3 .|

. . w
zkmomezkyoy) k_p(), Wlth ki(] + ]{;50 — ]{27 kzO — .
z0

c, = cand A, = A

Wavefront direction, this is the
direction of energy transport

K-SPAC%D!AGRAM
Y
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| The Subsonic Wave: Evanescent Decay

zO

Particle motion in fluid above a dipole volume source

A
PP P T TR FHIPLI AT

4
<

i
i v

LI sl os s L]

| ]
L
e W
L LR
- franind
HHE

L e Ll il
wwrdd-khhhb i d

K-SPAC EI‘D IAGRAM
Y

N

cy < cand A, < A
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Vp(z,y, z,w) + Zp(z,y, 2,w) =0 Fluid Media

G g > - Normal displacement
/ | | the interface
o [ el o0

Substrate is a thin elastic plate
(excited with point force)
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Circulating Energy paths due to evanescent waves:
Experiment with a vibrating plate substrate

-—-—\"*/'o/;'r“’o-.y‘/c‘,**—-—'--

- 1 B
: I(z,y,2) = 5Rp(z,y,2)¥(,y,2)"]
A A=106"
| T ATETH W e ¥ B - e POWGI'Z/f(xay7ZO)'fld$dy
- n e e e e e e K e = =~ = S

Zp = const.
B T B e e Ko e =
- — -~ 5 /' /*/‘7*____)*\ j =
P ; ;: ; /—\_é\ l o e X * < Hologram Plane ittt
- A L7 j\)\ IR _ Plane shown on left :
, \ A . . R R : 7 i
. \ X T / >[ x )\ \ \ " 5 . o i i
] v 05T i J
L ' 2,,= 1 . l \ VY ' ~ + <«Source Plane i 1 X
e b — f ________________________________________ - ______________________________________
) —
Vibrating Plate F plate
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Slowness space solutions to Helmholtz equations (also
called k-space, angular spectrum)
Coupling to the Fluid above
Radiation to the Far-field
Sources of radiation on interface (concept of super-sonic
Imaging?)
Slowness surface examples from Experiments at NRL
e Towards understanding the physics of wave
propagation in the substrate
Dispersion Space — Bandgaps
* Application to a metamaterial
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_| Slowness Space and the Far Field ||

Y The directivity pattern in the far-field is given by slowness space
amplitudes inside the radiation circle (with a simple transformation rule)

We saw that fwy[eik$“$eéky“y] — 5(]{;,; — kg;())(s(ky - ky(})' (903 (?-'50)

Far-field Hemisphere

® Transformation Rule, slowness space to
FF hemisphere (spherical coords):

The spherical angles for the far-field are

VEZ A+ k2 k.

k ?

sin @y =

With this transformation rule we find for
a monochromatic wave

0(ky—k0)0(ky—kyo) — 0(cos@—cos by)d(p—po)

Simply put: Points within radiation circle are projected
vertically upwards until they intersect the radiation hemisphere
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Example of the Projection to Far-Field

2D Fourier Transform of Surface Velocity
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Example of the Projection to Far-Field
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‘¢ Slow waves that are subsonic don’t radiate, OR DO THEY?

TixL)
o ole o
S

® Recall the spatial Fourier transform of a window II(x/L) is
F.ll(x/L)] = Lsinc(k,L/2). Thus the FT of a confined wave is

Fole®="T(x/L)] = F,le*"|@F,[(x/L)] = Lsinc|(k,—k.0)L/2]
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Example: wave confined in both directions
Far-field is a product of sinc functions

Subsonic
wave

5/15/2015
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OUTLINE

Sources of radiation on interface
« Concept of super-sonic imaging
e Radiation from evanescent near-fields
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But where spétiallil does the radiation come from? _Il

2 (Supersonic imaging): what if we inverse transform back to real
space, but use only the data in the radiation circle? We know that
whatever that spatial field is — it is what radiates to the far-field.

L

unfiltered
normal case

== | Inverse
FFT

supersonic only
filtered case

|

—

| Inverse
FFT

Edge Mode Radiation
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\ Edge Mode Radiation of Slow waves (kL<1, monopole term) |

‘9" The uncancelled volume velocity of slow waves < Value at the Origin

Volume velocity Q = [[v.(x,y,0)dx dy thus

Q = [[v.(x,y,0)ek=* fkyJ(fidU < I
‘ Q

2
Radiated power = £ Z: Q2

cancellation region
uncancelled  (hydrodynamic  uncancelled

N
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] Supersonic Image of Surface INTENSITY |

T N
I,(x,y,0) = §§R[psup(a:,y, 0)vsup(z,y,0)
ilter 'FFT
\vwx,ky,oi\@yi Do (o) e [V, . 0]
P(ks, ky, 0) ke only Psup(, Y, 0)

Example: a point driven thin plate (substrate)

dB
30

Power/unit area image vs Frequency Band

e B
2073—2322 Hz Band
2078 Hz ( -79dB

1101-1345 Hz Band | 1345-1589 Hz Band | 1589-1833 Hz Band | 1833-2073 Hz Band
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Radiation from Evanescent Near-fields

What is an evanescent near-field? Consider thin plate equation,
solutions are Traveling: e'*»*  Evanescent: e ~*o1*| with e =1t An
evanescent near-field is created by oscillating loads, discontinuities
(thickness change, density change, rib attachments, free ends, etc.)

5/15/2015 Cargese
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’ Radiation from Evanescent Near-fields (e ~k»!*) I

Example: Point driven plate with a rib attached

| - y Flow of Intensity above a Point-
X | driven thin Plate derived from NAH

foou I T

f(il?,y, )_ _%[p(x Y, = ) (:C Y,z ) ]

_‘ if-ffr,.-
.4\\\'\'\\\\3KIIIIIII;:, ........... = A
SR e -
-Z.B\\\\\‘\\‘\\‘\‘I]TII’II: ........... =
U') m\\\\&&%{i\{]“fw; ........... |
2@.2-:::122%%1“\“{;jjjj:""-----4—r"""'"'"Eiéh'é'é}{&v'v'ﬁ&iﬁ'iéﬁ """""""
. ek R LRI g s idt AL A e z
i TSR S P R e | | -
' Con Bl R e et e i i S R
el R N bl A2 S I T i S > '
i (O }fﬂ &l.M plate| . ... . = ate|
2.2 @.2 fib 0. 4 WAVEEFNGTHS-S S 1.0 . L2
shaker
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OUTLINE

Slowness surface examples from Experiments at NRL

« Towards understanding the physics of wave propagation
In the substrate - Beaming

5/15/2015
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\ Examples from Research at NRL — Near-field Holography |

Under the
bridge dual
hydrophone
scanner

CYLINDRICAL
IHOLOGRAM SCAN

\
1
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| [ g
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i

Naval Research Laboratory
10M$ Pool Facility

(128 x 64 points)
Farfield Directivity [ 1 Internal
.*.ﬁ":ﬁgiw _ - @ Shaker
Localization of Hull ‘Hot Spots’

using Supersonic Intensit Evanescent Waves

Reconstructed nearfield
pressure




Examples: Non-isotropic substrate — (Point driven
Cylindrical Shell)

helical wavefronts at

Surface Velocity

0 : .
Hol '

35 65 i 65 95
- XAxiaI: 39.5 Hz Axial: 80.2 Hz

Slowness Surfaces of normal velocity

.

helical wavefronts for
fastest direction

5=

L L 1 1 '] 1 1 1
R Aoa;
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OUTLINE

Dispersion Space — Bandgaps
« Application to a metamaterial

5/15/2015
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Stacking of
slowness
surfaces with
frequency

5/15/2015

Frequency

| Dispersion Space %‘

Dispersion Space (ky, ky, f)

10

oo
;

=)
.

ha +=
L .

I
M

c 00200 0 200
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Dispersion Space — Example for a shell without ribs — Three types of
waves that exist on this structure are identified & characterized

Frequency (kHz)

n

N NN
Do 3

|
!

»
-
4

]
-
I

- ek =k o=k W)
PHNPOS

154

-t b
B
Z
U
-
>
Z
m

SHEAR

3D Dispersion
Space

Frequency
[=2]

I

-20
k% 00200 200

y k

X

(=]
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real space view
of impulse
excited shell at
2.1 ms

% ’

e
- =
& -,
“ -
C -
- i
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e B

S, fast wave

-,
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Effects of a periodic structure (ribs) - DIRECTIONAL
BANDGAPS

Radial Shaker

® Each parallel cut
represents a mode
shape of structure

. n -
since k,, = - (ais
shell radius)

Frequency

Mode shapes of some slices

Various parallel cuts th
OffE - Ea

rough dispersion space

g
L i
,

20
K 00200 0 200

0.0

VAR

> K
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Metamaterial Example*

Free A, Lamb wave

Point Driven Plate

e s .
( ~ E
- \ e -, /' 'E'
/ R = 5
| / 2
\ A, Lamb wave
\

E
\ g
AR *‘: e Car eé\ﬂ\"“a / $

s e -.-,'-i'l"'i 18 3¢

‘1- - @eas.b 0@6&6 1
"H\_\l W o —_
i e E
T —— s s
il

\ Position [m]
Metamaterial

10x10 lattice of long rods
glued to plate
*Experimental Demonstration of Ordered and Disordered

Multiresonant Metamaterials for Lamb Waves, M. Rupin, F.
Lemoult, G. Lerosey, P. Roux, PRL 112, 234301 (2014)

5/15/2015 Cargese 41




a)

Freq. [kHz]

Metamaterial Dispersion

10a )
= 1.6-2.1 kHz _
‘c‘rE'J - 0.8 g
= c = 333mis E
E 0.6 =
E 04 E
o ; 10 "o 0 10
Lenteur [ms/m] Lenteur [ms/m)]
Dispersion in Metamaterial b (b)

A

“(nho rods()\A'ﬁ"

7 1D Theory*

STOP BAND

0 50 100 150

Wavenumber (1/m)

5/15/2015

-Attenuation:

*Theory of
multiresonant
metamaterials for
A, Lamb waves,
Williams, Roux,
Rupin, Kuperman,
PRB 91, 104307

Y Meta-Yi“
material i

o 200
At {1/m)
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SUMMARY

dSlowness space — Monochromatic waves

5/15/2015

O

O OO0 OO0 OO0

Supersonic and subsonic waves
Radiation Circle

Far-field Radiation: Directivity pattern
Radiation from subsonic waves
Radiation from flexural near-fields
SuperSonic Imaging: Sources of Sound
Dispersion space: Band Gaps, Wave ID
Metamaterials
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