Dense Arrays with Seismic and Acoustic Waves: Imaging, Monitoring and Source localization

Philippe Roux ISTerre, Grenoble

Cargese 2015

Outline

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- 2- Localization of Source buried in noise :
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale
- 3- Imaging with Ambient noise :
 - Vs from Surface waves with Eikonal /Helmholtz tomography
 - Vp from Body waves
 - Anisotropy with Marine seismic data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics
 - Active source array in Geophysics
 - Ambient noise on dense arrays in Geophysics / Seismology

Outline

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- 2- Localization of Source buried in noise :
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale
- 3- Imaging with Ambient noise :
 - Vs from Surface waves with Eikonal /Helmholtz tomography
 - Vp from Body waves
 - Anisotropy with Marine seismic data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics : Application to imaging
 - Active source array in Geophysics : Application to monitoring
 - Ambient noise on dense arrays in Geophysics / Seismology

Dense Seismic arrays : Large scale

Dense seismic arrays : Small scale

Long Beach project in 2011-2012 (CA) Long Beach Ext LB

http://web.gps.caltech.edu/~clay/LB3D/LB3D.html

- Continuous recording
- Autonomy ~11-14 days
- Crew can change 80 sensors/day

Density ~ 75 sensors per square-km

Dense seismic array (1108 sensors) accross the San Jacinto Fault (June 2014)

Yehuda Ben Zion, Univ. South. Cal., USA

Dense Seismic arrays : Recent acquisitions

Dense active/passive seismic experiment in La Solfatara (Puozzoli, Italy, 2013 & 2014)

MED-SUV European project (http://med-suv.eu/)

Design of 3 patch arrays (50 sensors each) on the Piton de la Fournaise Volcano (July 2014)

Florent Brenguier, Volc' Array, ISTerre

Oil/Gas Seismic Exploration (1)

Oil/Gas Seismic Exploration (2)

Courtesy of Thomas Bardainne, CGG

Two goals for dense seismic arrays:

- Imaging / Monitoring with active / passive data
- Detection / Localization of local sources (at depth) buried in noise

Outline

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- **2- Localization of Source buried in noise :**
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale
- 3- Imaging with Ambient noise :
 - Vs from Surface waves with Eikonal /Helmholtz tomography
 - Vp from Body waves
 - Anisotropy with Marine seismic data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics : Application to imaging
 - Active source array in Geophysics : Application to monitoring
 - Ambient noise on dense arrays in Geophysics / Seismology

Detection / Localization of (acoustic) sources buried in noise

Matched Field Processing using Dense Hydrophone Arrays in Underwater acoustics

Historical Underwater Acoustics

MFP works for (temporally incoherent) **CW signals** buried in **noise** in a **complex ocean** – No need for pulsed (coherent) signals

Good solution for (volcanic) tremors or cluster of acoustic/seismic micro-events (creeping in Fault zone, bubbling in geothermal areas)

(1)Principles of Matched Field Processing

Courtesy of W.A. Kuperman, MPL

(2) Micro-Seismicity : Pulse Detection/Localization in Seismic Exploration Context

Alignment Optimization

- High frequency ~ 30 Hz -
- A template is required (data)
- Stack of absolute values -(no phase match as in MFP)

Conventional Method Two-step approach relative location method

Courtesy of T. Bardainne, CGG

Examples of MFP in Geophysics

- Tracking of bubbling activity in Geothermal area
- Microseismicity monitoring in Exploration geophysics

Old Faithful Geyser, Yellowstone National Park

S. Kedar et al, Nature, 1996

Seismo-Acoustic Data

Localization of cluster of bubbles with MFP

Spatial resolution with MFP

Spatial-Temporal Monitoring of Geyser activity

Micro-seismicity Monitoring with MFP in Exploration Geophysics

Acquisition Geometry

Seismo-Acoustic Signals

Noise Correlation

MFP Localization of the Dominant source

Multi-Rate Beamforming : Cancellation of the Dominant source

Singular Value decomposition

$$K_{ij}(\omega) = \left\langle d_i(\omega) d_j^*(\omega) \right\rangle = U \Lambda U^* + V \Omega V^*$$

Micro-seismicity Localization with Multi-Rate Beamforming

Automatic Detection of Micro-seisms over 5 days for ambient noise time windows of 2.5 min.

Horizontal localization of the rate of microseismicity (hour-by-hour).

Comparison Multi-Rate Beamforming vs Pulse Detection Technique

Multi-Rate Beamforming

Pulse detection

Courtesy of Magnitude

Outline

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- 2- Localization of Source buried in noise :
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale

3- Imaging with Ambient noise :

- Vs from Surface waves with Eikonal /Helmholtz tomography
- Vp from Body waves
- Anisotropy with Marine seismic ambient noise data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics : Application to imaging
 - Active source array in Geophysics : Application to monitoring
 - Ambient noise on dense arrays in Geophysics / Seismology

The Long Beach project (2011-2012, CA)

R. Clayton, V. Tsai, J-P. Ampuero, F-C. Lin, ... CalTech

Figure 1. The array configuration and the regional fault lines in Southern California. The small circles show the 5204 stations used in this study. Several segments of the Newport-Inglewood fault system are denoted by black lines in the magnified plot.

<u>http://web.gps.caltech.edu/~clay/LB3D/LB3D.html</u> Lin et al, Geophysics, 2013

Figure 3. The wavefield emitted by a virtual source. The location of the virtual source is shown by the star near the center of the array. (a, b) Snapshots of the 0.5–1 Hz band-passed wavefield observed at each station location at 2.5- and 4.0-s lag times, respectively. The source distance contours are separated by 1-km intervals.

Eikonal Tomography applied to Surface Waves $\frac{1}{c(\mathbf{r})^2} = |\nabla \tau(\mathbf{r})|^2$

Lin et al, Geophysics, 2013

Eikonal / Helmholtz Tomography

Figure 4. A demonstration of eikonal tomography. (a) The 1-Hz Rayleigh wave phase traveltime observed across the array for the wavefield shown in Figure 3. Only stations with S/N higher than our selection criterion are shown. The source distance contours are separated by 1-km interval. (b) The phase traveltime map derived from (a) using the minimum curvature fitting method. The traveltime contours are separated by a 1-s interval. (c) The phase velocity map derived from (b) based on the eikonal equation (equation 4). Only areas satisfying our one-period traveltime and three- out of four-quadrant selection criteria are shown.

Lin et al, Geophysics, 2013

Surface Wave Inversion with Eikonal tomography

Figure 5. The 1-Hz Rayleigh wave phase velocity map (upper) and its associated uncertainty estimation (lower) based on different numbers of virtual sources. The number of virtual sources in each plot is shown on the top. Besides N equals to 5204, where all stations are used, the triangles in the lower plots show the virtual source locations used.

Lin et al, Geophysics, 2013

Body Wave Tomography from Ambient noise

Figure 9. Vertical and horizontal slices of inverted *P* wave velocity cube. (a–c) Slices shift shallower, east, and north. The magenta lines show the location of slices, and the depths of horizontal slices are 0.17, 0.40, and 0.90 km. (d) Velocities are detrended by subtracting the horizontally averaged 1-D velocities. The color map is valid for Figures 9a–9c, where blue indicates velocities faster than the velocity at the corresponding depth in Figure 9d. The shaded areas in the velocity slices are poor ray coverage areas (see Figure C1). The black lines in Figure 9c show the portions of the surface location of the Newport-Inglewood fault [*U.S. Geological Survey and California Geological Survey*, 2006]. The origin of the local coordinate in this figure (Easting = 0 km and Northing = 0 km) is the southwest corner in Figure 1.

Nakata et al, JGR: Solid Earth, 2015

Ambient Noise on Marine Seismic Array in the context of Exploration Geophysics

A. Mordret, N. Shapiro, S. Singh, P. Roux, ... IPGP & ISTerre

Ambient Noise on Marine Seismic Array in the context of Exploration Geophysics

Northward (km)

Beamforming and Correlation

Mordret et al, GRL, 2013 Mordret et al, GJInt, 2014

Noise correlation and Surface Wave Inversion

Mordret et al, GRL, 2013 Mordret et al, GJInt, 2014

Noise correlation and Surface wave Inversion

Comparison with Full Waveform Inversion result (active P-wave data)

2.1

02

0

1.8 1 Velocity

1.7

530

[km

Figure 7. Images of average *P*-wave velocities obtained using waveform inversion (Sirgue et al., 2010) of active *P*-wave data: (a) between 60 and 105 m depth, (b) between 150 and 195 m depth. Dotted red lines indicate channel features; dotted blue lines indicate two distinct lowvelocity zones.

Eikonal / Helmholtz Tomography

Mordret et al, GRL, 2013 Mordret et al, GJInt, 2014

Comparison Eikonal Tomography vs Surface Wave Inversion

Azimuthal Anisotropy from Eikonal tomography

Azimuthal Anisotropy from Eikonal tomography

Outline

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- 2- Localization of Source buried in noise :
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale
- 3- Imaging with Ambient noise :
 - Vs from Surface waves with Eikonal /Helmholtz tomography
 - Vp from Body waves
 - Anisotropy with Marine seismic data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics : Application to imaging
 - Active source array in Geophysics : Application to monitoring
 - Ambient noise on dense arrays in Geophysics / Seismology

Principles of Double BeamForming (DBF)

DBF in Seismology...

F. Krüger, M. Weber, F. Scherbaum and J. Sclittenhardt, Geophys. Res. Lett. 20, 1475-1478, 1993.

S. Rost and C. Thomas, Rev. Geophys. 40, 1008, 2002.

DBF in Underwater Acoustics...

W.A. Kuperman, W.S. Hodgkiss, M. Stevenson, H.C. Song, P. Roux, ... 2003-2004-2005-2006

Double Beamforming on Source/Receiver Arrays

DBF for Wave Separation & Identification

Roux et al, JASA, 2008

Receive Angle (deg)

-11

(d)

DBF for Monitoring

-8

Tomography Application at the Lab scale

Shallow water Tomography

Ultrasonic waveguide (L=1100 mm, H=55 mm) Two source-receiver arrays (64 elements) Perturbation : Heat plume

Acquisition of the waveguide transfer matrix every 0.1 s

Iturbe et al, IEEE J. Ocean. Eng. , 2009 Roux et al, JASA, 2011

Acquisition of the waveguide transfer matrix for each target position

Marandet et al, JASA, 2011

FIGURE 19: Antennes 5x5 (a) Isolation acoustique en mousse et rainures creusées entre les lignes de sources (b) Isolation acoustique par bouchon d'oreille.

DBF in Geophysics : Gel-based phantom at the Lab scale

DBF in Geophysics : Numerical simulation

Slowness-Slowness DBF representation vs source-receiver distance

DBF + Ambient noise data in seismology

Data Selection

- Transportable array (USArray)
- 3 months (winter): Nov. 2009 to Jan. 2010
- 465 broadband stations

P. Boue, M. Campillo, P. Roux, ... ISTerre

DBF + Ambient noise : 50°N **Cross-correlations instead of active Sources** 45°N RAW normalized amplitude MMMMMMMMMM 40°N DBF mmamma mmm 35°N **Raw correlations** DBF -15 -10-5 5 10 15 2500 0 time (min) 30°N 2000 25°N 110°W 105°W 100°W 95°W range (km) 1500 1000 500 0 15 0 15 0 5 10 5 10 time (min) time (min) **Increase of SNR**

DBF with Ambient noise : Surface wave Inversion on a large Bandwidth

DBF + Ambient noise : The Azimuthal angles are relevant!

And finally DBF + Ambient noise for Global seismology...

DBF + Ambient noise + Body Waves on dense Networks

Travel Time Anomalies between LAPNET and a Part of USArray

- Small array aperture and weak heterogeneities under LAPNET (Poli et al., 2013) → Average seismograms in Finland
- Comparison with Vp tomography from Shen et al. (2013)

Future / Present work : Experimental Design for DBF processing (1)

Three arrays made of 7 x 7 geophones 4 weeks continuous recording

Wave extraction from DBF

Future / Present work : Experimental Design for DBF processing (2)

San Jacinto Fault (CA) – Dense array data –June 2014

600 m x 600 m - 1108 geophones - 4 weeks continuous recording

Conclusion

1- Seismic / Geophysics Arrays at all Scales : fundamental Research & Industrial applications

- 2- Localization of Source buried in noise :
 - Matched Field Processing in Underwater acoustics
 - Time reversal
 - Applications at the geophysics scale
- 3- Imaging with Ambient noise :
 - Vs from Surface waves with Eikonal /Helmholtz tomography
 - Vp from Body waves
 - Anisotropy with Marine seismic data
- 4- Double beamforming : Identify / Separate different Wave types
 - Active source array in Underwater acoustics : Application to imaging
 - Active source array in Geophysics : Application to monitoring
 - Ambient noise on dense arrays in Geophysics / Seismology