JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B12, PAGES 28,081-28,094, DECEMBER 10, 2000

Observation of diffusion processes in earthquake
populations and implications for the predictability of
seismicity systems

David Marsan and Christopher J. Bean
Geology Department, University College Dublin, Ireland

Sandy Steacy and John McCloskey

-School of Environmental Studies, University of Ulster, Coleraine, Northern Ireland, United
Kingdom

Abstract. Scale invariance, either in space or in time, has been shown in many
papers to characterize earthquake distributions. Unfortunately, little work has
been dedicated to looking at the general space-time scaling invariance of seismicity
systems, even though a better understanding of how the two domains (spatial and
temporal) link together could help the development of the stochastic dynamical
modeling of earthquake populations. In this paper we report the observation
of diffusion processes of temporally correlated seismic activity for three different
data sets: a mine (Creighton Mine, Canada), the Long Valley Caldera in eastern
California, and a 7-year period of recorded seismic activity in southern California.
The observed subdiffusion processes are indicative of the general space-time scaling
of the system, taking the form of a slow power law growth R(t) ~ tf of the mean
distance R(t) between the main event and the temporally correlated afterevents
occuring after a delay ¢. H is found on average to be small (0.1 for Creighton Mine,
0.22 for the Long Valley Caldera, and 0.22 for the southern California main events
with magnitude > 1.5) but fluctuates significantly from one main event to the
other: the diffusion is found to be intermittent (non-Gaussian) and multiscaling,
and except for the Long Valley Caldera, a systematic correlation between the
sizes of the main event and subsequent afterevents and the growth exponent H
is observed. While classical viscous relaxation models (e.g., elastic listhosphere-
plastic asthenosphere coupling, or fluid flow triggered by sudden changes in pore
pressure) have been proposed to characterize this relaxation by homogeneous (i.e.,
nonintermittent) normal (H = 0.5) diffusion processes, the direct implication of the
reported results is that seismicity systems, at spatial scales from meters to hundreds
of kilometers and small (microearthquakes in a mine) to intermediate magnitudes,
relax spatiotemporally in a nonelastic way, revealing the stochastic space-time
scale-invariant nature of such systems. Since these diffusion processes correspond to
a loss of information with time on the location of the main event, they can be used
to investigate the limits of predictability, at all spatial scales, of seismicity systems
in terms of the spatiotemporal clustering of temporally correlated earthquakes.

1. Introduction

Earthquakes are intermittent phenomena associated
with the stress state of the crust. Interactions and cor-
relations between pairs or sets of earthquakes partly
reveal the complex dynamics that temporally drive the
stress field in seismically active zones: the understand-
ing of such dynamics can therefore be approached, or
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at least better constrained, by studying systematic spa-
tiotemporal trends and patterns in earthquake popula-
tions. An a priori more satisfying approach would be
to infer the temporal behavior of the stress field in its
phase space. However, scale invariance and intermit-
tency of seismicity systems, as is very often reported
(e.g., Main [1996] for review; see also discussion and
references below), seem to rule out this alternative and
call instead for a stochastic modeling: Since no spa-
tial nor temporal scale can be singled out in the scaling
regime, one has to consider an infinite number of degrees
of freedom in order to account for the observed variabil-
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ity. This is particularly well illustrated by the so-called
self-organized critical modeling [Bak et al., 1987], for
which perturbations at small scale can force the system
to algebraically depart from its unperturbed trajectory.
To impose an arbitrary cutoff in the scaling range would
thus lead to unrealistic dynamical behaviors by ignoring
the fact that scales smaller than the cutoff can strongly
interfer with the well-resolved larger scales. Also, the
stress field cannot be considered as a closed system, in-
teractions with numerous other physical fields (e.g., flu-
ids, possibly chemically active, temperature, and more
generally various types of heterogeneities, defects, and
discontinuities in the physical properties of the crust)
being well recognized. Therefore one cannot hope to
achieve a pertinent modeling of the dynamics of both
the stress field and associated earthquake populations
by assuming a deterministic, Markovian temporal evo-
lution in a well-constrained phase space and must in-
stead resort to stochastic non-Markovian scale-invariant
dynamics.

Scale invariance of seismicity systems is clearly re-
vealed by statistical laws: The moment release fol-
lows the Gutenberg-Richter law [ Gutenberg and Richter,
1944], the seismicity rate exhibits fractal clustering
(e.g., Omort’s [1894] law for aftershock sequences fol-
lowing large main shocks; temporal correlation mea-
sures have also been reported to be scaling [Kagan and
Jackson, 1991], a result implying that the seismic gap
hypothesis predicting an anticorrelation at intermediate
timescales might not be valid), and hypo/epicenter dis-
tributions are also typically found to be fractally clus-
tered [Hirata and Imoto, 1991; Hirabayashi et al., 1992;
Let et al., 1993; Hooge et al., 1994; Robertson and Sam-
mis, 1995; Wang and Lee, 1996]. Consequently, stochas-
tic dynamical modeling must link the spatial and tem-
poral domains in a self-similar framework. Two differ-
ent types of dynamical scale-invariant processes can be
thought of: one in which there exists no interactions
between space and time and another for which such
interactions cannot be neglected. In the former case,
the spatiotemporal correlation C(r,t) between pairs of
earthquakes separated in space by a distance r and in
time by an interval ¢ is of the form C(r t) = f(r) g(¢),
implying no temporal dependence on the correlation
spatial structure. This was reported by Shaw [1993],
who analyzed the spatiotemporal correlation following
preselected main shocks and compared his results with
a model based on deterministic subcritical crack growth
dynamics. While no significant broadening of the spa-
tial structure of the aftershocks was observed in time
[Shaw, 1993, Figure 2], it should be noted that given
the slowness of the subdiffusive processes reported be-
low, the analysis conducted by Shaw is perhaps not
sensitive enough to detect such a diffusion (in partic-
ular, one should take a systematic account of the local
”background” seismicity pattern defined as the spatial
distribution of the temporally uncorrelated regime and
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determine the spatial structure for nonoverlapping tem-
poral windows, as explained in section 3).

In the latter case, the two domains cannot be sep-
arated anymore, and the spatial correlation structure
evolves with time. This behavior has been observed in
many instances, and typical migrations of aftershocks
away from the main shock have been reported [e.g.,
Tajima and Kanamori, 1985; Ouchi and Uekawa, 1986;
Eneva and Pavlis, 1991]. Marsan et al. [1999] studied
such migrations in a scale-invariant stochastic frame-
work for a mining-induced system and showed that
these dynamics take the form of a power law growth
of the temporally correlated spatial distribution of af-
terevents following any microearthquake in the popula-
tion, with the mean distance R(t) between temporally
correlated earthquakes occuring at a delay ¢ after the
main event, and the main event increasing on average as
R(t) ~ tH H being the diffusion or ”growth” exponent.
This phenomenon can be understood as a nonelastic re-
laxation of an initially strongly clustered stress concen-
tration, spreading toward large scales with time. Such
a relaxation is to be distinguished from the purely tem-
poral fractal clustering of earthquakes, as for example
illustrated by Omori’s law: the latter corresponds to a
dissipation in time of the seismic rate and does not a
priori imply a temporal change in the spatial structure;
therefore no spatiotemporal relaxation, i.e., stress dif-
fusion, can be methodologically inferred on the basis of
purely spatial or temporal clustering analyses (contrary
to what is claimed by Godano et al. [1997]).

Numerous instances of stress diffusion processes fol-
lowing large earthquakes, particularly in subduction
zones, have been documented, starting with Mogi [1968].
A coupling between an elastic lithosphere and a fluid
asthenosphere is typically proposed as the viscoelastic
mechanism responsible for such a diffusion, as initially
advocated by Elsasser [1969], whose model, since based
on an homogeneous fluid relaxation, leads to a normal
diffusion (i.e., similar to the heat diffusion), therefore
with a growth exponent H = 0.5. While such a normal
diffusion can be expected for earthquakes big enough
to significantly trigger a relaxation from the viscous as-
thenosphere, the results of Marsan et al. [1999], how-
ever, show that stress diffusion (1) can be found in much
smaller systems (e.g., a mine), (2) can characterize the
whole earthquake population regardless of their respec-
tive magnitudes, and not only a small subset of large
earthquakes, and (3) does not follow a normal behav-
lor, an instance of subdiffusive process with H = (.18
rather than 0.5 being observed.

One immediate question is whether anomalous diffu-
sion processes can be found in other seismic systems,
at different scales, and characterized by different lo-
cal conditions; a further step would then be to analyze
what are the physical nonelastic mechanisms at work
in these processes. Among possible mechanisms, one
can cite crustal fluid flow [Nur and Booker, 1972; Li
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et al.. 1987; Hudnut et al., 1989; Nowr et al., 1997], as
strong spatial variability and discontinuities in the per-
meability field can cause the diffusion to be anomalous
and nonhomogeneous. Also, while localized afterslip
on the ruptured fault might be regarded as an unlikely
candidate for the triggering of a stress diffusion (since
it reproduces the same spatial pattern of static stress
changes in time), afterslip due to either creep flow of
aseismic crustal structures or viscous upper mantle re-
laxation as evoked above [e.g., Nur and Mavko, 1974;
Savage and Prescott, 1978], or both [Li and Rice, 1987],
is expected to cause a diffusion of seismic activity as a
consequence of the broadening with time of the strain
distribution away from the ruptured fault. The state-
and-rate friction model of Dieterich [1994] also repro-
duces a temporal growth of the postseismicity distribu-
tion: owing to the nonlinear relation between time to
instability and the logarithm of the slip speed, a large
stress perturbation, i.e., at short distances from the fo-
cus, of a nucleation site distribution will create more
postseismic activity but will also tend to reach a dis-
sipative regime quicker than for a small perturbation
(i.e., at larger distances from the focus).

Modulations of such causal mechanisms by the scale-
invariant cascading process of afterevents generating
their own local diffusion of seismic activity, and so on,
will then affect the quantitative nature of the relaxation.
Also, Marsan et al. [1999] proposed that the observed
dependence of H on the magnitude of the main event
might reflect variations in the fractal geometry (hence a
multifractal distribution) of faults, for the mining sys-
tem studied.

In this paper, we investigate the existence of diffu-
sion mechanisms for three different systems: a mine
(Creighton Mine, Ontario), 13 years (1984-1997) of seis-
micity at and around the Long Valley Caldera (eastern
California), and a 7-year period (1983-1990) in south-
ern California. By considering three systems with dif-
ferent spatial extents (~0.5, 20, and 500 km, respec-
tively) and characterized by different geophysical con-

Figure 1. Spatial distribution of the microearthquakes
for the Creighton Mine data set.
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Figure 2. Pair integrals, i.e., number N(< r) of pairs
separated by distances shorter than r, for the three data
sets. The power law best fits computed on the indicated
scaling range (extent of the line) are shown by dashed
line and yield fractal dimensions of 1.85 (17-250 m), 1.65
(2-8 km) and 1.15 (1-200 km) for Creighton Mine, the
Long Valley Caldera, and southern California, respec-
tively. The curves for the Long Valley Caldera and the
southern California data have been arbitrarly shifted in
the y direction for clarity.

ditions, we hope to help in distinguishing between differ-
ent mechanisms responsible for the observed diffusions.
Further characterizations of the diffusion processes are
conducted in order to quantify the degree of intermit-
tency reflected by temporal and spatial variations of the
H exponent; multiscaling symmetries are investigated.
Also, the correlation between the magnitudes/energy
releases associated with both the main event and its af-
terevents and the growth exponent H is analyzed. This
paper extends the initial work of Marsan et al. [1999]
by proposing a more robust and precise characterization
of the diffusion, which is then systematically applied to
the mentioned systems. The main finding is that the
subdiffusion of temporally correlated seismicity follow-
ing any earthquake appears to consistently characterize
all three systems.

2. Data

We study three different data sets with different spa-
tial extents. The first set is the mining-induced mi-
croearthquake population recorded in Creighton Mine,
Ontario, between October 1, 1997, and March 31, 1998,
and was already partly analyzed by Marsan et al. [1999].
The 10,733 microearthquakes were recorded by the lo-
cal Queen’s Microseismic System (QMS) full waveform
data network located in the deeper, active levels of the
mine, at depth ranging between 2000 and 2200 m. The
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seismically active volume, as recorded by the QMS net-
work, has a size of ~ 500% m®, and the estimated av-
erage error on the measured earthquake locations is 17
m. Temporal resolution is 1 s. Owing to incomplete
magnitude information (cutoffs at small and large mag-
nitudes, leaving 28% of the events with no magnitude
estimate), we do not conduct systematic studies of the
dependence of the diffusion on magnitude, though in
section 3.4 we distinguish the two subsets of events that
(1) saturated the QMS system (146 events) or (2) were
too small to be given a magnitude (2909 events).

Figure 1 shows the spatial distribution of the mi-
croearthquakes in the mining volume. Figure 2 gives
the results of the pair integral analysis [Grassberger
and Procaccia, 1983] applied to this set of earthquakes,
showing a scaling regime with fractal dimension D =
1.85 developing from ~17 m (error scale) up to ~200
m, at which scale the limited extent of the seismically
active volume is felt. Note the break of scaling at ~17
m, with a steeper (D =~ 2.5) scaling regime developing
at small scales, which is an artefact of the ”random-
ization” of the locations of the events at scales smaller
than the error scale. Locations and times of occurence
of the 1504 excavation and production blasts conducted
during the studied period are also known.

The second set corresponds to the 36,032 earthquakes
occuring between January 1, 1984, and November 18,
1997, at and around the Long Valley Caldera, in the
area delimited by longitude -119.1 to -118.52, latitude
37.43 to 37.72, depth smaller than 15 km; see Figure
3. The Long Valley Caldera is a seismically active zone
hydrothermally driven. A recent tomographic study by
Tryguasson [1998] shows the Long Valley Caldera as
possessing a complex velocity structure, believed to be
strongly influenced by high temperatures, fluids, and
hydrothermal alterations, with highly disrupted rocks
that have been chemically and thermally altered by mi-
grating fluids in the upper crust [O’Doherty, 1999]. The
largest earthquake in the data set is the M 6.1 Round
Valley earthquake that occured on November 23, 1984,
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Figure 3. Spatial distribution of earthquakes for the
Long Valley Caldera data set.
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Figure 4. Locations of the earthquakes of the southern
California data set.

at ~20 km southeast of the caldera. The magnitude
range from 1.2 to 6.1 appears to be recorded without
any truncations (no break in the magnitude-frequency
distribution, giving a b value close to 1, within this
range). As the spatial correlation shows (pair integral of
Figure 2), the error scale on the locations of the earth-
quakes might here be as large as 1 km.

The third set is made of the 37,777 earthquakes of
magnitude between 1.5 and 6.6 listed in the Southern
California Seismic Network hypocenter catalog for the
period extending from August 1, 1983, to March 1,
1990, see Figure 4. Only events of quality A, B, and
C are kept in the data set, the typical error on the lo-
cation being of the order of 1, 2, and 5 km for events of
quality A, B, and C, respectively. As the surface extent
of the set of earthquakes is much larger than its exten-
sion in depth, and in order to simplify the analyses by
not having to account for such an anisotropy, only the
epicenters were considered (depth was not taken into
account). Completness of the distribution is ensured
with a cutoff magnitude of 1.5. Several well-known
and studied earthquakes are part of this set, among
them the M6.2 Elmore Ranch and M6.6 Superstition
Hill earthquakes (November 23, 1987, and November
24, 1987), the M5.9 Whittier Narrow earthquake (Oc-
tober 1, 1987), the M5.6 North Palm Springs earth-
quake (July 8, 1987), and the M5.4 Oceanside earth-
quake (July 13, 1987).

3. Diffusion of Temporally Correlated
Seismic Activity

3.1. Methodology

We denote by (z;,t;) the position and time of oc-
currence of the ith event in the data set under study,
which possesses a total of A events and covers a period
of duration 7. We determine the space-time correlation
existing between all the events of a data set by first com-
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puting the average rate of events N(r,?) occuring in a
space-time window of size (L,T") at a distance r away
and delay ¢ after any event:

Nt N

ijt ST et —t € ftst+ 1)

i=1j=i+1

O(|z;

N(’I”,t) =

—ail€rsr+ L)), (1)
where O(P) is 1 if P is true, 0 otherwise, and N is
the largest index ¢ such that ty — ¢, < ¢+ 7. We call
“main event” event i, and its "afterevents” the events
j > i. N(r,t) corresponds therefore to the stacking of
the individual rates computed for all the events taken as
main events. In our analyses we keep L constant while
T varies, so that they correspond to time intervals sepa-
rating an algebraically increasing set of times ¢. We here
assume that the systems are (1) stationary, (2) homo-
geneous (invariant by translation), and (3) isotropic, so
that N (r, 1) depends only on the relative space-time dis-
tances between events. An improvement of the method
would consist in considering the focal mechanism of the
main event and decomposing the distance |z; — ;| in
(1) into the two projections r and r; of z; — z; onto
the fault and the auxiliary planes.

For seismicity systems the total rate at time ¢t N(t) =
[ dr N(rt) is expected to decrease with ¢ increasing,
as it merely represents the average rate of afterevents
at t. As already evoked in section 1, two cases can
be distinguished concerning the dependence of N(r,t)
on t, i.e., either (1) N(r,t)/N(t) changes with ¢, im-
plying an interaction between the spatial and temporal
domains or (2) N(r,t)/N(t) does not significantly vary
with ¢, implying a stationary spatial structure of cor-
relation. In both cases, N(r,t) is expected to converge
with increasing ¢ to N(r), the spatial structure probed
by the pair integral which, since computed for all pairs
of events with temporal separations up to the maxi-
mum time period 7 covered by the data set, practically
corresponds to the spatial structure of temporally un-
correlated events. N(r) is defined as the rate

i

) 1 N N
N = 77 2220 Oles —wlefrr+ L), ()

We define C(r,t) = N(r,t) — N(r). In order to deter-
mine the spatial structure of the temporally correlated
afterevents, we compute the Green’s function G(r,t)
corresponding to the temporally conserved version of

C(r,t):

N(r,t)—N(r)

G(T‘, l‘,) = ——m——

3)
with N = [dr N(r). G(rt) is the propagator, or
Green'’s function, of the conserved temporally correlated
seismic activity and gives the probability that knowing
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an earthquake is triggered by the main event after a de-
lay t, it takes place at a distance » away from the main
event.

3.2. Qualitative Evidence for Diffusion

We show in Figure 5 the average rates N(r,t) and
N(r) for the Creighton Mine data set, at two tempo-
ral windows 0 < ¢t < 1 mn and 10 h < ¢ < 11 h, with
L = 5 m. The spatial structure N(r,t) is clearly seen
to converge toward N (r) as ¢ increases, the rate of con-
vergence being relatively faster at smaller scales. The
temporally correlated structure C(r,t) = N(r,t)— N(r)
extends significantly up to ~150 m for the first temporal
window and up to ~200 m for the second window. Both
effects (faster rate of convergence at smaller scales and
extension of the temporally correlated spatial structure)
are indicative of a diffusion process at work for the tem-
porally correlated seismic activity following any event.

Figure 6 displays the Green’s function G(r,t) mea-
suring the temporally correlated spatial structure after
removal of the temporal dissipation for the three data
sets at three different time windows. In all cases, the
spreading of G(r,t) toward large scales as ¢ increases
is evident. This diffusion is analogous to a decrease in
the degree of clustering of the temporally correlated af-
terevents around the main event, that is, to a loss of
information on the location of the main event as time
increases.

3.3. Quantification of the Rate of Diffusion

Marsan et al. [1999] quantified the observed diffusion
of the temporally correlated afterevents for Creighton
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Figure 5. Rates of seismic activity at two different
time windows: (top) 0 < ¢ < 1 mn and (bottom) 10 h
<t < 11 h, for the Creighton Mine data. The function
N (r,t) is shown along with the temporally uncorrelated
N (r) (thick line). N(r,t) and N(r) are in number of
events per day, per 5% m?.
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Figure 6. Green’s function G(r,t) for the three

data sets: (top) Creighton Mine, (center) Long Valley
Caldera, and (bottom) southern California. The time
windows are from left to right 0 to 10's, 12 to 16 min, 15
to 20 hours (Creighton Mine); 0 to 15 min, 18 hours to
1 day, 55 to 75 days (Long Valley Caldera); 0 to 5 min,
6 to 8 hours, 18 to 25 days (southern California). The
time windows are chosen so that the second and third
windows end at 96 times and 7200 times, respectively,
the end of the first window.

Mine by defining the mean distance R(t) between such
temporally correlated afterevents and the main event,
i.e., R(t) = [drr G(r,t). While such a method directly
estimates a growth exponent H such that R(t) ~ ¢
we will see that 1t is not unique, as other moments of
G(r,t) can also be used (e.g., second-order moment, cor-
responding to the width of G(r,t)).

Figure 7 shows the evolution of R(¢) for the three sys-
tems, which all exhibit power law growths on 4 to nearly
6 (in the case of the Long Valley Caldera) decades in
time. Note that the scaling for the southern California
catalog is only approximate at first order, while it is of
good quality for the two other systems. The obtained
growth exponents H are found to be small (0.1, 0.08,
and 0.22), indicating slow, subdiffusive processes. In-
deed, for both the Creighton Mine and the Long Valley
Caldera sets a logarithmic fit R(t) ~ logt could also be
proposed; we will, however, see later on that the rate of
diffusion is significantly increased either by considering
subsets of events with large energy release (Creighton
Mine and southern California, section 3.4), or by decon-
volving G(r,t) with G(r,t — 0) (Long Valley Caldera,
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section 4), so that an algebraic rather than a logarith-
mic growth needs indeed to be considered. At large ¢
the estimate of R(t) becomes subject to large fluctua-
tions, owing to the fact that G(r,t) has a denominator
N(t) — N tending to zero. Negative values of G(r,1)
and of R(t) are then frequently obtained. We therefore
stop the computation of R(t) when such fluctuations
become evident. Finally, note that the growth expo-
nent H = (.1 found for the Creighton Mine data set is
significantly lower that H = 0.18 reported by Marsan
et al. [1999], which was obtained by considering that in
the so-called ”temporally correlated regime”, the mean
distance between the main event and all the afterevents
is assumed to be close to R(t). While this is certainly
true at very short timescales (for which N(t) > N), a
faster growth is obtained using this assumption when
N is not negligible anymore compared to N(2).

We detail in Appendix A the expected behavior of
C(r,t) and G(r,t) under the action of a space-time con-
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Figure 7. Mean distance R(¢) for the three data sets:
(top) Creighton Mine, (middle) Long Valley Caldera,
and (bottom) southern California. The power law best
fits are shown by thick dashed lines, and correspond to
growth exponents H = 0.1, 0.08, and 0.22, respectively.
The Green’s function G(r,t) was used to compute R(t),
with the sampling scale L equals to 5 m (Creighton
Mine), 0.1 km (Long Valley Caldera), 1 km (southern
California), and r going up to 1 km (Creighton Mine),
25 km (Long Valley Caldera), and 200 km (southern
California).
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traction/dilatation operator for a system possessing (1)
a fractal temporal clustering analog to a dissipation in
~ 7P of the temporally correlated seismic rate N (t)—N
and (2) a diffusion given by R(t) ~ tf for the tempo-
rally correlated spatial structure.

Other moments of G(r,t), rather than the mean dis-
tance, can be used in order to quantify the diffusion. For
example, the second-order moment is associated with
the temporal variation of the width of the temporally
correlated spatial structure of the afterevents. We can
generalize the method by determining any moment of
order ¢:

1 N
ROW) = (10) = 52 r0

N
- %Z/dr P95 (ri (8) — 1)

- / dr 19G(r,1)

tC(Q)’

(4)

where r;(t) corresponds to the individual diffusion origi-
nated by the ith main event. This defines the structure
function ((q) related to the generalized growth expo-
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Figure 8. Multiscaling properties of the Long Valley
Caldera data. (top) R(®)(t) and R®)(t) versus R (t)
for t between 1072 and 74.6 days. The best power law
fits are shown by thick lines, with ¢ ranging from 1072 to
1 day, and give ¢(2)/¢(1) = 1.54 and ¢(3)/¢(1) = 1.97.
(bottom) Structure function ¢(¢) for ¢ varying between
0 and 3.
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Figure 9. Multiscaling properties of the southern

California earthquakes. (top) R®)(¢) and R(®)(t) ver-
sus R((t) for ¢t between 5 min and 74.4 days. The
best power law fits are shown by thick lines, giving
¢(3)/¢(1) = 1.563 and ¢(5)/¢(1) = 1.56. (bottom) Struc-
ture function ¢(¢) for ¢ varying between 0 and 5.

nent H(q) = ((¢)/q. An homogeneous diffusion would
be characterized by a single value H(q) = H, therefore
a linear structure function. Heterogeneous diffusions
give nonlinear structure functions, indicative of a mul-
tifractal behavior, hence a whole hierarchy of growth
exponents H(q) and associated orders of singularity
v = —d((g)/dq [Schertzer and Lovejoy, 1987]. In the
latter case, G(r,t) is locally scaling under the action
of the local space-time contraction/dilatation operator
characterized by a local exponent H varying in space
and time.

The structure function {(q) is computed for the Long
Valley Caldera (Figure 8) and the southern California
set (Figure 9). We made use of the method developed
for so-called extended self-similar systems [Benzi et al.,
1993], which determine ((q) as (R (t))/(RM(t)) =
t€(a)/¢()  knowing ¢(1) = H previously determined.
The observed nonlinearity of both structure functions
reveals the heterogeneous character of the diffusion,
which instead of being Gaussian occurs in an inter-
mittent succession of ” jumps” followed by calm periods
during which only little diffusion happens. A physical
picture is one of a seismic activity distributed as a set
of space-time clusters; as time increases, new clusters of
triggered afterevents are explored by the process, caus-



28,088

ing the diffusion to jump, while relatively calm periods
develop between two successive jumps. For a hierarchy
of space-time clusters interwoven at all scales, as ex-
pected for a scale-invariant system, the diffusion takes
the form of a multifractional process possessing multi-
scaling properties.

3.4. Dependence of Diffusion Rate on Energy
Release of Main and After Events

We have seen in the preceding sections that for the
three studied systems, a main event triggers afterevents
which tend to diffuse in an intermittent manner away
from the focus of the main event, resulting in an het-
erogeneous loss of information on this location as time
increases. It can be expected that the rate of this loss,
measured by the structure function ((g), depends on
the relative magnitudes or energy releases associated
with the main event and its afterevents, so that big-
ger afterevents (relative to the size of the main event)
will diffuse at a different rate compared to smaller af-
terevents. In a system with scale invariance in space,
time, and energy the variation of ((g) with the energy
of main and afterevents should only depend on the dif-
ference in magnitudes AM, amounting to an invariance
of the laws by translation in magnitude.
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Figure 10. Mean distance R(t) computed for the

Creighton Mine data set for three subsets of main events
(keeping all the 10,733 events as possible afterevents):
(top) the 146 largest microearthquakes, (middle) the
2909 smallest microearthquakes, and (bottom) the 1504
blasts. The best power law fits are shown by thick
dashed lines, yielding the growth exponents H=0.2,
N NA and N 23 resnectivelv
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Figure 11. Mean distance R(t) computed for the

southern California earthquakes, for four subsets of
main events and keeping all the 37,777 events as pos-
sible afterevents: (top) earthquakes with magnitude M
between 2 and 3 (11,353 events), (second from top)
earthquakes with magnitude between 3 and 4 (1137
events), (third from top) earthquakes with magnitude
between 4 and 5 (116 events), and (bottom) earthquakes
with magnitude greater or equal to 5 (12 events). The
best power law fits are shown by thick dashed lines,
yielding the growth exponents H=0.25, 0.29, 0.33, and
0.35, respectively.

For any actual data set, cutoffs at small magni-
tude (and sometimes also at large magnitudes, e.g.,
the Creighton Mine data set) break this symmetry, and
an apparent dependence on the magnitude of the main
event 1s observed. Such is the result given by Marsan
et al. [1999], which shows that the subset of the 146
largest events in the Creighton Mine set triggered diffu-
sions with a higher rate H = ((1) than observed when
considering all the events as main events. We show in
Figures 10 and 11 the growth of the mean distance R(t)
for various subsets of main events according to their
magnitude/enerov release for the Creichton Mine and
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Figure 12. Mean distance R(t) computed for the

southern California earthquakes for two subsets of main
events and possible afterevents: diamonds, main events
with magnitude between 1.5 and 2 and afterevents with
magnitude greater or equal to 5; and circles, main
events with magnitude greater or equal to 5 and af-
terevents with magnitude between 1.5 and 2. The best
power law fit for the second case (circles) is shown by
dashed thick line and yields a growth exponent H = 0.5.

California data. For these two systems a clear increase
in H with the size of the main event is obtained, while
in the case of the Long Valley Caldera, no apparent sig-
nificant changes in H are observed (not shown here). In
the latter case, strong fluctuations in R(t) are observed
for magnitudes of main event larger than 4, limiting the
observed scaling regime to less than 3 decades in time.

In the case of the southern California earthquakes
(Figure 11) we note that at ¢ ~ 100 days the mean dis-
tance for all subsets is close to 100 km, which is the
mean distance expected for a random distribution with
distances ranging between 0 and 200 km. The actual
mean distance computed for all pairs of earthquakes
distant by 200 km or less is found to be equal to 110.8
km. We can thus interpret this as a complete loss of
information, at this time and spatial scale, of the loca-
tion of the main event, for the considered catalog. Note
that it is not totally conclusive at this stage whether
this maximum mean distance of ~100 km could be due
to the actual maximum mean interaction range of the
system for earthquakes of magnitude ranging between
1.5 and 6.6, rather than a size effect. The changes in
the growth exponent H from one subset to the other
result from changes in the initial clustering of the af-
terevents around the main event, with a stronger de-
gree of clustering (i.e., a smaller mean distance) as the
magnitude of the main event increases. This result is
confirmed when determining the growth exponent H
for (1) main events with magnitude between 1.5 and 2,
and afterevents with magnitude greater or equal to 5
and (2) main events with magnitude greater or equal
to 5 and afterevents with magnitude between 1.5 and 2
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served for ¢ roughly between 0.1 and 100 days, and the
constant mean distance (~ 120 km) indicates a close-to-
random distribution of the afterevents in space. In the
second case, a normal diffusion H = 0.5 is obtained for
3 decades in time (0.1 to 100 days) before R(t) reaches
values around 100 km. This again can be explained by
a weak initial clustering (if any) in the first case, which
becomes insignificant at ¢ > 0.1 day, implying that if
small events can trigger bigger events (more than 3 or-
ders of magnitude bigger), they, however, only weakly
constrain their locations, while big events can trigger
smaller afterevents and strongly constrain their loca-
tions, this constraint being then dissipated at an aver-
age rate increasing as one considers smaller and smaller
afterevents.

4. Implications of the Observed
Diffusion for the Nature of the
Dominant Postseismic Mechanisms

The temporally correlated spatial structure of af-
terevents has been shown to undergo a diffusion process
for the three studied data sets, which cover different
spatial extents and represent different geological and
physical conditions. The processes are found (except
in one case) to be subdiffusive (H < 0.5), accounting
for a rather slow power law expansion of the afterevent
area. Tajima and Kanamori [1985] reported expansions
of aftershock areas following large earthquakes, mostly
in subduction zones; even though they did not consider
a scaling form for these expansions, a typical value for
their ”linear expansion ratio” 7.(100) = 1.5 would im-
ply a H parameter equal to logn.(100)/1og100 =~ 0.09.
The low values found for the Creighton Mine and the
Long Valley Caldera data sets (see Figure 7) can be
shown to be due either to the slow diffusion rate of
the smaller afterevents (e.g., H significantly increas-
ing in the case of the Creighton Mine when consider-
ing only the largest microearthquakes or the blasts as
main events, see Figure 10) or to the broad initial dis-
tribution of afterevents in the case of the Long Valley
Caldera. Indeed, seismicity in the Long Valley Caldera
is often found to occur in swarms of earthquakes, that
is, in clusters of activity with no ”dominant” earthquake
triggering them. Even though the b value of our data
set is found to be very close to 1, the spatial distribution
of temporally correlated afterevents at short timescales
(seconds to tens of seconds) is found to be broad, ex-
tending to ~4 km after 20 s, as expected for a seismicity
system experiencing diffuse swarms of activity. Given
the spatial scale covered by the total distribution under
study (~25 km), the assumption of an initial point-like
source does not hold anymore. Instead, we need to de-
convolve Green’s function G(r,t) by G(r,t — 0). We
do this by taking G(r,t € [16.8s;23s]) as the ”initial”
Green’s function (source); this time interval is chosen
at short enough timescales to correctly model the initial
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Figure 13. Mean distance R(t) for the three data sets:
(top) Creighton Mine, (middle) Long Valley Caldera,
and (bottom) southern California after deconvolving
the Green’s function G(r,t) by an initial source dis-
tribution given by G(r,tg), with ¢ 0-10 s, 16.8-23 s,
and 0-5 min, respectively. The power law best fit for
the Long Valley Caldera is shown by the thick line and
corresponds to a growth exponent H = 0.22. The thick
dashed lines correspond to the best power law fits found
for the mean distances obtained without such a decon-
volution (see Figure 7).

enough number of events in this distribution. We deter-
mine the new distance R(t) for ¢ greater than the tens
of seconds scale in Figure 13, along with the mean dis-
tances obtained similarly (by deconvolving G(r,t) by an
initial distribution taken at short timescale) for the two
other data sets. The diffusion process, with a point-like
source, characterizing the Long Valley Caldera region
is then found to be faster (H = 0.22) for timescales be-
tween 1072 and 100 days, while no significant change
in the growth exponent H is obtained for the two other
systems.

Interestingly, the largest growth exponent is found
to be equal to 0.5 in the case of the southern Cali-
fornia earthquakes when considering large main events
(magnitude above 5) triggering small afterevents (mag-
nitude between 1.5 and 2). Such a value is expected
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for diffusions due to the relaxation associated with vis-
coelastic structures at depth. In southern California,
only earthquakes of magnitude greater than 6 are ex-
pected to rupture the whole thickness of the elastic
lithosphere [Scholz, 1990], implying that smaller earth-
quakes are unlikely to trigger any significant response
from the viscous lower crust. Only two events (the
sequence of the Elmore Ranch-Superstition Hill earth-
quakes) are of magnitude greater than 6 in our data
set, hence making it doubtful that the observed diffu-
sion, obtained by averaging over the 12 earthquakes of
magnitude greater or equal to 5, can be due to such
coupling. Moreover, this mechanism would not explain
why H decreases when considering all afterevents (at
all magnitudes present in the data set) and still keeping
only the 12 earthquakes of magnitude greater or equal
to 5 as main events (H = 0.35, see Figure 11). H = 0.5
is also predicted for a fluid flow mechanism, assuming
that (1) the flow occurs in an homogeneous medium
and therefore is characterized by a normal diffusion and
(2) it can trigger significant seismic activity. Both hy-
pothesis are debatable; fluid flow in complex, hetero-
geneous media is expected to be subject to anomalous
diffusion laws. Also, while numerous works have re-
ported good agreement between fluid flow models and
historical sequences of earthquakes [e.g., Li et al., 1987,
Hudnut et al., 1989; Noir et al., 1997; Bosl, 1999], Ka-
gan and Jackson [1998] showed that at the statistical
level the friction coefficient in the Coulomb law is close
to 0 for southern California earthquakes, implying no
significant dependence of the Coulomb stress on fluid
pressure changes. Finally, this value H = 0.5 reported
in the present study cannot be a priori taken as an up-
per limit, and it can be expected that, for example, by
considering even smaller afterevents, 1.e., with magni-
tudes smaller than 1.5, larger growth exponents might
be retrieved. While our results do not agree with ho-
mogeneous fluid flow models, more complex fluid flow
models, in particular involving a whole hierarchy of dif-
fusion exponents H depending on the magnitude of the
triggering earthquake, cannot be ruled out on the basis
of these observations.

State-and-rate friction laws have been proposed to
model the postseismic activity following an earthquake,
and more particularly to explain Omori’s law [Dieterich,
1994]. They also give a temporal growth of the postseis-
mic active zone, as shown in Figure 6 of Dieterich [1994].
We therefore investigate whether such models can offer
an explanation for the power law growth of the tempo-
rally correlated postseismicity zone as reported in this
present paper. Using the notations and starting from
equation (21) of Dieterich [1994)], we assume (1) ¢ < tq,
so that we are in a scaling temporal regime. Longer
times t would probe the characteristic relaxation time
to and hence give a nonscaling behavior for the post-
seismic activity diffusion; (2) we look at distances up
to many times the size of the initial rupture zone ¢,
so that the initial distribution of postseismic activity
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Figure 14. Mean distance R(t) for the postseismic
activity derived from the state-and-rate friction model
of Dieterich [1994], for various o = —Ar7,/Ac values.

The two scaling growths R(t) ~ t and R(t) ~ 2 are
indicated by the dash-dotted and the dashed thick lines,
respectively.

can be considered as being point-like; (3) no tempo-
ral changes in tectonic loading, i.e., 7 = 7. (we also
take the reference seismicity rate r equal to 1 and will
therefore correct for a unit ”background” activity rate
when calculating the Green’s function); and (4) seismic-
ity can only take place on a fractal set of faults, with a
dimension D. Denoting o = —A7. /Ao and by A(r,t)
the postseismic activity rate at distance r and delay ¢
from/after the earthquake, we have
t t _ 3.3\ =1/2 _ -1
A(r,t) = {— + (1 — —)e~eli=c?/r7) oL
ta tq
(5)
For r > r. = c(a/2)}3, A(r,t) ~ 1/[1 = (r¢/r)%], and
hence no significant temporal changes of the postseis-
mic activity pattern are found at distances greater than
re; for a typical a = 40, r./c ~ 2.7, and r. can be in-
terpreted as the typical distance for a time-invariant
spatial pattern of remote triggering. Note also that the
two limit cases « = 0 and a — oo both give no dif-
fusion, since A(7,¢) then becomes independent of r. A
maximum growth speed is expected for some value of «.
The mean distance R(¢) is again computed with the in-
tegral R(t) = [ drr G(r,t), the Green’s function G(r,t)
being

g
0= T ey -n @

Figure 14 shows the resulting R(t) obtained for a vary-
ing a, with D = 1 and r/c ranging from 1 to 100. The
maximum growth speed is obtained at around a = 20
and yields R(t) ~ t. A power law trend in R(t) ~ %3 is
also observed for values of & around 100. The results are
found to depend weakly on the dimension D of the fault
network. While this model can somewhat reproduce a
scaling erowth of the mean distance R(#). the fact that
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these scaling regimes strongly depend on a and also
that only the R(t) ~ t°? trend is anywhere close to
the typical growths observed for real systems, implies
that this model would need to be modified in order to
yield robust anomalous postseismic activity diffusions.
In particular, the existence of the typical length r. does
not seem to be directly inferrable from seismicity data,
which typically show scale-invariant clustering of earth-
quakes at this type of scale.

5. Loss of Information and
Predictability of Seismicity Systems

The reported diffusions are equivalent to a loss of in-
formation on the location of the past main event, as
time increases after the occurrence of this main event.
Hence information on the future state of the system
based on the known locations and times of occurrence
of past earthquakes and exploiting two-point statistics
becomes less and less spatially constrained as we want
to predict further into the future, with a resolution scale
growing as tff on average. Thus one cannot expect
to make significant forecasts of the future state of the
system at spatial scales smaller than this resolution.
This existence of scale-dependent predictability limits
for seismicity systems is indeed expected for space-time
scale invariant stochastic systems possessing an infinite
number of degrees of freedom (see Marsan et al. [1996]
and Aurell et al. [1996] for a similar discussion in the
context of turbulence). A direct implication is that in
the phase space the departure between the trajectory
of the system with that of an initially perturbed ver-
sion is algebraic, so that the perturbation spreads from
the initial error scale £y to a given larger-scale £ after,
on average, a delay t ~ (f/Zo)l/H. The intermittency
of the diffusion processes, measured by the nonlinearity
of the structure function, accounts for the existence of
a hierarchy of space-time clusters of afterevents at all
scales; space-time multifractality therefore implies that
the actual departure between initially very close sys-
tems in the phase space can strongly fluctuate around
the average behavior, that is, the perturbation can be
much slower or much faster in spreading to scales larger
than the initial error scale, and one needs to resort to
a cascading, randomly variable hierarchy of Lyapunov
exponents, a structure going well beyond classical de-
terministic chaotic models with only a few degrees of
freedom. As a first approximation, the diffusion of tem-
porally correlated postseismic activity can be directly
incorporated into probabilistic seismic hazard assess-
ment methods, for example, by providing an average,
isotropic growth of the influence zone of a given earth-
quake. One can thus estimate a seismic hazard map for
strong aftershocks following a major shock, for example,
by calculating the scalar Coulomb criterion, and have it
dynamically evolving through (1) a global dissipation of
the activity in ~ ¢~? and (2) a dilatation of the spatial
pattern in ~ tf.
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Finally, let us strengthen the analogy existing be-
tween seismicity and turbulence, as discussed by Ka-
gan [1992]. As evoked above, space-time multiscaling
is also present in turbulence [Marsan et al., 1996]; de-
noting by dvg the velocity increment at scale £, ¢, the
flux of energy cascading through ¢, and 7, the lifetime
of an eddy of size ¢, one has that §v, ~ £/7, and fol-
lowing Kolmogorov’s [1962] relation dv; ~ 62/351/3
have that ¢ ~ Tf/ze;/s. This is on average equivalent
to a diffusion in R(t) ~ ¢3/2, and the actual multiscal-
ing is obtained from the multifractality of the energy
flux (ef) ~ 0~K(9) | yielding, with our notations of sec-
tion 3, that R(@(t) ~ (@) with ¢(¢) = 3¢/2 — K(g/2).
Contrary to seismicity, the diffusion associated with tur-
bulence is superdiffusive; more remarkably, the velocity
dvg increases with £, while, following our results, the ve-
locities implied by seismic diffusion processes decrease
rapidly with increasing ¢, i.e., v, ~ (1=VH ~ (=% for
a typical H = 0.2. The classical phenomenological un-
derstanding of turbulence [Richardson, 1922] is one of
a cascade of structures (eddies) at all scales, with life-
times scaling on average as 7 ~ (*/3_ Intermittency of
turbulence implies that such lifetimes fluctuate strongly
around this average. In the case of seismicity, still tak-
ing H = 0.2, the equivalent cascade would correspond
to a hierarchy of structures (clusters of earthquakes)
with associated average lifetimes 7, ~ ¢1/H ~ (5,

, we

6. Conclusions

The dynamical behavior of a seismicity system is
controlled by the interactions existing between earth-
quakes, for example, by advancing the time of occur-
rence of other, impeding earthquakes. By analyzing the
correlations, both in space and in time, within an earth-
quake population, one can therefore measure how these
interactions vary, on average, with the distance and
the delay separating two earthquakes. Scaling in space
(fractal /multifractal distributions of focii and faults)
and in time (Omori’s law and the temporal clustering of
large magnitude events) implies that these interactions
do not "see” any characteristic space or time scale, at
least within wide enough scaling ranges.

Here we have examined how these two symmetries,
scaling in space and scaling in time, relate to each other.
A global space-time scaling symmetry is proposed to
characterize the dynamics of seismicity systems and can
be empirically probed by measuring the rate of dilata-
tion of the ”influence” zone of any earthquake in such
systems, as indicated by the diffusion of temporally cor-
related postseismic activity, away from the earthquake
focus. The characteristics of this diffusion process are
analyzed; in particular, the diffusion exponent H mea-
suring the mean scaling anisotropy between space and
time, its variability which is manifested by the intermit-
tency of the process, and its dependence on AM, the
magnitude difference between the two earthquakes, are
estimated. Three systems are studied, and all exhibit
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in a very robust way anomalous (H < 1/2) average dif-
fusions for the available AM ranges. The variability of
this process from one system to another is mainly seen
by the variations in H; a better understanding of the
dependence of the diffusion with the physical character-
istics of the system (e.g., tectonic setting, size, rheology,
etc.) should help in explaining this variability.

Appendix A: Space-Time Scaling
Symmetry of C(r,t) and G(r,?)

Here we derive the full space-time scaling symmetry
characterizing C(r,t) and the Green’s function G(r,t)
defined in section 3.1, constrained by the two conditions
of (1) fractal temporal clustering C(r,t) ~ t~? and (2)
diffusion R(t) ~ t. C(r,t) and G(r,t) are assumed
to be scale-invariant in space and time, that is, there
exists a scale-changing operator Th(z,t) = (\%z, \%)
for all A > 0 such that C(Tx\(r,t)) = AC(r,t) and
G(Tx(r,t)) = WG(r,t). The two conditions given above
can be rewritten as (1) the projection fdrd C(r,t)
scales as ¢ and (2) the anisotropy in scale invariance
between space and time is given by a/b = H. With-
out any loss of generality, we can take b = 1; thus

Ty(z,t) = (M, At). The first condition then leads
to

/dr C(r M) = /dr’ MO A (A1)
with the change of variable r = A7 and thus

/dr Clr,at) = MT# /dr’ Cc(r')t); (A2)

therefore H + 4 = —p = pu = —p — H. The general
solution of C(r,t) is of the form

C(Ta(r,t)) = AP7H CO(r)1) (A3)
1000 -2
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Figure 15. Logarithm of the Green’s function G(r,?t)
for r between 0 and 1 km and ¢ between 0 and 20.7
hours, for the Creighton Mine data, along with an ar-
bitrary set of six r ~ tf curves invariant under the
space-time scale changing operator Ty, with H = 0.1
for this system as computed in section 3.3.
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with T (r,t) = (A, At). By definition of the Green’s
function G(r,t), we have

AP H C(r,t)
fdr’ (r, At)’

and as we saw earlier (equation (A2)), the denominator
scales as [dr' C(r', M) = AP [dr' C(r',t), so that

G(T,\ r, t (A4)

G(T\(r, 1)) = A H G(r,t). (A5)

The Green’s function therefore only captures the changes
in the correlation structure due to the diffusion and, by
construction, is not sensitive to the temporal dissipation

of seismic activity.
T

Note that the spatial integral G(r,t) = [ dr’ G(r',1)

0
of G(r,t) up to r is found to scale as
AHp
G(Ta(r,t)) = /dr’ G(r', At) (A6)
0
G(Tx(r1)) = / dr”" X GO ), (A7)
0
hence
G(Ta(r,1)) = G(r,1) (A8)
i.e., G(r,t) is the invariant associated with the scale

symmetry T (Noether’s theorem). Figure 15 shows
G(r,t) for the Creighton Mine data, along with curves
invariant under Ty with H = 0.1, as found in section
3.3 and figure 7 for these data.
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