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Abstract

Results of finite-amplitude convection experiments in a rotating spherical shell are presented. Water (Prandtl numberP = 7)
and liquid gallium (P = 0.027) have been used as working fluids. In both liquids, convective velocities could be measured in
the equatorial plane using an ultrasonic Doppler velocimetry technique. The parameter space has been systematically explored,
for values of the Ekman and Rayleigh numbersE > 7 × 10−7 andRa< 5 × 109. Both measured convective velocity and
zonal circulation are much higher in liquid gallium than in water. A scaling analysis is formulated, which shows that higher
convective velocities are an effect of the low Prandtl number in liquid gallium, and that higher zonal flows can be explained
through a Reynolds stress mechanism. The Reynolds numbers in gallium (Re= 250–2000) are higher indeed than in water
(Re= 25–250). An inertial regime sets up at highRe, in which kinetic energy does not dissipate at the scale of convective
eddies and is transferred up to the scale of the container, where it is dissipated through Ekman friction of zonal flow. This
upwards energy transfer can be seen as an effect of quasigeostrophic (QG) turbulence. Applying the scaling relations to an
hypothetic non-magnetic flow in the Earth’s core yields Reynolds numbers of the order of 108, in fair agreement with values
required for dynamo action, convective velocities of order 10−3 m/s, zonal flow of similar amplitude, and eddy scales as low
as 10 km. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Convection; Geodynamo; Core; Ultrasonic; Velocimetry

1. Introduction

It is widely believed that the self-sustained dynamo
of the Earth draws its energy from thermal (and solu-
tal) convection in its liquid metallic outer core. The
dynamo mechanism requires that the advection of
the magnetic field by the convective flow be much
larger than its diffusion. This means that the magnetic
Reynolds numberRem = UD/λ (whereU is a typi-
cal velocity,D the thickness of the liquid core, and
λ is the magnetic diffusivity, see Table 1) has to be
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larger than about 100. In liquid metals, the ratio of
magnetic diffusivity over kinematic viscosityν is of
the order of 106, so that the usual Reynolds number
Re = UD/ν is expected to be of the order of 108.
The convective flow responsible for the dynamo is,
therefore, probably in a very turbulent state. However,
it is also very much constrained by the influence of
rotation, since the Coriolis force is one of the dom-
inant forces in the system. This has given birth to
several fundamental investigations of the properties
of convection in a rapidly rotating sphere.

This type of convection is characterized by a small
Ekman numberE = ν/ΩD2, whereΩ is the rate
of rotation of the Earth, see Table 2. The Rayleigh
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Table 1
Physical parameters and geometric constants of the experiment

Parameter Definition Water at 20◦C Liquid gallium at 30◦C Earth’s core

ρ (kg/m3) Mean density 1000 6095a ≈104

ν (m2/s) Kinematic viscosity 10−6 2.95× 10−7a ≈7 × 10−6c

α (K−1) Thermal expansivity 2× 10−4 1.26× 10−4b ≈10−5c

k (J/s m K) Thermal conductivity 0.59 30b ≈30c

Cp (J/kg K) Specific heat 4180 381.5a ≈800c

κ (m2/s) Thermal diffusivity 1.4 × 10−7 1.3 × 10−5 ≈4 × 10−6

σ (1/�m) Electrical conductivity – 3.87× 106a ≈106c

λ (m2/s) Magnetic diffusivity – 0.21 ≈1
re (m) Outer radius 0.11 0.11 3.48× 106

ri (m) Inner radius 0.04 0.04 1.22× 106

D (m) Shell gap 0.07 0.07 2.26× 106

Ω (rad/s) Rotation rate 20–80 40–80 7.29× 10−5

gD (m/s2) Gravity at radiusD 30–480 90–480 7
�T (K) Temperature difference 0–25 0–30 ?

a Sabot and Lauvray (1995).
b Okada and Ozoe (1992).
c Estimated from properties of liquid iron at melting point given in Stacey (1992).

number Ra measures the vigor of convection. The
dominence of rotation yields two major effects: con-
vective cells take the shape of vortex columns aligned
with the axis of rotation as a consequence of the
Taylor–Proudman constraint, and the onset of the
convective instability occurs for a larger Rayleigh
number than in the non-rotating case, demonstrating
the stabilizing effect of rotation in this configuration.
These results were first established from the theoret-
ical analysis of the onset of convection in a rapidly
rotating spherical fluid shell (Roberts, 1968; Busse,
1970). In the asymptotic limitE → 0, these studies
also showed that the width of the columns scales as
E1/3, with dissipation occuring in the bulk of the liq-
uid, and the critical Rayleigh numberRac increases
asE−4/3. The analysis of Busse for an annulus with
tilted upper and lower boundaries highlighted the role
of the tilt in controling both the above scalings and
the azimuthal structure of the cells: as liquid columns

Table 2
Dimensionless parameters for the study of thermal convectiona

Number Name Water experiment Gallium experiment Earth’s core

Ra= α �T gDD
3/κν Rayleigh number 3Rac–80Rac Rac–10Rac ?

E = ν/ΩD2 Ekman number 10−5 to 10−6 10−6 to 10−7 10−15 to 10−13

P = ν/κ Prandtl number 7 0.022–0.027 0.1–1

a Rac is the critical Rayleigh number.

migrate from the inner boundary of the model to-
wards the outer boundary, they have to contract in the
direction of the rotation axis and elongate in the per-
pendicular directions. Contracting columns acquire a
negative vorticity, while columns moving inwards ac-
quire positive vorticity. This is the basic mechanism
at the origin of Rossby waves, which propagate in the
prograde azimuthal direction. At the onset of convec-
tion, the convective columns are, thus, inclined in the
prograde direction, by an angle that depends on the
curvature of the boundaries.

These theoretical findings have been largely con-
firmed by the pionnering experimental studies of
Busse and co-workers (Busse and Carrigan, 1976a,b;
Carrigan and Busse, 1983; Chamberlain and Carrigan,
1986), and also by the numerical analysis of the on-
set of convection in spherical shells (Zhang, 1992).
However, it became clear that discrepancies existed
between the numerical results and the predictions of
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the local theory of Busse, especially when comparing
the critical Rayleigh number for liquids with a small
Prandtl number (Zhang, 1992). This has to do with
the fact that the preferred lateral dimension of the
columns (of orderE1/3) is small with respect to the
shell thickness. It is only recently, that (Jones et al.,
2000) could solve the problem and propose a fully
consistent asymptotic approach.

The understanding of marginal stability analyses al-
lows to explore the field of finite amplitude convec-
tion, which has been investigated both in numerical
simulations (Sun et al., 1993; Cardin and Olson, 1994;
Ardes etal., 1997; Tilgner and Busse, 1997; Grote
et al., 2000) and in laboratory experiments (Cardin
and Olson, 1992; Cordero, 1993; Sumita and Olson,
2000). Recent numerical models describe a variety
of boundary conditions, and achieve Prandtl numbers
of order 1, fairly low Ekman numbers (E = 10−5),
and Rayleigh numbers up to 50 times critical. Exper-
iments are usually done with water (P = 7), for Ek-
man numbers down to 10−6 and Rayleigh numbers up
to 100 times critical. In all cases, the main character-
istics presented above are retained: columnar vortices
aligned with the axis of rotation, of small lateral extent,
form near the inner sphere and travel around it. How-
ever, non-linear convection also exhibits a number of
distinct features that were revealed by these studies:
Rossby waves turn into quasiperiodic plumes originat-
ing at the inner boundary, still tilted in the prograde
direction. The pattern still drifts, but this is not the con-
sequence of wave propagation anymore, but of a real
zonal circulation that can be strong when compared
to convective velocity. A transition to chaotic (in the
sense of unpredictable, highly time dependent, statis-
tically stationary) regimes has been found forRa/Rac
as low as 10 when using fluids with a Prandtl number
around 1.

In an effort to mimic the effect of very small Ekman
numbers, Grote et al. (2000) examined the case of a
stress-free outer sphere. Very large zonal velocities
were observed, which yield to intermittency as the
zonal flow tends to wipe out the convective structures
from which it draws its strength. It would be interest-
ing to see if this behavior is really characteristic of low
Ekman number convection even when dissipation oc-
curs in the boundary layers rather than in the interior
of the fluid. This appears to be a difficult challenge
for numerical modeling, since it is generally accepted

that the computer power needed to resolve non-linear
effects such as turbulence grows with the cube of the
highest frequency to resolve, but in the rotating case it
is even worse, because of the existence of active thin
boundary layers (thickness O(E1/2)). Approxima-
tions have been worked out to extend the parameter
range, among which the use of hyperdiffusivities
(Glatzmaier and Roberts, 1995), and a QG model
to make the problem two-dimensional (Cardin and
Olson, 1994). This latter approach is particularly
promising, but as we shall see later, care must be taken
to model the friction in the boundary layer located near
the outer boundary of the model in an appropriate way.

The lowest Ekman numbers have been reached in
laboratory experiments. For fully developped convec-
tion, vortices are found to occupy a large part of the
spherical shell. Convective plumes originate from both
the inner and the outer boundaries. Sumita and Olson
(2000) observed a sizeable retrograde zonal velocity,
and showed, in the continuation of the work by Cardin
and Olson (1994), that it could be explained with a
simple model of Reynolds stresses, implying that in-
ertial effects were present.

In any case, the extrapolation of the results avail-
able so far to core conditions requires sound scaling
relationships. Only a few studies have addressed
this question (Cardin and Olson, 1994; Zhang and
Gubbins, 2000; Jones, 2000). To be reliable, these
relationships have to be derived in the proper regime.
However, it appears that the Reynolds number in
these studies is never larger than about 100, meaning
that viscosity remains an important ingredient in the
interior of the shell, in contrast to what is expected
in the core. This problem is the main motivation for
our study. We have performed laboratory convection
experiments in a rapidly rotating sphere. In contrast
to previous studies, which focused on the charac-
terization of the convective structures using optical
visualization methods and local temperature records,
we obtain quantitative velocity measurements using
a Doppler ultrasonic technique. Both radial and zonal
velocity profiles have been measured, and we have
determined how the retrieved characteristic veloci-
ties scale with the controlling parametersE andRa.
However, the main originality of our study is the use
of two different working liquids: water (P = 7) and
gallium (P = 0.027). Larger inertial effects are ex-
pected for gallium because of its low Prandtl number.
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Indeed, the measured radial velocitiesur indicate that
the maximum Reynolds number attained is of the or-
der of 250 for water and 2000 for gallium. A striking
observation is that zonal velocities are much larger in
gallium than in water. Indeed, the ratiouθ/ur, where
uθ is the zonal velocity, can exceed two in the gallium
experiments whereas it remains lower than 0.7 in the
water experiments. These two observations suggest
that an inertial regime has been reached in gallium.
We derive scaling relationships for this regime and
show that they fit our measurements. In particular, we
show that the large zonal velocities measured for gal-
lium result from a balance between Reynolds stresses
in the interior of the shell and viscous stresses in the
Ekman layers of the outer boundary.

We believe that the scaling relationships we obtain
permit a better extrapolation to core conditions. Of
course, the presence of a magnetic field in the core is
likely to affect the force balance to a considerable ex-
tent (Chandrasekhar, 1961; Brito et al., 1995; Aurnou
and Olson, 2001), but we think that our results with-
out a magnetic field are an important step towards a
better understanding of the geodynamo.

In Section 2, we describe the experimental set-up. In
Section 3, we determine numerically the critical val-
ues and discuss the bidimensionality of the flow. In
Section 4, we present the velocity profiles for water
and gallium, discuss their properties and show how
we extract a set of scalar data to be used in the scaling
analysis. The evolution of these data as a function of
the control parametersE, Ra/Rac andP is exposed in
Section 5. In Section 6, we propose a scaling model,
which is found to provide a good fit to the data. We
discuss the implications of our results in Section 7 and
propose an extrapolation to the core.

2. Experimental set-up

The set-up (Fig. 1 and Table 1) is a traditional
centrifugal gravity experimental device, as pionneered
by Busse and Carrigan (1976b): a sphere of radius
110 mm, filled with either water or gallium, can be
spun up to speeds of order 1000 rpm by a 1.4 kW
brushless motor, with a stability better than 0.1%. The
sphere is transversed by a cylinder of radius 40 mm,
coaxial with the rotation axis. The aspect ratio between
boundaries is, therefore, 0.36.

The inner cylinder is made of copper, with the outer
3 mm replaced by polyethylene everywhere except
for the 110 mm high central part, in order to simulate
a “central” heat flux. Two distinct spheres have been
built: a lexan sphere for use with water, and a copper
sphere for use with gallium. This choice has been
guided by several requirements: one is to perform
optical visualizations in water (see Fig. 3), one other
is to use an excellent heat conductor with gallium,
and the third is to obtain a good transmission of ul-
trasonic waves, taking care of the acoustic impedance
adaptation.

The inner temperature (T1) is fixed by circulating
cold water in six channels within the inner cylinder.
The cooling power of the device is 1 kW. Two ro-
tary joint units allow the cold water to flow from the
Earth-bound frame into the rotating frame. The whole
device is installed in a thermostatic chamber, whose
function is to set the hot external temperature (T2).
With gallium we had to complete the set-up with a
4 kW electric heater wired around the copper sphere.
The heat transfer from the surface of the sphere is in-
deed not large enough to absorb the large quantity of
heat conducted or advected in the liquid metal. The
thermostatic chamber then helps maintaining gallium
above its solidification point (29.8◦C).

The imposed temperature gradient is opposite to
that of the Earth’s core, because the centrifugal grav-
ity is opposite to the radial gravity of a self-gravitating
body. Doing so, one obtains destabilizing buoyancy
forces. The difference between the cylindrical sym-
metry of gravity in the experiment versus spherical
symmetry for the Earth has little importance, since in
the asymptotic QG state, only the component of grav-
ity perpendicular to the rotation axis plays a dynamic
role, the other component being balanced by a pres-
sure gradient (Busse and Carrigan, 1976b; Glatzmaier
and Olson, 1993).

Electric signals are passed through slip rings. A
set of 10 analogic amplifiers is mounted in the rotat-
ing frame, to allow weak signals from thermocouples
to be amplified before passing through the slip rings.
Filling and emptying operations of the fluid shell are
done under argon atmosphere when using gallium, to
prevent oxydation.

The device has been instrumented for thermal
measurements: two platinum thermo-resistive probes
record the temperatures of the inner cylinder and
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Fig. 1. Sketch of the convection device.

outer sphere. Typical temperature variations at these
boundaries are found to be less than 0.2 K during a
run. Thermocouples (iron/constantan in water, and
platinum/constantan in gallium, the liquid metal pro-
viding electrical contact) record temperature fluc-
tuations (less than 2 K) at the surface of the inner
cylinder, 25 mm above and below the equator.

The originality of our experiment is the implemen-
tation of ultrasonic pulsed Doppler velocimetry. This
technique relies on echoes backscattered by small in-
homogeneities of the fluid. From the time delay and
Doppler shift of echoes can be retrieved the reflector’s
position and component of velocity along the ultra-
sonic beam. One, thus, obtains profiles of flow veloc-
ity (Takeda, 1986). Brito et al. (in press) validated the
technique for use with water and gallium, measuring

zonal velocities in a prescribed vortex flow. We use the
DOP 1000 velocimeter of Signal Processing S.A. with
4 MHz cylindrical ultrasonic transducers (TR30405)
of length 8 mm and diameter 8 mm. The main chal-
lenge is to measure convective velocities (of a few
mm/s) in a sphere that is rotating at several 100 of rev-
olutions/min. This is achieved by mounting the trans-
ducers in the rotating frame: they are embedded into
the outer sphere in one-end machined holes, at equato-
rial position, and the electric signal is passed through
the slip rings. This set-up gave excellent results, the
main limitation being the contamination of the signals
with motor-related electric noise as they pass through
the slip rings.

The top view of Fig. 2 displays the possible loca-
tions of the transducers. The radial beam allows us to
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Fig. 2. Top view of the equatorial plane, with locations of transducers.

retrieve the radial velocity field as a function of ra-
dius and time. The lateral beam enters the sphere at
a normal angle of 40◦ and is refracted to normal an-
gles of 24.5 and 21.5◦, respectively by the lexan/water
and copper/gallium interface. The closest approach of
the beam to the inner cylinder is 5 mm in water and
1 mm in gallium. This profile contains a combination
of radial and zonal velocities, from which the latter
can be extracted (see Appendix A for exact values of
angles and procedure for the retrieval of mean zonal
flow).

Another difficulty is the seeding of the liquids in
order to obtain sufficient echoes. Neutral buoyancy is
crucial, because of the large centrifugal forces present
in the rotating frame. In water, the best results were
obtained with pine pollen particles of typical dry size
20�m. These particles fill with water and become

neutrally buoyant (Andreotti, 2000, personal commu-
nication). In gallium, we used Zirconium Boride with
density 6.17, close to that of gallium, and a size of
order 50�m. It is also likely that gallium oxide par-
ticles act as inhomogeneities. In the gallium experi-
ments, boundaries such as the copper part of the inner
cylinder and the copper sphere were coated with a thin
cataphoretic film, in order to ensure wet contact with
gallium, and easy removal of oxides that scatter the
ultrasonic beam (Brito et al., in press).

Note that the use of ultrasonic Doppler velocime-
try was dictated by the need to measure velocities in
opaque liquid gallium. However, even in transparent
water, where visualization is possible, the quantitative
information it provides is valuable for the determi-
nation of scaling laws as presented in this article.
By using a set of several neighbouring multiplexed
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transducers, it is also possible to investigate the local
velocity structure of the convective flow.

3. Basic properties of the flow

In this section, we discuss properties of the flow
which are needed for the forthcoming analysis. This
includes a determination of the threshold of convec-
tion, a check of the two-dimensional character of the
flow, with an assessment of the role of the thermal
wind.

3.1. Onset of convection

Our experimental set-up was built to study fully
developed convection. It is not well suited for the
investigation of the onset of convection. In order
to scale our measurements, we need to determine
the critical Rayleigh number. Therefore, numerical
marginal stability simulations have been performed,
with a three-dimensional code (Dormy et al., 1998),
validated through the recent Dynamo Benchmark ini-
tiative currently in progress (Christensen et al., 2001).
We have solved the eigenvalue problem by iteration
of the linear part of the code. The model contains a
spherical inner core with 0.35 aspect ratio, no-slip and
fixed temperature boundary conditions, radial gravity.
Solutions have been computed for two values of the
Prandtl number: 7 (water) and 0.027 (liquid gallium).
Ekman numbers as low as 4.9× 10−6 and 4.9× 10−7

have been reached forP = 7 and 0.027, respectively.
In order to reach the experimental Ekman number
values, some extrapolation has been done forP = 7,
using the asymptotic laws.

Table 3
Critical values from numerical simulationsa

P E Ω (rpm) Rac �T (K) ωc τc (s) mc

7 9.7 × 10−6 200 9.6 × 106 0.65 1.3 × 102 246 17
7 4.8 × 10−6 400 2.3 × 107 0.39 2.1 × 102 145 22
7∗ 3.3 × 10−6 600 4× 107 0.30 4.3 × 102 114.2 25
7∗ 2.4 × 10−6 800 5.8 × 107 0.25 5.2 × 102 92.3 28
0.027 1.5 × 10−6 400 1.2 × 107 8.5 1.2 × 104 8.6 15
0.027 9.7 × 10−7 600 1.9 × 107 6.0 1.7 × 104 6.3 17
0.027 7.3 × 10−7 800 2.7 × 107 4.8 2.0 × 104 5.2 19

a Aasterisk (∗) denotes extrapolated data.

Table 3 summarizes the numerical results. Para-
meterΩ is the dimensional rotation rate,�T the
dimensional temperature difference,mc the critical
azimuthal wavenumber,ωc the non-dimensional crit-
ical pulsation of the Rossby wave (the time scale
is D2/ν), and τc its dimensional period. Note that
all the numerical experiments predict that flow is
two-dimensional indeed in these low-Ekman number
situations. AtE = 9.7 × 10−6 in water we have
experimentally bracketed the critical temperature dif-
ference using temperature signals on thermocouple
probes: 0.8 K< �Tc < 1.2 K, which is somewhat
higher than the numerical value. The discrepancy
probably has to do with the difference in geometry of
the inner boundary, and with the presence of a ther-
mal wind, unless the sensitivity of the method is not
good enough to access the threshold of convection.
Critical values used in this manuscript are always
those derived from the numerical simulations.

3.2. Vertical structure of the flow

All numerical simulations of the convection onset
have shown that because of the Proudman–Taylor
constraint, which governs the low-Ekman number
situation we consider, the convective vortices are
columns aligned with the axis of rotation. However,
z-invariance may be destroyed by the increasing
buoyancy forces at higherRa/Rac, and by thermal
wind, which is not present in the numerical simula-
tions, but plays a role in the experiment, due to the
fact that the gravity equipotentials are not parallel to
the isothermal surfaces (Busse, 1970).

Vertical invariance of the flow has been checked
optically in all experiments performed in water, as
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Fig. 3. Top: shear structures visualized in water using Kalliroscope flakes, in a plane containing the rotation axis, close to the inner cylinder.
Ekman number isE = 9.7× 10−6, Rayleigh number is 4.2 times critical. Bottom: vertical correlations between two thermocouple probes
located 5 cm away on the inner cylinder, done in gallium. Ekman number isE = 7.3 × 10−7, Rayleigh number is five times critical.

illustrated by the photograph of Fig. 3. Vertical white
lines are due to the alignment of Kalliroscope flakes
oriented by the convective columns. In gallium, this
type of direct visualization is not possible. We, there-
fore, rely on the temperature measurements displayed
in Fig. 3. The 200 s long records are from two ther-
mocouples located at the surface of the inner cylinder,
25 mm above and below the equator in the vertical
z-direction. The two signals are strongly correlated
over a very long timescale, indicating that tempera-
ture is advected by a velocity field with low vertical
shear. Temperature measurements in water yield the
same behavior. Therefore, we are confident that all
the velocity profiles measured in the equatorial plane
by ultrasonic Doppler velocimetry are representative
of the full velocity field, apart from boundary layers.

Next, we turn to thermal wind. The zonal velocity
induced by thermal windu is governed by the follow-
ing equation (Busse, 1970):

2(Ω · ∇)u = α∇T × gcen

where gcen = Ω2r is the centrifugal gravity field.
Integrating along a vertical line at constantr yields,
for the equatorial value of thermal wind:

u = −α �Tr �r
2

eθ

whereeθ is the zonal unit vector and�Tr the temper-
ature difference between the spherical external bound-
ary and the equator at radiusr, apart from viscous
boundary layers. Thermal wind is retrograde if the
outer sphere is hotter than the inner cylinder, i.e. in
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the case of an adverse (destabilizing, convective) tem-
perature gradient. An estimate in water usingα =
2 × 10−4 K−1 (Table 2),�Tr = 15 K,Ω = 400 rpm,
andr = 5 cm yields a value ofu = 3.2 mm/s. With a
15 K adverse temperature difference imposed between
the boundaries, we have measured zonal velocities us-
ing the lateral Doppler probe and found a retrograde
flow of only 1 mm/s atr = 5 cm. Moreover, ther-
mal wind should induce vertical shear of convection
columns, and this has not been observed.

Another estimate in gallium usingα = 1.26 ×
10−4 K−1, �Tr = 15 K,Ω = 400 rpm, andr = 5 cm
yields a value ofu = 2 mm/s. Thermal wind should
be smaller indeed in gallium, due to a smaller ther-
mal expansion coefficient. With an adverse tempera-
ture gradient of 15 K, we have measured a retrograde
flow of 2.7 mm/s atr = 5 cm, which is, in contrast,
higher than the water value. To estimate the thermal
wind part of this flow, we have performed the same
experiment, with a reverse (stable) temperature gradi-
ent of 15 K, and therefore, no convection. This yields
a prograde flow of only 1 mm/s.

In our set-up, thermal wind tends to be smaller
than theoretical estimates using the full temperature
difference. We, therefore, conclude that isothermal
surfaces are more cylindrical than expected. This can
be explained by the presence of the inner cylinder.
Note that convection, when present, also tends to give
a cylindrical shape to isothermal surfaces. Moreover,
in the gallium case, thermal wind in the reverse sit-
uation is only one third of zonal circulation in the
adverse situation. From this we conclude that thermal
wind is not the predominant driving mechanism for
the zonal circulations we observe.

4. Velocity profiles

Results reported in this section summarize the
velocity measurements obtained in sequence experi-
ments made at various Ekman and Rayleigh numbers,
in both water and gallium. Ekman numbers we have
reached in water areE = 9.7× 10−6 (motor speed of
200 rpm) down toE = 2.4 × 10−6 (800 rpm), and in
liquid gallium they areE = 1.5× 10−6 (motor speed
of 400 rpm) down toE = 7.3 × 10−7 (800 rpm).

Experimental radial velocity functions have been
mapped in a time-depth color-contoured representa-

tion (see Fig. 4).X-axis is time in s,Y -axis is distance
in mm (the sphere is atY = 0 mm and the inner cylin-
der atY = 70 mm). Velocity is expressed in mm/s.
Color red stands for a velocity flowing away from the
probe, i.e towards the inner cylinder. The transducer
sees a radial velocity function changing with time, as-
sumed to be associated with vortices in the equatorial
plane, drifting across the beamline under the influence
of either wave propagation or zonal flow as shown in
the sketch in Fig. 5. For a stationary or periodic flow,
the time axis could, therefore, be seen as a (deformed)
lateral angle axis. Ultrasonic Doppler velocimetry
is not perfect near boundaries. Boundary layers are
not resolved, and multiple echoes due to an acoustic
impedance contrast between sphere and fluid satu-
rate part of the signal, which is lost near the sphere.
This is especially true with the gallium experiment in
Fig. 4d, where the first 25 mm of the profile is lost.

Fig. 4a shows a pattern obtained forRa = 4.2Rac
in water. The experiment corresponds to the photog-
raphy of Fig. 3. The velocity amplitude is very small
(<1 mm/s) and it is difficult to extract the velocity sig-
nal from noise for lowerRanumber. Convection tends
to be stronger in the vicinity of the inner cylinder. At
any depth, we can appreciate a time oscillation be-
tween positive and negative velocity associated with
the presence of thermal vorticesİts typical period (be-
tween 150 and 200 s) is close to 246 s, the period pre-
dicted for the Rossby wave at the onset of convection
(see Table 3). Moreover, we observe tilted bands ap-
proaching the inner cylinder when time goes on. This
tilt could be explained by the prograde propagation of
vortices spiralled in the prograde direction. For exper-
iment in Fig. 4a, in contrast a low retrograde mean
zonal flow of 0.1 mm/s has been measured using the
lateral Doppler probe. These observations suggest that
the Doppler diagram in Fig. 4a should be interpreted
mostly in terms of the propagation of a Rossby wave.
The departure from criticality induces loss of period-
icity in the wave (vacillating, superposition).

In Fig. 4b, Ra is higher up to 22.2 times critical
while the Ekman number has been kept constant. The
pattern exhibits several significant changes. Periodic-
ity is now completely lost, characterictic time scales
are shorter (<50 s), tilts are different, typical velocities
are larger, the distribution of radial sizes has broad-
ened. We have clearly left the pseudo-periodic state of
thermal Rossby waves to jump into a fully developed
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Fig. 4. Time-depth radial velocity patterns. Velocities are expressed in mm/s. (a) Performed in water, withRa/Rac = 4.2, E = 9.7× 10−6.
(b) Performed in water, withRa/Rac = 22.2, E = 9.7×10−6. (c) Performed in water, withRa/Rac = 26.6, E = 4.8×10−6. (d) Performed
in liquid gallium, with Ra/Rac = 3.2, E = 1.5 × 10−6.
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Fig. 5. Explanation sketch for time–depth velocity maps.

state of convection. In this case, a stronger retrograde
zonal flow of 0.5 mm/s has been measured, using the
lateral Doppler probe. The importance of zonal advec-
tion has, therefore, grown from case in Fig. 4a to case
in Fig. 4b. In Fig. 4c, the Ekman number is lowered

Fig. 6. Mean properties for the flow extracted from patterns 3 and 4. Broken line in gallium plots of this figure and Fig. 7 highlights the
region where the signal is saturated by multiple echoes due to the impedance contrast between copper and liquid gallium.

while Ra/Rac remains comparable. The state of con-
vection remains the same, but velocities, sizes and du-
rations have changed. The evolution of these properties
with the control parameters is discussed in Section 5.

Pattern in Fig. 4d presents an experiment performed
in liquid gallium, Ra/Rac is 3.2, a value which is
similar to the conditions of pattern in Fig. 4a, and
Ekman number is 1.5 × 10−6. Vortices attached to
the inner cylinder have grown in radial size. Bands
are less tilted, and this suggests that the convective
structures are more radial. In that case, the zonal
flow (5 mm/s) is very large and we cannot neglect
its influence on the time analysis. The lateral size of
the columns is presumably larger than in the water
case. Anyhow, the gallium experiments never show
quasiperiodic flow like in water (pattern in Fig. 4a)
even for the lowest ratioRa/Rac. We infer that this is
the main effect of the decrease of the Prandtl number;
the large amplitudes of the velocities lead the system
to turbulence just above the onset of convection.

The local organization of the developed convective
flow seems rather intricate on diagrams in Fig. 4a–d,
and we, therefore, first concentrate on the study of
its time averaged mean properties. For the radial ve-
locity field of experiments in Fig. 4c and d, we plot
(upper plots of Fig. 6) the time-averaged standard
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deviation of velocityũr against radius (see Appendix
A for definitions of averaging operators used in this
study). The error bars account for the reproducibility
of measurements, and for uncertainties introduced by
the centrifugation of seeding particles.

At a given radiusr, we also study the distribution
δr (r) defined as

δr (r) =

(r ′
i − ri),1< i < N,


ũr (r

′
i , ti ) = 0

ũr (ri , ti ) = 0

r ′
i > r > ri

∀r ∈]ri , r ′
i [, ũr (r) �= 0

.

N is the total number of profiles acquired during a run
(see Appendix A) andti the time of profilei. δr is,
therefore, the distribution of radial cell sizes around
r. At any given depth, the histogram ofδr is built.
Fig. 14 of the appendix shows an example of such
an histogram. The lower plots of Fig. 6 represent the
meanδr of δr as a function ofr. The error bar is the
standard deviatioñδr of δr , and it accounts for the
variety of cell sizes present around a given radius.

Fig. 6 shows that when convection is developed,
the instability extends throughout the space between
boundaries, but most of the energy is located near the
inner cylinder. The flow slows down, and vortex size
decreases, asr increases (see Section 6 for an inter-
pretation). Fig. 7 is a plot of mean zonal velocityuθ
retrieved using the azimutal probe (see Appendix A
for details). Error bars onuθ are of the same origin
as those oñur . Experimental parameters are close to
those of patterns in Fig. 4c and d. The two zonal flows

Fig. 7. Mean zonal flowuθ in water (experiment 5:E = 4.8×10−6, Ra= 31Rac), and gallium (experiment 6:E = 1.5×10−6, Ra= 3.2Rac).

are retrograde near the inner cylinder. In most experi-
ments done with gallium, we could appreciate a weak
prograde zonal flow at larger radius. At even larger ra-
dius in gallium (broken lines in Figs. 6 and 7) energy
peaks due to the impedance contrast between copper
and gallium blind the ultrasonic measurement.

Zonal flow in gallium is comparable to convective
flow, whereas in water it is lower. In the latter case,
the observed radial variations are most probably due
to an incomplete averaging of convective signal, and
therefore, not significant. The gallium profile clearly
shows a maximum velocity close to the inner cylinder,
coincident with the maximum of convective velocity,
and relaxes to zero on the typical size of convection
cells. Non-zero mean zonal flow can be associated
with geostrophic motion along cylinders of constant
r, and with this interpretation, two scales naturally
appear in the flow: the scale of columns (which will
be denoted as convective scale), and the scale of the
container for geostrophic motion.

5. Evolution with control parameters

The radial shape of time averaged mean proper-
ties, seen in the previous section, is a robust feature
of the experiments we have conducted. We can infer
that this shape scales homothetically with control
parameters in the range covered by experiments. We,
therefore, can separate the study of radial dependence
in one hand, and the study of the homothetic scaling
of a particular point of the profiles in the other hand.
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A model for radial dependence will be given in Section
6. In this section, we concentrate on the scaling of
variables picked up at a given radius. We chose the
radiusrmax where the flow is stronger (maximum of
ũr ), to increase the signal to noise ratio.

This way we follow the evolution ofũr (rmax),
−uθ (rmax), and δr (rmax), with error bars as defined
above, with the controlling parametersE, Ra/Rac,
P . We also follow the evolution of the mean time
�t(rmax) elapsed between two zeros of the radial
velocity function, at the given radiusrmax, with error
bars corresponding tõ�t(rmax).

Fig. 8 displays the resulting dataset, as a function
of the departure from criticalityRa/Rac − 1. The hor-
izontal error bars incorporate the fluctuations of the
temperature gradient during the run. The runs with

Fig. 8. Scalar data extracted for scaling. Arrows 1–4 denote data
points corresponding to shown velocity patterns (Fig. 4). Arrows
5 and 6 correspond to zonal flows shown on Fig. 7.

gallium are for the lowerRa/Rac − 1, on the left,
while those for water have higherRa/Rac − 1. The
different symbols are for different Ekman numbers.
The top two graphs give the evolution of the two
components of velocity. For both liquids, velocities
increase with the departure from criticality and also
increase when the Ekman number is decreased. For
a givenRa/Rac − 1, bothũr anduθ are clearly much
higher in gallium than in water. While it is expected
to be zero in a purely viscous regime with no thermal
wind, we always measure a retrograde zonal velocity
at radius rmax. Non-zero retrograde zonal veloci-
ties have been observed experimentally (Sumita and
Olson, 2000), and numerically (Cardin and Olson,
1994). This last study demonstrated that they could be
explained in terms of the Reynolds stresses that result
from non-linear inertial effects. Our quantitative mea-
surements of the average zonal velocity confirm this
observation and show that this effect is much larger
in gallium. Cordero and Busse (1992) also invoked a
retrograde zonal flow to explain temperature measure-
ments in water experiments very close to the threshold
of convection, in a narrow-gap configuration. They
attributed this velocity to thermal wind. We have
seen before that it was certainly not the predominant
driving mechanism for the large zonal velocities we
observe. Moreover, in experiments done in gallium, a
weak prograde zonal flow has been observed at large
radius. This is not compatible with a thermal wind
explanation, since it requires a reverse temperature
gradient to produce prograde zonal circulations.

The next two graphs deal with the dimensions of
the convective cells. We first examine the variation of
the average radial dimensionδr . For water at moder-
ate Rayleigh number, we note thatδr decreases as the
Ekman number decreases. This is the expected behav-
ior, as size scales withE1/3 in the geostrophic viscous
regime that prevails at the onset of convection. How-
ever, we find that for the lowest Ekman numbers in
water, and for experiments in gallium (which provide
the largest radial dimensions), the mean of the cell
size distribution generally increases with the Rayleigh
number. This suggests that the size of the convective
cells is no longer controlled by a geostrophic viscous
balance, but rather depends on non-linear effects that
increase when the Rayleigh number increases.

With our present set-up, we cannot access directly
the dimension of the convective cells in the azimuthal
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Fig. 9. Scalar data (continued).

direction. However, from the spatio-temporal maps of
the preceeding section, we measure the mean time
�t elapsed between two zeros of the radial velocity
function. If a cell of lateral extentδθ drifts across the
line of measurement with an azimuthal velocityuθ ,
it will result in a time signal with 2�t = δθ/uθ . In
water, we observe that�t decreases when eitherE is
decreased orRa increased. For gallium,�t is short
as a consequence of the large zonal velocity. Later
in this article, we will try to single out the variation
of δθ .

From the previous results, we derive the local con-
vective Reynolds number:Rel = ũr δr/ν. Its variation
is plotted in the next graph of Fig. 9. The data show
a regular increase of the local Reynolds number with
Ra/Rac for both water and gallium. The striking ob-
servation is that the Reynolds number is much higher
in the gallium experiments, where it reaches 600, than
in the water experiments, where 80 is the largest value,
despite the fact that the Rayleigh number is much
larger thanRac in this case. This is of course due to
the larger convective velocities observed in gallium,
together with the fact that the kinematic viscosity of
gallium is about three times smaller than that of wa-
ter. If we were to use the thickness of the shell rather
thanδr in the definition of the Reynolds number, we
would reach values of 2000 for gallium and 250 in wa-
ter. Therefore, we expect non-linear effects to be fully
developped in gallium, while they probably compete
with viscous dissipation in water.

Since, we anticipate that zonal velocities are caused
by Reynolds stresses, we expect that they increase as
the Reynolds number increases. This is best seen by
plotting the ratio|uθ/ũr |, which is a dimensionless
quantity, versusRel . The results are shown in the last
graph of Fig. 9. While this ratio is less than 0.7 in the
water experiments, it reaches 2.5 in the gallium ex-
periments, where the Reynolds number is the largest.
The results presented in this section demonstrate the
interest of comparing the properties of convection for
liquids with different Prandtl numbers. The behavior
observed for gallium, which has a low Prandtl num-
ber, with high Reynolds number and large zonal veloc-
ities, strongly suggests that convection is dominated
first by the Coriolis force and second by non-linear in-
ertial terms. In the next section, we perform a scaling
analysis to test this idea.

6. Scaling analysis

In this section, we introduce QG equations and de-
rive scaling relationships for two different regimes: a
viscous one and an inertial one. We then compare the
predictions of these two approaches to the measure-
ments of the previous section.

The fluid shell is described under the Boussinesq
approximation, obeying both Navier–Stokes and heat
equations, made dimensionless usingD as length
scale,D2/ν as time scale,P�T as temperature scale.
A cylindrical frameer , eθ , ez is chosen. The momen-
tum and heat equations are

∂u
∂t

+ (u · ∇)u + 2E−1ez × u

= −E−1∇Π − RarerT + ∇2u. (1)

∂T

∂t
+ (u · ∇)T = P−1∇2T . (2)

Here,u is the fluid velocity,T the temperature,Π is
the pressure (including contribution from the gravity
potential). Gravity grows linearly with the cylindrical
radiusr. Eq. (1) is subject to no-slip boundary con-
ditions, and Eq. (2) satisfies imposed temperatures on
both the inner cylinder and the outer sphere.

Experimental facts strongly suggest that flow is QG:
it is columnar, which means that the order of magni-
tude of inertia, buoyancy and viscosity are small when
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Table 4
Auxiliary dimensionless parameters justifying the QG approxima-
tion in the experimenta

Number Definition Experiment Earth’s core

Bu = αgδT /ΩU Busse <0.1 <10−2

Ro= U/ΩD Rossby <10−2 ≈10−6

a δT is the order of magnitude for local temperature pertur-
bations. Estimates are given for the Earth’s core, using a typical
velocity of 10−4 m/s (Jault et al., 1988).

compared to Coriolis force (balanced by a pressure
gradient). This is confirmed by the quantitative esti-
mates of these ratios, which gives the Rossby, Busse
and Ekman numbers, respectively (see Tables 2 and
4). A non-linear QG model has been derived by Cardin
and Olson (1994), from the local marginal stability
theory of Busse (1970), under the following assump-
tion: dissipation by friction through the Ekman layers
near the outer spherical boundary is neglected. Fields
are then expanded into powers of the Ekman number.
To leading order a geostrophic balance exists between
Coriolis force and the pressure gradient, which implies
that flow is two-dimensional to this order. This equi-
librium alone cannot solve the problem (geostrophic
degeneracy), and to next order the equation governing
the column-averagedz-componentω of vorticity is

dω

dt
− E−1 2

L

dL

dr
u · er = ∇2ω + Ra

∂T

∂θ
, (3)

where

L =
√
r2
e − r2

is half the height of a fluid column, and dL/dr is,
thus, the local slope of the external boundary. Eq. (3)
averages the effect of the Coriolis force using the
non-penetration condition for velocity at sloping
boundaries (Cardin and Olson, 1994). This results in
the “vortex-stretching” term

2

L

dL

dr
u · er .

This term is found to be larger than Ekman-pumping
induced circulation even for fairly low dL/dr. Only
in the case of purely zonal velocities (u · er = 0) will
we need to reintroduce Ekman circulation. This fact
implies that dissipation in the interior of the fluid will
dominate dissipation in boundary layers at the scale

of the convective flow, and justifies the approximation
mentioned above.

Eq. (3) will be re-written in the following man-
ner, which highlights its formal analogy with the
beta-plane equation used in geophysical fluid dynam-
ics (Pedlosky, 1987):

dΛ

dt
= ∇2ω + Ra

∂T

∂θ
, (4)

we defineΛ as the potential vorticity:

Λ = ω − 2

E
lnL.

Let ũ(r) and T̃ (r) be time-averaged standard devia-
tions for the convective velocity and temperature fluc-
tuation, andδ(r) be the mean, time-averaged vortex
size, as functions of the cylindrical radius. In order to
derive scaling relationships, we identify two steps in
the process of the evolution of the vorticity field.

First, the thermal instability produces lateral gradi-
ents of temperature, and this results in the creation of
vorticity. For instance, one rising plume gives birth to
a cyclone on its prograde side, and an anticyclone on
its retrograde side. We, therefore, write

dω

dt
∼ Ra

∂T

∂θ
(5)

The fundamental assumption of this analysis is that
later in time, structures of highRel evolve at constant
potential vorticity. Under the influence of advection
by rising and falling radial currents, they exchange
vorticity with the planetary vorticity field 2 lnL/E:

dΛ

dt
= 0 ⇒ dω

dt
∼ E−1 2

L

dL

dr
u · er (6)

The timescale of these phenomena is the vortex
turnover timet :

t ∼ 1

ω
∼ δ

ũ
(7)

On this timescale, structures of highRel are indeed
immune to viscosity, and therefore, do not lose po-
tential vorticity. This inertial balance, thus, assumes
that under the influence of radial advection (Reynolds
stresses), transfer of energy occurs between the con-
vective scale and the scale of energy dissipation (this
will be made more precise).
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This results in a three-term balance:

(5), (6)and(7) ⇒ ũ2

δ2
∼ RarT̃

δ
∼ E−1 2

L

dL

dr
ũ. (8)

One needs another equation to solve forũ, T̃ andδ. It
is provided by the Nusselt number, which is the ratio
of the surface-integrated total heat fluxQtot over the
conductive heat flux:

Nu = Qtot

Qconv
= 1 + uTP 2.

Since lateral temperature gradients create radial veloc-
ity, we assume that̃u andT̃ are correlated, and there-
fore, we approximateuT by ũT̃ . In the limit of high
departures from criticalityRa/Rac, we write:

Nu ∼ 1 + ũT̃ P 2 ∼ ũT̃ P 2. (9)

Solving (8) and (9) for the three variables yields the
set of inertial scaling relations:

ũ ∼ (r2/5f (r)1/5)

(
RaQ
P 2

)2/5

E1/5

δ ∼ (r1/5f (r)3/5)

(
RaQ
P 2

)1/5

E3/5

T̃ ∼ (r−2/5f (r)−1/5)Nu(RaQP 3)−2/5E−1/5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
f (r) =

(
2

L

dL

dr

)−1

= r2
e − r2

2r
(10)

whereRaQ = Ra Nu is the heat-flux based Rayleigh
number. These relations draw their interest from the
fact that they depend on geophysically well-constrained
parameters. The set of Eq. (10) has been written by
Cardin and Olson (1994), and has been found to be
in qualitative agreement with their experiments. It is
interesting to note that in this inertial scaling, dif-
fusion constantsν and κ do not play a role in the
expressions for̃u and δ (Christensen et al., 2001).
This becomes clear when time is re-scaled using the
container rotation timeΩ−1 instead of the viscous
diffusion time. Let starred variables̃u∗ = ũE (which
is the Rossby number),δ∗ = δ, T̃ ∗ = T̃ be the vari-
ables in the new scaling. There appears a parameter
γ = RaQE3P−2, which is independent of either
diffusion constant. These constants only play a role
in the scaling forT̃ ∗, and the scaling relations write

(dropping ther-dependence):

ũ∗ ∼ γ 2/5

δ∗ ∼ γ 1/5

T̃ ∗PE−1 ∼ γ−2/5

∣∣∣∣∣∣∣∣ γ = αgQtot

ρCpΩ3D4
(11)

We now return to the original definition of the
non-dimensional time, since we will also be interested
in viscous effects. The previous scaling relations have
indeed been derived in the limit of high Reynolds
numbers and high departures from criticality. We
investigate now the case when viscous effects are im-
portant, i.e. lower Reynolds numbers. We expect then
that the conservation of potential vorticity will hold
only on timescales of order of the viscous diffusion
time, and (7) is replaced with

dω

dt
∼ ∇2ω ⇒ t ∼ δ2 (12)

This yields another three-term balance:

(5), (6)and(12)⇒ ũ

δ3
= RarT̃

δ
=E−1 2

L

dL

dr
ũ. (13)

Solving (13) and (9) for the three variables yields the
set of viscous scaling relations:

ũ ∼ (r1/2f (r)1/3)

(
RaQ
P 2

)1/2

E1/3;

δ ∼ (f (r)1/3)E1/3;
T̃ ∼ (r−1/2f (r)−1/3)Nu(RaQP

3)−1/2E−1/3 (14)

The radial dependence of Eqs. (10) and (14) predicts
that velocity and vortex size must decrease at increas-
ing radius, due to the influence of the increasing slope
of the spherical boundary. This is the fundamental ef-
fect of the spherical geometry, and it is in qualitative
agreement with the radial profiles shown on Fig. 6.
We now factor out ther-dependence and turn to the
scaling of variables picked up atrmax.



J. Aubert et al. / Physics of the Earth and Planetary Interiors 128 (2001) 51–74 67

For quantitative validation by laboratory experi-
ments some adaptations towards moderateRa/Rac are
necessary. In that case,Rac has to be substracted from
Ra, since it represents a part of buoyancy unavail-
able for generation of motion. The scaling parameter,
therefore, has to beRa − Rac instead ofRa. The
rest of the analysis above is valid ifNu− 1 replaces
Nu. Moreover, in order to convertRa into RaQ, we
need an estimate ofNu, since it is not measured in
our experiments. The exact relationship is not crucial
however, since variations ofNu− 1 are not dramatic
when compared to those ofRa/Rac − 1. For experi-
ments done in water, Sumita and Olson (2000) have
obtainedNu ∼ (Ra/Rac)

1/2 in the parameter range
we use, a value in agreement with calculations of
Tilgner and Busse (1997) withP = 10. For the water
case we will use this relation. For experiments done
in liquid gallium, since the departure from criticality
is not high, we will use a constant Nusselt number.

Fig. 10 presents the test of a viscous, and inertial
balance on the radial velocity data. While the iner-
tial scaling adequately fits the data for both liquids,

Fig. 10. Reduced radial velocity for gallium (squares) and water (circles) experiments. Top: test of the inertial balance. Solid line in water
corresponds to theoretical dependencey ∼ ((Nu−1)(Ra/Rac−1))2/5 with Nu ∼ (Ra/Rac)

1/2. Solid line in gallium corresponds to dependence
y ∼ (Ra/Rac − 1)2/5. Scaling prefactor is 1. Bottom: test of the viscous balance. Solid line in water isy ∼ ((Nu− 1)(Ra/Rac − 1))1/2,
and in galliumy ∼ (Ra/Rac − 1)1/2. Prefactor is 1.5.

the viscous scaling is accurate only for experiments in
water up to a value ofRa/Rac of order 10, and inac-
curate for experiments in gallium. These conclusions
are confirmed when we scale the mean of the radial
cell size distribution, using the results forδ (Fig. 11).
A viscous scaling adequately describes the evolution
of δr in water, where, once theE dependance has
been removed, no significant increase is observed with
Ra/Rac. Only an inertial scaling can describe the in-
crease ofδr with Ra/Rac in liquid gallium. However,
this test is less significant than the previous one, be-
cause of the broadness of cell size distribution, and the
low dynamics (less than one decade) of its variations.
The evolution of the temperature fluctuations with the
parameters (not shown) is also in good agreement with
the predictions of the inertial model.

At the scale of the convection flow, the QG model
with no dissipation at the spherical external boundary
is, thus, accurate. Kinetic energy created by buoyancy
is partly dissipated in water (inertial and viscous terms
are of the same order of magnitude), and little dissi-
pation takes place in gallium. One efficient dissipative
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Fig. 11. Reduced cell size for gallium (squares) and water (circles) experiments. The viscous scaling is tested for water experiments,
the reduced cell size is, therefore,δr/E1/3. The inertial scaling is tested for gallium experiments, the reduced cell size is, therefore,
δr/(Ra1/5

Q P−2/5E3/5). Solid line in gallium corresponds to dependencey ∼ (Ra/Rac − 1)1/5. Solid line in water isy ∼ 1. Both prefactors
are 10.

mechanism of kinetic energy remains available in this
latter case: zonal flow is not subject to any forced
vertical circulation that prevents friction on the ex-
ternal boundary. We, therefore, suspect that kinetic
energy is transported from the scale of convective
flow to the scale of the container through Reynolds
stresses.

An equation for the time-averaged zonal velocity
uθ can be deduced by averaging theθ -component of
Eq. (A.1):

(u · ∇)uθ + 2E−1ez × u · eθ

= −E−1∇Π · eθ + ∇2uθ .

If we assume ergodicity, which seems to be realized
by zonal flow, and identify the time-average with the
θ -average, then∇Π · eθ identically vanishes. We also
have

2E−1ez × u · eθ = 2E−1ur .

ur can be expressed through the Ekman circulation
formula (Greenspan, 1968):

ur = E1/2

2L
√

n · ez
uθ

wheren is the normal to the spherical boundary. The
time averagedθ -component of Eq. (A.1)) finally gives

(u · ∇)uθ + E−1/2

L
√

n · ez
uθ = ∇2uθ . (15)

Far from the inner cylinder, Ekman friction dominates
dissipation in the interior of the fluid and equilibrates
with Reynolds stresses. Closer to the inner cylinder,
a passive boundary layer can set up where the vis-
cous drag from the interior of the fluid equilibrates
Ekman friction. Therefore, the predominant source
of energy is Reynolds stresses, and the predominant
sink of energy is Ekman friction on the outer bound-
ary. This is the behavior of a large-gap configuration,
and would not be true in a small-gap case Plaut and
Busse Personal Communication. The balance, from
which we factor out, as usual, ther-dependence
gives

ur
∂uθ

∂r
∼ E−1/2

L
√

n · ez
uθ ⇒ ũ2

δr
∼ uθ

E1/2
. (16)

The non-vanishing non-linear coupling term is in-
deed therθ component of the Reynolds stress, and it
has been estimated asũ2/δr ,assuming that a constant
degree of correlation exists betweenur anduθ over
the range covered by experiments. A justification for
this can be found in the principle of potential vortic-
ity conservation: due to this principle, rising currents
have a tendency to turn into anticyclones. The ex-
cess of negative vorticity induces a retrograde zonal
circulation which is well correlated with the radial
flow. This interpretation also predicts that the energy
contained in the zonal flow cannot be significantly
higher than the energy contained in the radial flow.
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Fig. 12. Reduced zonal flow velocity. Solid line isy ∼ ((Nu− 1)(Ra/Rac − 1))4/5 in water andy ∼ (Ra/Rac − 1)4/5 in gallium. Scaling
prefactor is 1.

The degree of correlation has, therefore, to decrease
as the zonal flow becomes too high.

Variations ofδr with controlling parameters are not
very significant in the range of experiments (δr is al-
ways of order 1), and therefore, we keepδr ∼ 1 in
Eq. (16). Since zonal flow results from inertial effects,
inertial scaling has to be adopted forũ. The resulting
formula gives

uθ ∼
(

RaQ
P 2

)4/5

E9/10. (17)

This scaling is tested on Fig. 12, and yields a prefactor
1. Only data points corresponding to sufficiently de-
veloped convection are kept. The data foruθ are more
scattered than for̃ur , but the agreement with Eq. (17)
is still good. This test highlights the importance of
Ekman layers near the spherical boundary for the de-
termination of zonal flow.

This last point clearly shows the adequacy of an
interpretation of zonal flow in terms of Reynolds
stresses. Zonal velocities observed in water are not
important, because kinetic energy is partly dissipated
on the convective scale. In gallium they take part
in the only efficient dissipative mechanism left, and
this explains their rapid growth as the convective
instability injects more energy into the system.

A condition for the inertial regime can be estab-
lished, by comparing the orders of magnitude of dis-
sipation through Ekman friction of the zonal flow, and
dissipation at the convective scale. The former can be
estimated asuθ2/E1/2 and the latter as̃u2/δ2. Either
inertial or viscous scaling predicts thatδ is not smaller

thanE1/3 and, therefore, the condition gives

uθ
2

ũ2
> E1/6

and this yields (the fractional power ofE is approxi-
mated for simplification):

RaQ
P 2

E3/2 > 1 (18)

Eq. (18) is satisfied by gallium experiments, for which
left hand side of (18) is at least 30. For water exper-
iments this term is of order 10−2 for experiments at
E = 9.7 × 10−6 near the onset, and reaches values
of order 1 for the more supercritical experiments at
E = 2.4×10−6. This confirms that the inertial regime
is attained only for the lowerE experiments in water,
and for all experiments in gallium.

Having proposed a mechanism for the zonal ve-
locities, we come back to an interpretation of the
measurements of�t , the average time between zeros
of the radial velocity profiles, in terms of the average
azimuthal size of the vorticesδθ . We have

δθ = 2uθ �t.

The factor 2 is used because�t , as it is defined,
describes half a period. Parameterδθ is plotted in
Fig. 13, with error bars corresponding to the stan-
dard deviation of lateral size distribution. Here, the
zonal flow velocity is determined using theoretical
scaling relations. Therefore, only data points corres-
ponding to sufficiently developed flows have been
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Fig. 13. Lateral size of vortices at radiusrmax, near the inner cylinder.

kept. Horizontal lines are predicted sizes of vor-
tices at convection onset. Here again, the scaling
proposed forδ in the previous section correctly de-
scribes the order of magnitude and variations ofδθ
within the error bars, and the increase in size pre-
dicted by the inertial scaling is effective only for
high Rel experiments. An aspect ratioδr/δθ can be
estimated, and is of order 1 at highRel (compare
Fig. 13 with the third graph in Fig. 8). In the inertial
regime, cells generally tend to grow with increasing
Ra/Rac, and can become larger than cells at convec-
tion onset.

7. Discussion

We have shown that thermal convection in water and
gallium exhibits properties that can well be accounted
for by the inertial model we have derived. The use of
two liquids with very different Prandtl numbers was
essential to discriminate between the inertial and the
viscous models.

Our measurements enable us to show that the typical
local Reynolds number is much larger in the gallium
experiments than in water. The most striking conse-
quence of these high Reynolds numbers for gallium is
the apparition of large zonal velocities, well explained
by Reynolds stresses in the framework of our iner-
tial model. By combining the expression for the local
Reynolds number

Rel = ũδr ∼
(

RaQ
P 2

)3/5

E4/5,

and those for the zonal and convective velocities, we
obtain

uθ/ũr ∼ Re2/3l E1/6.

As expected, this ratio is controlled almost entirely
by the Reynolds number. The 2/3 slope is in good
agreement with the data (dashed line in Fig. 9).

We emphasize that, in the inertial regime, there is
no efficient dissipation mechanism at convective scale,
and therefore, kinetic energy created by buoyancy has
to cascade to larger scales where dissipation takes
place by shear of zonal flow on boundaries. The en-
ergy flow towards large scales is the classical mech-
anism invoked in two-dimensional turbulence. While
in a plane layer, this mechanism leads to the appari-
tion of structures as large as the container (Sommeria,
1986), in the spherical geometry only zonal motions
are permitted at this scale. The large zonal velocities
we measure in gallium are reminiscent of the obser-
vations of Grote et al. (2000) for a numerical model
of convection with a stress-free outer boundary. These
authors report a strong intermittency as the zonal flow
tends to wipe out the convective structures from which
it draws its strength. In our experiments, we found no
evidence for this mechanism. It is probably due to the
fact that zonal velocities in our case are limited by fric-
tion on the Ekman layers of the outer boundary, while
only viscosity in the interior of the shell can control the
amplitude of the zonal flow in the numerical model.

The adequacy of an explanation of experiments
based on the model by Cardin and Olson (1994) re-
asserts the interest of a two-dimensional approach.
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However, their model did not take Ekman friction
of zonal flow on the external boundary into account.
This represents an easy improvement, after which it
will be possible to compare convective structures de-
termined numerically and experimentally. Using more
ultrasonic transducers, it should be possible indeed to
construct a local map of convective structures, and in-
vestigate the radial and zonal geometry of convective
vortices.

Our results also bear some relevance to the geo-
dynamo problem. Recent numerical models (Chris-
tensen et al., 1998) have shown that dynamo action
can take place in a spherical shell when thermal con-
vection is only a few times critical. The mechanism
is of α2-type, meaning that the conversion of poloidal
to toroidal magnetic field, and vice versa, is done by
vortices at the convective scale. In the Earth, it is be-
lieved that the conversion of poloidal to toroidal field
is due to anω effect, i.e. zonal flow. Our observations
suggest that for sufficiently low Ekman numbers and
high Reynolds numbers, this zonal flow will be natu-
rally produced by the convective engine.

Although all these results apply to a non-magnetic
case, we think, it is of some interest to extrapolate them
to the parameters of the core. We useE = 10−14 and
P = 1, both estimated using parameters in Table 2.
The heat-flux based Rayleigh number can be expressed
as

RaQ = αgQtotD
2

kκν
.

From an upper bound for the total heat flux emerging
at the Core–Mantle Boundary (CMB)Qtot = 10 TW
(Labrosse et al., 1997), we inferRaQ = 1030. The
condition (18) for the inertial regime is satisfied,
and therefore, the inertial scaling is chosen to derive
the core estimates of convective velocity, cell size,
Reynolds number and zonal flow which are sum-
marized in Table 5. The local Reynolds number is
very high and indicates a strongly turbulent state.
The global Reynolds number is of the same order of
magnitude as the estimate made in the introduction.
Convective flow velocities (10−3 m/s) are 10 times
larger than CMB estimates, of order 10−4 m/s (Hulot
et al., 1990), obtained from secular variations of the
magnetic field. The ratio of zonal over convective
velocity yields the value 10, while estimates based on
geophysical observations (Jault et al., 1988) lead to

Table 5
Values for the Earth’s core deduced from inertial scaling

Variable Value

Rel 106

Re 108

ũ(m/s) 10−3

δr , δθ (km) 10
uθ (m/s) 10−2

zonal velocities lower than convective velocities. As
we have seen in the scaling analysis, this ratio is very
likely to saturate at a value of order 1 (Christensen,
2001), even though we have not observed it. A too
strong zonal flow would indeed suppress convection
by mixing plumes. Developed QG turbulence should
favor large structures, but still the influence of vortex
stretching results in very small typical cell sizes.

The kind of flow described by these parameters
would not be very efficient in maintaining a magnetic
field: the essential part of kinetic energy, which is in
zonal flow, is lost for dynamo action. The first effects
of the addition of a magnetic field on this configuration
would be to enlarge structures and slow down veloci-
ties, especially zonal velocity (Brito et al., 1995). This
will be checked in future experiments in the presence
of an azimuthal magnetic field.
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Appendix A. Notes on experiments and
data processing

A.1. Experimental procedure

For the acquisition of one experimental record, the
sphere is spun up to the desired speed, and the thermal
regulation system is then turned on and tuned to the
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desired gradient. Then we wait until spin-up is com-
plete (3 min), until thermal equilibrium is reached at
boundaries (10 min), until convection pattern is sta-
tistically stationary (depends on the departure from
criticality, but typically 30 min). Then recording is
started.

A.2. Structure and resolution of recordings

One velocity profile is a set of 224 (water) and 130
(gallium) velocity points covering a distance of 83.6
and 92.8 mm, respectively. The effective resolution is,
therefore, 0.37 mm (water) and 0.71 mm (gallium). In
fact the real resolution is lower because one ultrasonic
burst is composed of eight cycles. The Doppler appa-
ratus then overlaps measurement windows of respec-
tive sizes 0.37×8 = 2.96 and 0.71×8 = 5.68 mm, to
recover the aforementioned effective resolution. Some
care has been taken on this point in Figs. 6 and 7,
where squares denote real measurement points, and
the solid line represents the profile obtained at effec-
tive resolution.
N = 4096 complete radial velocity profiles are ac-

quired, at a sampling rate between 6 and 18 profiles/s.
This represents roughly one tenth of the viscous dis-
sipation timeD2/ν. The actual time resolution is
lower because of averaging for noise reduction. Typi-
cal averaging is done over 10 profiles, using a median
filter, and this lowers the time step to some 0.5 s.
Also recorded meanwhile are 4096 complete velocity
profiles on the lateral probe.

Fig. 14. Histogram of the distribution of radial cell sizes in the convective flow, measured at radius 60 mm in water, for experiment of
Fig. 4c (Ekman number is 4.8 × 10−6, Rayleigh number is 26.6 times critical).

Temperature perturbation signals are recorded at
a sample rate of 3–6 samples/s. The imposed tem-
perature gradient is recorded using thermo-resistive
platinum probes. The temperature gradient has to be
corrected by some 15% temperature drop in lexan
when experimenting with water.

A.3. Extracted scalar data and error bars

Scalars are extracted from filtered signals. LetN be
the number of profiles, andui(r) an individual profile.
The mean velocity is

u(r) = 1

N

∑
i

ui(r),

and the S.D. of velocity

ũ(r) =
√

1

N

∑
i

(ui(r)− u(r))2.

Error bars onũr anduθ account for the reproducti-
bility of measurements, and of the uncertainty due
to seeding particles centrifugation (see retrieval of
zonal flow). Error bars onδr , δθ and�t are the S.D.
δ̃r , δ̃θ and �̃t of the size distributions. An example
histogram of size distribution is shown on Fig. 14.

A.4. Retrieval of mean zonal flow velocity

The mean velocityumes measured on the lateral
probe can be expressed in the system of local axes
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of Fig. 2 as a function of mean radial and zonal flow
velocitiesur anduθ :

umes= ur cos(α + θ)+ uθ sin(α + θ).
The convention of positive radial velocity directed in-
wards has been used here. Hence,

uθ = umes

sin(α + θ) − ur cot(α + θ).

For a purely convective flowur averages out. In the
case of the experiment some care has to be taken on
this point, sinceur is slightly different from zero due
to centrifugation/centripetation of seeding particles.
Therefore, it has to be corrected here.

The unknown is the angleθ . If r denotes the distance
on the lateral probe since the beam entered the fluid,
and R the radius of the fluid sphere, some algebra
yields

sinθ = sinα√
1 − 2 cosα(R/r)+ (R/r)2

α remains to be determined. The beam enters the solid
sphere at an angle 40◦ and is then refracted at the
liquid interface such that:

sinα = vP (liq)

vP (sol)
sin 40◦

wherevP stands for the compressional ultrasonic wave
velocity of the considered media. Using the values
listed in Table 6, this givesα = 24.3±1.5◦ for exper-
iments in water, andα = 21.5± 1.5◦ in gallium. This
corresponds to a minimal distance to the inner cylin-
der of d = 5 ± 3 mm in water andd = 1 ± 3 mm in
gallium. The uncertainties are of the same importance
as the size of the Doppler measurement volume, and
they affect the horizontal position of plots in Fig. 7.

Table 6
Compressional ultrasonic wave velocitiesvP in media used in the
experiment

Medium vP (m/s)

Water at 20◦C 1500
Liquid gallium at 30◦Ca 2873
Lexan 2340± 190b

Copper 5040± 350b

a Beyer and Ring (1972).
b This study.
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