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[1] Improving our understanding of crustal processes requires a better knowledge of the
geometry and the position of geological bodies. In this study we have designed a method
based upon double-difference relocation and tomography to image, as accurately as
possible, a heterogeneous medium containing seismogenic objects. Our approach
consisted not only of incorporating double difference in tomography but also partly in
revisiting tomographic schemes for choosing accurate and stable numerical strategies,
adapted to the use of cross-spectral time delays. We used a finite difference solution to the
eikonal equation for travel time computation and a Tarantola-Valette approach for both the
classical and double-difference three-dimensional tomographic inversion to find accurate
earthquake locations and seismic velocity estimates. We estimated efficiently the square
root of the inverse model’s covariance matrix in the case of a Gaussian correlation
function. It allows the use of correlation length and a priori model variance criteria to
determine the optimal solution. Double-difference relocation of similar earthquakes is
performed in the optimal velocity model, making absolute and relative locations less
biased by the velocity model. Double-difference tomography is achieved by using
high-accuracy time delay measurements. These algorithms have been applied to
earthquake data recorded in the vicinity of Kilauea and Mauna Loa volcanoes for imaging
the volcanic structures. Stable and detailed velocity models are obtained: the regional
tomography unambiguously highlights the structure of the island of Hawaii and the
double-difference tomography shows a detailed image of the southern Kilauea
caldera–upper east rift zone magmatic complex.

Citation: Monteiller, V., J.-L. Got, J. Virieux, and P. Okubo (2005), An efficient algorithm for double-difference tomography and

location in heterogeneous media, with an application to the Kilauea volcano, J. Geophys. Res., 110, B12306,
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1. Introduction

[2] Using earthquake data for describing Earth structure
with the best possible resolution is a long-term quest in
seismological research. After the pioneering work of Geiger
[1910] and Aki and Lee [1976], earthquake location and
tomography have become widely used means to infer active
and passive structures of the Earth interior from the avail-
able seismological data. A large effort has since been
devoted by seismologists to improving the knowledge of
crustal or lithospheric structures through the imaging of
seismic velocities and earthquake locations. Whereas on a
global scale, earthquake location makes the imaging of the

major geodynamic features of the Earth possible, its accu-
racy remains too low to allow the description of many
seismotectonic features on smaller scales. Similarly, earth-
quake tomography is often revealed to be unable to provide
high-resolution imaging of Earth structures. On small
scales, the unfavorable geometry of both the earthquake
distribution and seismic networks combined with the non-
linear character of the tomographic problem generates trade-
offs between model parameters and induces uncertainties in
earthquake location and seismic velocity estimates.
[3] Double-difference relocation methods [e.g., Jordan

and Sverdrup, 1981; Poupinet et al., 1984; Ito, 1985; Got
et al., 1994; Slunga et al., 1995; Shearer, 1997; Rubin et al.,
1999; Waldhauser and Ellsworth, 2000] (see Wolfe [2002]
for a discussion of double-difference algorithms) have in the
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last decade shown that seismogenic region knowledge may
be deeply changed by the accurate relocation of earthquakes.
However, we have little experience with the limitations of
such methods and are sometimes unreasonably confident in
their results. These relocations are often performed in
approximate one-dimensional (1-D) velocity models,
although little is known about the effect of such an approx-
imation on relocation results. There is therefore some interest
in improving the reliability of double-difference earthquake
relocation in heterogeneous media by the use of more
realistic seismic velocity models [Michelini and Lomax,
2004]. There also may be some interest in profiting from
the accuracy provided by the double-difference approach to
improve the tomography. Zhang and Thurber [2003], Zhang
et al. [2004], and Thurber et al. [2004] made applications of
double-difference tomography in various contexts. The pres-
ent work aims at exploring the possibility of improving the
tomography by the use of spatially extended sets of similar
events allowing accurate cross-spectral time delay measure-
ments. Travel time difference residuals are second-order
quantities which may be small and should be accurately
estimated to be interpretable. Accuracy at each step of the
computation is therefore a key question to really succeed in
this task. It is therefore required to design a stable and
accurate method for the classical and double-difference
tomography in very heterogeneous media, that is, to choose
appropriate schemes for both the direct and the inverse
problem. Travel time computation in heterogeneous media
may be performed by the use of finite difference methods
[see, e.g., Vidale, 1988]. We chose Podvin and Lecomte’s
[1991] robust eikonal solver for this computation. A robust
solution to the inverse problem is achieved by using the
LSQR solver [Paige and Saunders, 1982]: from the strict
point of view of the use of these tools, the classical part of our
tomographic procedure is close to the one published by Benz
et al. [1996]. In this work, however, we follow the approach
of Tarantola and Valette [1982] based on the probabilistic
optimization theory for estimating the model parameters. It
provides a unique and coherent framework for both the
tomographic and double-difference relocation processes.
Double-difference equations are therefore solved to find
earthquake positions and seismic velocities. This method is
applied for processing earthquake data of Kilauea andMauna
Loa volcanoes recorded by the permanent seismic network of
the U.S. Geological Survey (USGS) Hawaiian Volcano
Observatory (HVO). These volcanoes are indeed very good
targets for tomographic studies, due to the strong velocity
contrasts already evidenced, to the relatively simple geolog-
ical setting, and to the quantity and very good quality of the
data recorded by the HVO permanent seismic network. Is it
possible to infer the fine structure of the Kilauea magmatic
system by double-difference tomography? If so, what may be
the geometry of the magmatic system around Kilauea caldera
and east rift zone? Answers to these questions are useful to
set up mechanical models needed to deeply understand the
Hawaiian volcanoes long-term dynamics.

2. Method

2.1. Principle of the Algorithm

[4] The conventional presentation for finding the location
of an earthquake from arrival times observed at many

receivers is due to Geiger [1910]. This nonlinear problem
is solved using a linearized approach. This method has been
extended to the determination of both hypocenters and
velocity field parameters by Aki and Lee [1976]. Travel
time residual ri

k = tobsi
k � ti

k, (where tobsi
k and ti

k are
the observed and theoretical travel time, respectively, for
an event i recorded at station k) is related to perturbations
dmi of the model parameter vector m by a linear equation:

@tki
@m

dmi ¼ rki ð1Þ

or, in matrix notation,

G dm ¼ r ð2Þ

where G is the matrix of the partial derivatives of the
theoretical travel times with respect to the model param-
eters. The term dm is the model perturbation vector and r is
the travel time residual vector. Model parameters are the
hypocentral parameters for the earthquake location, hypo-
central parameters and velocity parameters in the earth-
quake tomography.
[5] This linearized approach has been followed for dou-

ble-difference location [Waldhauser and Ellsworth, 2000].
Following Waldhauser and Ellsworth [2000], we will name

@tki
@m

dmi �
@tkj
@m

dmj ¼ rkij ð3Þ

the double-difference equation for the events i and j,
recorded at the station k; rij

k is the travel time difference
residual (‘‘double difference’’). In the double-difference
location, the model parameters are hypocentral parameters.
In double-difference tomography [Zhang and Thurber,
2003; Monteiller et al., 2003], they comprise both
hypocentral and velocity parameters. The double-difference
equation system may therefore be written

G dm ¼ r ð4Þ

where G is the matrix of the partial derivatives of the
theoretical travel time differences with respect to the model
parameters, dm is the model perturbation vector, r is the
travel time difference residual vector.
[6] The system expressed by equation (4) being generally

ill-conditioned, Waldhauser and Ellsworth [2000] and
Zhang and Thurber [2003] have chosen to solve the system

W
G

lI

� �
dm ¼ W

r

0

� �
ð5Þ

where W contains a priori quality weights. G is the matrix
containing the partial derivatives of the travel time
differences [Waldhauser and Ellsworth, 2000] or the partial
derivatives of the travel times and travel time differences
[Zhang and Thurber, 2003] with respect to the model
parameters; l is a damping factor, I is the identity matrix,
and r is the vector of residuals in travel time differences
[Waldhauser and Ellsworth, 2000] or travel times and travel
time differences [Zhang and Thurber, 2003]. Waldhauser
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and Ellsworth [2000] add the constraint (for a N event
cluster)

XN
i¼1

dmi ¼ 0 ð6Þ

Earthquake location and tomography are, however, simul-
taneously nonlinear and ill-posed. Determining the hypo-
center location and the seismic velocities is an optimization
problem whose solution has been discussed by Tarantola
and Valette [1982] and Tarantola [1987].
[7] The tomographic problem should actually be posed

g mð Þ ¼ d ð7Þ

where g represents the functional used to solve the direct
problem and d is the travel time data.
[8] Tarantola and Valette [1982] proposed minimizing a

cost function which is a weighted sum of the data misfit and
a penalty function chosen to be the a posteriori model
variance:

g mð Þ � d½ �TC�1
d g mð Þ � d½ � þ m�m0ð ÞTC�1

m m�m0ð Þ ð8Þ

where Cd, Cm, and m0 are the data covariance matrix, the a
priori model covariance matrix and the a priori model
vector, respectively. In the case the Gauss-Newton scheme
is used to minimize the cost function (8); the solution at
iteration k is, in the case of the nonlinear problem:

mkþ1 �mk ¼ GTC�1
d Gþ C�1

m

� ��1

� GTC�1
d d� g mkð Þð Þ

�
þ C�1

m m0 �mkð Þ� ð9Þ

which may be written, in terms of the perturbation vector
dmk = mk+1 � mk,

GTC�1
d Gþ C�1

m

� �
dmk ¼ GTC�1

d d� g mkð Þ½ � þ C�1
m m0 �mkð Þ

ð10Þ

an equation which may be understood as

GTC
�1=2
d C�1=2

m

� �
C

�1=2
d G

C�1=2
m

 !
dmk

¼ GTC
�1=2
d C�1=2

m

� �
C

�1=2
d d� g mkð Þð Þ
C�1=2

m m0 �mkð Þ

 !

Therefore minimizing equation (6) is equivalent to solving
iteratively the system

C
�1=2
d G

C�1=2
m

 !
dmk ¼ C

�1=2
d d� g mkð Þð Þ
C�1=2

m m0 �mkð Þ

 !
ð12Þ

In the following, we will see that this numerical approach
is appropriate for the travel time tomography, the
double-difference relocation, and the double-difference
tomography.

2.2. Estimating Accurate Model Parameters From
Travel Time and Time Delay Tomography

[9] Even well-designed computational schemes may lead
to poor results when used with inadequate numerical
strategies, unsuited parameters or insufficient data. In this

paragraph, we will focus on the accuracy of the direct
problem (travel time computation) and on the estimation
of the model parameters from the inversion of travel time
data. The conditioning of the inversion is a key notion in
our study. Condition number cond is defined as the product
of the norm of a square matrix by the norm of its inverse
and may be calculated as the ratio between its major and
minor eigenvalues. The relation [see, e.g., Tarantola, 1987]

dm
m

����
����

����
���� 	 cond

dd
d

����
����

����
���� ð13Þ

shows the importance of the condition number in the
estimation of model parameters. Reaching a high relative
accuracy on m implies keeping a high relative accuracy on
d and a low condition number.
[10] When using double differences, the data d may

become small and sensitive to uncertainty, especially when
determined from travel time differences. Alternatively,
cross-spectral measurements of the time delays are measure-
ments independent of the arrival time picking error. They
are an order of magnitude better than arrival time picking
differences. Such data allow us to keep the relative accuracy
kdd/dk to reasonable values (generally less than 10%), and
will be used in this work. In the following we will see which
conditions have to be filled to keep a correct conditioning
while using cross-spectral time delays of similar events.
2.2.1. Robust and Accurate Travel Time Computation
in a Heterogeneous Medium
[11] As mentioned in section 1, this work is mostly

motivated by inferring seismogenic structures in fault zones
and volcanoes from travel times and time delays. Such
structures are strongly heterogeneous and therefore require a
robust solution for travel time computation. Finite differ-
ence solutions to the eikonal equation have been proven to
provide robust travel time computations [e.g., Vidale, 1988;
Podvin and Lecomte, 1991]. In this work we used the
Podvin and Lecomte [1991] finite difference scheme
to compute the entire first-arrival travel time field. This
method allows an accurate computation of travel times in
complex media, provided that an appropriate finite
difference grid is used. A posteriori ray tracing is performed
by computing the travel time field gradient, and travel time
derivatives as well as more accurate travel times are
then calculated. This travel time recomputation allows
the accuracy to reach the O(10�4) needed to perform
double-difference computations at every scale with low
computational costs (Figure 1).
2.2.2. Understanding and Parameterizing the
Double-Difference Tomographic Problem
2.2.2.1. Constraining Absolute Locations With
Double-Difference Equations
[12] Understanding the double-difference relocation prob-

lem is necessary to undertake double-difference tomography
correctly. In the case of two events in close proximity (a
doublet), the analysis of the eigenvalues of the double-
difference equation system shows that one eigenvalue is
exactly zero and corresponds to the reference time, and
three others, corresponding to the geometrical center coor-
dinates, may be very low [see also Wolfe, 2002; Menke and
Schaff, 2004]. Choosing a reference time, using an average
origin time constraint (equation (6) limited to the origin time

(11)
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perturbations), or choosing differential DT0ij parameters for
the origin time eliminates the corresponding zero eigenvalue.
The three eventually low eigenvalues decrease to zero and
conditioning strongly increases (Figure 2) when r/D tends to
zero: slowness vectors for two events i and j tend to be
subparallel for each station k and may not allow the determi-
nation of the geometric center coordinates. To overcome this
problem, an intuitive approach may be to hold one event, or
the geometric center of a N event cluster fixed (equation (6))
[e.g., Waldhauser and Ellsworth, 2000]. However, this
constraint may introduce a bias in the estimate of the
absolute position and noise in the relative position com-
putation. In the work by Waldhauser and Ellsworth
[2000], equation (6) is downweighted to let the geometric
center move. The latter weight is therefore a critical
parameter for estimating the geometric center position.
To help constraining the cluster geometric center location
without using equation (6), Zhang and Thurber [2003]
solve simultaneously the weighted absolute and double-
difference equations.
[13] The eigenvalue analysis (Figure 2) shows that a

sufficient interevent distance allows the computation of
the geometric center location. Menke and Schaff [2004]
show that in favorable cases, double-difference equations
constrain absolute locations better than absolute equations.
Conditions that favor this constraint are (1) the existence of
extended sets of events for which cross-correlation time
delay measurements are possible and the absence of small-
extent isolated event subsets and (2) the high quality of the
velocity model. A favorable condition to get accuracy in
both relative and absolute locations is to constitute dense,
continuous, and extended correlated earthquake sets. Com-
bining a sharp distance weighting with damping may be

unfavorable to providing a solution for the cluster geometric
center.
[14] The simultaneous resolution of absolute and double-

difference equations is therefore not strictly necessary, not
only for finding relative positions but also for finding
absolute positions. It is the reason for which we will not
include the absolute equations nor the fixed geometric
center equation (equation (6)) in the resolution of the
double-difference equation system. It does not mean that
absolute information is not needed in an earlier step of the
process. To stabilize the solution in the case of small
isolated event subsets, we introduce a priori information
(equation (12)) concerning the (absolute) location of each
event: the a priori location before double-difference reloca-
tion is the absolute location in the 3-D velocity tomographic
model. Notice that a priori information is of importance
only when the double-difference data do not constrain the
solution. Control of the amount of a priori information
needed is made through the use of the covariance operator
Cm. For the computation of hypocentral parameters, Cm =
Ch = s2I, where s2 is the a priori variance on the
hypocentral parameters, I is the identity matrix. It leads to
a simple optimization scheme for controlling the numerical
quality of the solution and the amount of a priori informa-
tion in the solution. This approach also allows the accurate
computation of both relative and absolute positions without
needing to a priori cluster the events (as would be needed if
equation (6) was used). This strategy benefits from both the
almost linear character of double-difference equations for

Figure 1. Relative accuracy of a posteriori finite differ-
ence travel time recomputation, as a function of the
discretization of the finite difference grid. Bold circles
indicate error after Podvin-Lecomte finite difference
computation of travel times; open circles indicate error
after a posteriori ray tracing in the travel time field and
recomputation of travel times. The reference travel times are
computed using the analytic formulation of Evjen [1936] for
a gradient model.

Figure 2. Conditioning of the partial derivative matrix G
as a function of the aperture r/D of an earthquake doublet,
where r is the interevent distance and D is the hypocentral
distance. Conditioning is given for various circular seismic
station network geometry, characterized by their aperture q,
in the interval r/D < q. In the top sketch, triangles represent
seismic stations and stars represent earthquakes.
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closeby events and the well-conditioned nonlinear character
of these equations for farther events.
2.2.2.2. Parameterizing the Tomographic Problem
[15] Given the amount of data, we chose to perform the

inversion in the model space. In the classical approach,
parameterization has to be chosen carefully as it controls the
conditioning of the problem, and finally the amount of
damping to be used. Condition number strongly increases
when cells of the tomographic model are not sampled by
seismic rays. However, the minimal solvable wavelength in
a tomographic model is controlled by the data, not by the
discretization of the model. In the following paragraph we
will see that using a Tarantola-Valette approach converts the
problem of choosing a parameterization to the problem of
choosing a correlation length. We will therefore choose the
finest possible discretization for the velocity model.
[16] Improvement in the solution may arise from

the improvement in time measurement if conditioning
of the double-difference equation system is sufficient
(equation (13)). For this reason, and to avoid competition
between absolute and cross-spectral data, we will not solve
simultaneously the absolute and double-difference equa-
tions. Correlated event sets often appear as collections of
clusters. Intercluster correlation may be (far) lower than
intracluster correlation. This feature means the eigenvalue
spectrum of the double-difference equation system may
contain low eigenvalues corresponding to the geometric
centers of the clusters. Overweighting of well-correlated
data [e.g., Got et al., 1994], or distance weighting
[Waldhauser and Ellsworth, 2000] reinforces clustering
and degrades conditioning. The combination of damping
and distance weighting tends to break an initial large-extent
event set into several smaller-extent subsets by removing
weak critical links [see also Wolfe, 2002]. This process
reduces the spatial extension and resolution of the velocity
perturbations. It induces a trade-off between average veloc-
ity perturbation along the ray path and geometric center
location, and unstable velocity fluctuations may appear.
[17] 1. We use large-extent correlated event sets that are

as homogeneous as possible. Notice that weak critical links
may be avoided by linking critical pairs by using travel time
differences.
[18] 2. We search for the optimal covariance matrix

(see sections 2.2.3 and 3.2.2) which provides the a
priori information needed to minimize the cost function
(equation (8)). Double-difference equations constrain the
model when they contain the necessary information. An
adequate, optimal amount of a priori information is used,
stabilizing the solution when necessary.
2.2.3. An Efficient Preconditioning of the
System Prior to Inversion
2.2.3.1. Selection of the Earthquakes as a
Preconditioning Step
[19] Preconditioning is generally understood to be matrix

handling; it, however, begins with a relevant choice of data.
In the regional tomography a significant step is the declus-
tering and selection of the earthquakes in order to reach a
homogeneous distribution of rays throughout the tomo-
graphic volume. Clustering produces subparallel rays that
correspond to almost identical equations but whose replica-
tion bears no further information about the sampled inver-
sion cells. The existence of such families of subparallel rays

degrades the conditioning of the derivative matrix and thus
the stability of the solution. Earthquakes are therefore
chosen so as to have a spatial distribution as homogeneous
as possible and to be recorded by the largest number of
seismic stations.
2.2.3.2. Scaling
[20] The most usual and elementary way to improve the

conditioning of a derivative matrix is to scale its columns.
We therefore define three groups of parameters (position,
origin time and velocity parameters) and we use a primary
preconditioning by normalizing each column of the
derivative matrix with the maximum value (taken from each
group) of its L2 norm.
2.2.3.3. A Priori Model Covariance Matrix
[21] Equation (12) implies the computation of Cm

�1/2. A
practical difficulty of this approach in the case of tomogra-
phy is that the covariance matrix Cm may be huge, to the
point its inverse is not directly computable. Tarantola
[1987], however, noticed that Cm acts as a smoothing
operator, therefore Cm

�1 behaves like a roughening operator.
This allows numerous authors to define Cm

�1/2 as a differ-
entiating (Laplacian) operator and to add a (‘‘nearest neigh-
bors’’) constraint:

mi �
X

neighbors

wjmj ¼ 0 ð14Þ

(where wj is a weighting factor) in place of the lower part of
equation (12). However, the inverse squared of the matrix
corresponding to the Laplacian operator does not exhibit a
covariance matrix structure, nor does this approach allow
the smoothing width to vary. Optimal ratios between groups
of parameters (position, origin time, and velocities) also
have to be determined from sensitivity tests [Le Meur et al.,
1997; Latorre et al., 2004], which may be a tedious
operation.
[22] The covariance matrix is composed of two parts. The

first one is related to the hypocentral parameters. It is
diagonal (hypocenters are a priori independent) and may
be written Ch. The second one is related to the velocity
parameters and expresses the relations that may exist
between them. In this work, we chose to quantify the
correlation between cells located at positions R and R

0,
respectively, by a function

Cv R; R0ð Þ ¼ s2ve
� R�R0j j

l ð15Þ

where sv
2 is the variance of the velocity for the cell located

at R, and l is a correlation length.
[23] In this study we will assume, as a first approxima-

tion, that there is no a priori correlation between the
hypocentral and velocity parameters. The a priori covari-
ance matrix may therefore be expressed as

Cm ¼ Ch 0

0 Cv

� �
ð16Þ

Coefficients of Cv
�1/2 are computed via a Lanczos

decomposition:

Cv ¼ USUT ð17Þ
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where Cv is a symmetric positive definite matrix, U is an
orthogonal matrix, UT = U�1, and S is a diagonal matrix
containing the eigenvalues of Cv.

Therefore

C�1
v ¼ USUT

� ��1¼ US�1UT ¼ US�1=2UT
� �

US�1=2UT
� �

ð18Þ

C�1=2
v ¼ US�1=2UT ð19Þ

Cv
�1/2 is found to exhibit a band-diagonal structure and the

value of its coefficients is independent of the number of
model parameters. This feature allows the construction of
Cv
�1/2 with a low computational expense. This approach is

very convenient for tomographic purposes as it allows (see
section 3.1.5) the choice of an optimal correlation length l
using a fixed cell size rather than using a multigrid approach
or an unstructured mesh with a nearest neighbors smooth-
ing. It is easy to use, as only two coefficients (l and sv)
control the quality of the tomographic inversion.
2.2.3.4. Data Covariance Matrix
[24] The travel time covariance matrix may be approxi-

mated from picking weights. Estimating confidence inter-
vals for arrival times would be a useful improvement. In the
case of cross-spectral time delays, an estimate of the time
delay uncertainty is made from the computation of the
coherency spectrum [see, e.g., Got et al., 1994]. Statistics
are finally applied to double-difference residuals and the
data covariance matrix is updated. For this purpose, we use
Mosteller and Tukey’s [1977] bisquare weighting:

Wi ¼ max2 0; 1� ri=armedð Þ2
h i

ð20Þ

where ri is the residual for the ith data, and rmed is the
median of residuals; the coefficient a is generally taken
between 4 and 6.
2.2.4. Choosing an Adequate Statistical Law for
Representing the Travel Time Residual Distribution
[25] The least squares solution presented from

equations (8) to (12) and the LSQR algorithm can only be
used if the travel time residuals have a Gaussian distribu-
tion. Arrival time picks and travel time residuals are,
however, known to have a non-Gaussian long-tailed distri-
bution due to the presence of very strong outliers, most time
originating from confusing P and S first-arrival phases in
the vicinity of nodal planes. Such outliers may strongly bias
the L2 norm estimation of the parameters. In that case, even
downweighting large residuals [e.g., Mosteller and Tukey,
1977] may not prevent the solution from showing large
biases because the initial solution and therefore the residuals
may be strongly biased themselves.
[26] Alternatively, the hyperbolic secant function

f xð Þ ¼ 1

ps
sec h

x� x0

s

� �
ð21Þ

where x is an independent variable, may represent a
probability density function with mean x0 and standard
deviation ps/2. It behaves like the L1 distribution for large
values of the residual, and like a Gaussian distribution for
small values. It is therefore well suited for representing the

long-tailed arrival time pick and the travel time residual
distribution [see, e.g., Crase et al., 1990].
[27] Let us consider a datum x with the probability

density f(x) and mean x0 and let us define an auxiliary datum

x0 ¼ Erf�1 2

Zx
x0

f uð Þdu

0
@

1
A ð22Þ

where erf (x) is the error function. x0 is necessarily a
centered Gaussian variable with variance 1

�
2. When f(x) is

the sech function (B. Valette and P. Lesage, Inferring mean
Earth mechanical models from normal modes, mass
and inertia: 1. Theoretical developments, submitted to
Geophysical Journal International, 2005),

x0 ¼ erf�1 2

p
arctan sinh

x� x0

s

� �� �
ð23Þ

@x0

@x
¼ ex

02

s
ffiffiffi
p

p
cosh x�x0

s

� � ð24Þ

This choice for x0 allows the rewriting of the inverse
problem for the data x (with the sech probability density
function) in terms of least squares inversion of x.
[28] This approach has proven to be more adapted to the

L2 norm tomographic inversion than the simple or weighted
least squares inversion of the non-Gaussian travel time
residuals.
2.2.5. General Algorithm
[29] As a summary, the general algorithm used in this

work may be decomposed as follows: Step 1a is earthquake
selection/declustering on a regional scale. Step 1b is the
location of the selected earthquakes in the a priori 1-D
velocity model, using hand-picked arrival times; it provides
a priori earthquake locations for the regional tomography.
Step 2 is earthquake travel time tomography on a regional
scale; search for the optimal covariance matrix and the
optimal solution (3-D velocity model and earthquake loca-
tions) by exploring a wide range of a priori model variances
and correlation lengths. This solution will be used as a priori
information in the double-difference relocation and tomog-
raphy. Step 3a is a similar earthquake selection on a local
scale. Step 3b is double-difference relocation on a local
scale in the 3-D velocity model; building spatially extended
correlated event sets. These relocations will serve as a priori
information for the double-difference tomographic process.
Step 4a is earthquake selection/declustering on a local scale.
Step 4b is double-difference tomography on a local scale;
search for the optimal covariance matrix and the optimal
solution: final 3-D local velocity model and earthquake
locations.

3. Application to the Kilauea Volcano, Hawaii

3.1. Regional-Scale Tomography: Example of
the Kilauea and Mauna Loa Volcanoes, Hawaii

3.1.1. Volume of Interest
[30] This work aims at improving the seismic velocity

tomography in a limited crustal volume illuminated by
earthquake sources. However, such a study needs a correct
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knowledge of ray propagation in a large volume encom-
passing the sources and therefore requires performing
larger-scale tomography. This large-scale tomography
requires a specific data set. Clustering is generally avoided
in tomographic studies, which require the optimization of
the ray coverage in the tomographic volume. Quality of the
tomographic results is first controlled by the geometry of
the network and the distribution of earthquakes. Note that
whereas in most tomographic studies a dense portable
network is installed to record earthquakes during several
months, we have chosen to use earthquake data issued from
a permanent network. Density and homogeneity of the ray
distribution is therefore reached not because of the seismic
network density but rather because of the use of a very large
set of earthquakes, that is, by using data spanning a long
time period (10 years in our case). Given (1) the scale of the
network (average interstation distance around Kilauea and
Mauna Loa volcanoes is 15 km), (2) the spatial distribution
of the earthquakes and especially their depth (typically
10 km), and (3) the need for a correct takeoff angle
coverage, comprising enough refracted rays to accurately
compute the earthquake depth, the adequate scale for travel
time tomography is the regional scale. We therefore
designed a volume of 160 km � 160 km � 36 km, which
comprises the whole island of Hawaii (Figure 3). Finally,
we choose to use a 1 km � 1 km � 1 km discretization of
the 160 km � 160 km � 36 km inversion volume.
3.1.2. Data
[31] The data are arrival times and time delays from

�30,000 microearthquakes recorded from 1988 to 1999
by the USGS Hawaiian Volcano Observatory (HVO) seis-
mic network, comprising up to 50 short-period seismic
stations. Seismograms were digitized at a rate of 100

samples per second. Arrival times were manually picked
with care at the observatory. From our initial 30,000 event
data set, we extracted 1358 declustered earthquakes,
recorded by at least 30 stations and spanning most of the
seismogenic regions of island of Hawaii. The actual data
contain an average of �31 well-picked arrival times per
event. These events are located using rays having a large
range of takeoff angles. About two thirds of the rays are
going up, one third going down. To perform an efficient
declustering, the whole inversion volume has been discre-
tized in 1 km3 cubic cells, and earthquakes have been
ranked by using the number of P readings in each cell.
Only the first (best recorded) event of each list was selected.
We therefore obtained a homogeneous initial distribution of
well-located earthquakes throughout the seismogenic
regions of island of Hawaii. Tomographic inversion was
therefore performed using more than 41,886 high-quality P
arrival times from 1358 well-located earthquakes and
959,077 inversion cells.
3.1.3. Initial Model
[32] The tomographic problem being nonlinear and pos-

sibly ill-conditioned, it is necessary to start conjugate
gradient iterations in the vicinity of the true minimum of
the cost function by using an appropriate initial model.
Notice, however, that preconditioning correctly the model
tends to smooth the cost function and to remove secondary
minima. This is the reason for which convergence is fast
(see section 3.1.5). The choice of the initial model and the
notion of ‘‘vicinity’’ are less critical when the data constrain
the model. Kissling et al. [1994] proposed to construct the
best 1-D velocity model and station correction set from the
inversion of earthquake arrival times. The average 1-D
velocity model for Hawaii has been extensively studied
by Eaton [1962], Ryall and Bennett [1968], Hill [1969],
Ward and Gregersen [1973], Crosson and Koyanagi [1979],
and Klein [1981]. Gradient models proposed by Klein
[1981], Okubo et al. [1997], and Benz et al. [2003] seem
to be adapted to the 1-D velocity modeling of this volcanic
edifice: heterogeneity in rock composition is expected to
exist both horizontally and vertically, and a large part of the
mechanical heterogeneity is due to different degrees of
compaction and is expected to create a vertical velocity
gradient. In this work we will adopt the initial model
already used in the same crustal volume by Okubo et al.
[1997] and Benz et al. [2003] (Figure 4). Experiments
with a unique gradient model extending from the surface
(3.8 km/s) up to 14 km depth (7.6 km/s), and a constant
7.6 km/s half-space below lead to results identical to the
ones presented here.
3.1.4. Sensitivity Tests
[33] The size of the model space leads us to estimate the

(geometric) resolution of the tomographic inversion by
representing the inversion sensitivity from checkerboard
tests. Numerical experiments show that a checkerboard
velocity model may be reconstructed for very favorable
source-receiver geometries only. We therefore think that if
the source-receiver geometry we use allows the reconstruc-
tion of a checkerboard velocity model, it will allow the
reconstruction of the actual propagation medium from long
wavelengths up to the checkerboard wavelength. Checker-
board tests, however, cannot be used to find the optimal
correlation length to use in the actual travel time tomo-

Figure 3. Map of island of Hawaii showing the main
topographic features, the epicenters of the earthquake used
for the regional-scale tomography (black dots), and the
location of the HVO short-period seismic stations (open
triangles).
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graphic inversion, as this parameter is also determined by
the medium’s propagation velocity spectrum.
[34] Checkerboard velocity model was built into the

tomographic volume by applying a 200 m/s sinusoidal
perturbation with a 12-km wavelength to the final velocity
model. Theoretical travel times were computed with the
actual source–station geometry and the ray distribution
used in the regional tomography. The velocity model
parameters were computed with a 1-km grid size. Earth-
quakes where located using a 1-km a priori variance.
[35] Figure 5 displays the result of this checkerboard test.

It shows that providing an adequate spatial distribution of
rays and an adapted correlation length are chosen, the
tomographic inversion algorithm is able to reconstruct the
propagating medium. Figure 5 suggests that the ray distri-
bution mostly controls the spatial extent of the valid
tomographic reconstruction. It shows that the velocity
model may be correctly estimated in the central Mauna
Loa–Kilauea caldera area at depths between 5 and 10 km.
3.1.5. P Travel Time Tomography Results
[36] Using the Tarantola-Valette approach with our ap-

proximation of the covariance matrix (section 2.2.4) enables
us to explore the effect of changing the correlation length l
and the a priori model standard deviation sv. Exploring a
wide range of values for l and for sv allows us to find a
family of solutions parameterized by l and sv, which gives
stable and reasonable velocity models. The variation of the
cost function as a function of the penalty function (a
posteriori model variance), for various values of the corre-
lation length (Figure 6a) presents interesting features. The
cost and penalty functions are indeed high when l is small,
due to the poor conditioning induced by the elementary cell
size and the size of the model (whose parts are poorly
sampled by rays). When l increases (from 1 to 5 km), both
functions decrease (the conditioning is improved, the solu-
tion is more accurate, the data misfit decreases; the model is
smoother and the a posteriori model variance decreases)
down to a minimum in the cost function (reached for l =
5 km). Increasing l (from 5 to 10 km) leads to an increase
in the cost function (and data misfit). For longer l, the

model variance also increases as the model is modified in a
larger volume: the correlation function brings (coherent)
information to cells that are poorly sampled by seismic rays.
The cost function = f(penalty function) curve therefore
presents a turning point located at its minimum. A quite
similar behavior is shown by the data misfit equals f
(penalty function) curve (Figure 6b). We define the optimal
correlation length as the one corresponding to the minimum
of the cost function equals f (penalty function) curve. For
this value, limited but necessary information is brought in
poorly sampled cells to reach a correct conditioning. The
optimal correlation length is therefore adapted to the recov-
erable velocity spectrum (given the source-receiver geom-
etry) of the propagation medium.
[37] The value of sv limits the amplitude of the seismic

velocity variation of each cell. The variation of the cost
function as a function of sv at l = 5 km (Figure 6c) shows a
minimum for sv = 3 km/s. However, models for sv = 4 km/s
and sv = 5 km/s exhibit strong fluctuations when the
velocity parameters are poorly constrained by data; sv =
3 km/s appears therefore to be a limiting value. The fact that
the optimal ‘‘numerical’’ sv is larger than the physical value
mainly means that the data correctly constrain the model
and there is little need of a priori information. For sv values
between 1 and 3, the models show little difference. We
finally decided to retain a value of sv = 1 km/s, which is
farther from numerical instabilities. A similar search of the
optimal solution has been performed for the hypocentral
parameters (Figure 6d), leading to an optimal value sh =
10 km, which shows they are geometrically well con-
strained by the data. Notice that this optimization approach
gives tools to choose a model among the infinity of
solutions proposed by the tomographic inversion.
[38] Tomographic inversion was run using P travel time

data from the regional earthquake set. It was performed
using 1 km3 cubic cells, with l = 5 km and sv = 1 km/s.
Convergence of the inversion is extremely fast: 95% of the
decrease in root-mean-square (RMS) is reached after only
two iterations (Figure 7), which shows that the problem is
not ill-conditioned nor strongly nonlinear in the vicinity of
the chosen initial model. The RMS after two iterations
drops to about 0.07s (initial RMS with the initial model
and catalog locations: 0.3 s; RMS at the first tomographic
iteration: 0.15 to 0.20 s). The velocity model is correctly
resolved (Figure 5) between 5 and 10 km depth and is
remarkably stable. Relative velocity variations range from
�20% to 20%, with the strongest variations concentrated
around the Kilauea and Mauna Loa calderas and rifts
(Figure 8). In the regions that are not correctly resolved
(Figure 5), the model is not subject to random fluctuations.
It remains close to the initial model, excepted for volumes
where some data are available (Figure 8).

3.2. Double-Difference Tomography on a Local Scale:
Example of Kilauea’s Caldera–Upper East Rift Zone

3.2.1. Data and Volume of Interest
3.2.1.1. Data
[39] In this section we will address the problem of

imaging the magmatic system and its surrounding area by
using double-difference tomography with a large set of
well-located similar microearthquakes and accurate cross-
spectral time delays. We decided to investigate the upper

Figure 4. Initial velocity model used for the regional-scale
tomographic study.
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Figure 5. Checkerboard test represented at regional scale and various depths.
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east rift zone, where the geometry of the rift zone is quite
complex and adequately covered by seismic rays coming
from well-located similar events. To that end, we chose to
use seismic events occurring in the southeast of Kilauea
caldera (southern caldera, upper east rift zone, south flank
of Kilauea). In the south flank of Kilauea, the friction over
geometrical heterogeneities of a subhorizontal plane pro-
vides a high rate of similar and well-recorded microearth-
quakes. In a preliminary study [Got and Okubo, 2003],
about 2000 microearthquakes occurring between 1988 and
1999 showed enough similarity to many of their neighbors
to be relocated with a typical average accuracy in relative
relocations of about 50 meters horizontally and 100 meters
vertically. This large database of similar earthquakes is used
to build the extended set of correlated events needed to
avoid the trade-off between velocity and hypocentral param-
eters (see section 2.2.3).
[40] We used similar events occurring in four extended

correlated event sets of the upper east rift zone and the south
flank of Kilauea volcano. The four event sets cover volumes
between 7 km � 10 km � 4 km for the largest and 4 km �
1 km � 1 km for the smallest. All clusters were first
adequately declustered, keeping enough similar and well-
recorded events to have a direct and accurate estimation of
cross-spectral time delays. Each event set provides a unique
set of cross-spectral time delays. To build the sets of time

delays without favoring close-by events, we selected event
pairs comprising the best recorded events that either (1)
are highly coherent (>95%) for a large number (>25) of
coherent arrivals and located with an interevent distance
greater than a ‘‘low’’ threshold (50 m) or (2) have at least
a minimum coherency (80%), and located with an inter-
event distance greater than a ‘‘high’’ threshold (larger than
250 m), decreasing from 2000 to 250 m with the number
of coherent arrivals. The farther events are therefore
accepted with less coherent arrivals than the closer. Class
1 ensures that data for close-by events are of high quality.
Class 2 ensures that long-distance correlation will exist.
We finally computed a histogram for the events satisfying
these criteria and kept the 614 most frequent. This selec-
tion ensures the continuity of the event set over large
distances. This data set presents good features for double-
difference tomography: the events are widely correlated
across the data set and well recorded. Time delays were
computed by using a cross-spectral analysis performed on
2.56 s windows of the 100-sample per second digitized
signal.
3.2.1.2. Volume of Interest
[41] The double-difference equation system (equation (4))

often generates very large sparse matrices. A compact set of
n similar events recorded by p stations giving time delays
for every event pair would indeed produce n(n � 1)p/2

Figure 6. (a) Cost function as a function of the penalty function (a posteriori model variance) for various
correlation lengths and various a priori velocity model standard deviations (regional-scale tomography).
(b) Data misfit as a function of the penalty function (a posteriori model variance) for various correlation
lengths and various a priori velocity model standard deviations (regional-scale tomography). (c) Cost
function as a function of the a priori velocity model standard deviation, for the correlation length l = 5 km.
(d) Cost function (solid line) and RMS (dashed line) as a function of the a priori standard deviation on
spatial hypocentral parameters. Hypocentral parameters are computed in the initial 1-D velocity model
and RMS is not weighted. Cost, penalty and data misfit functions (see equation (8)) are adimensional.
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equations relating the parameters of the problem. Even
though each event is not correlated to the n � 1 others,
and that each equation does not link the whole set of
parameters, the large number of equations limits the
volume of investigation. We therefore define three differ-
ent grids. The first grid is defined over the regional
(160 km � 160 km � 36 km) volume where the velocity
model has been computed by travel time tomography. It is
discretized with a 1 km sampling interval. The second grid
is defined over the (local) volume of investigation. Geo-
metrical constraints due to the event distribution lead us to
define a 12 km � 16 km � 12 km volume. It is sampled
with a 500-m interval and comprises 20,625 inversion
nodes. The nodes located outside the local volume and

inside the regional volume are held fixed during the
inversion. The third grid is the finite difference grid used
for travel time computation, which is defined over sub-
volumes comprising the station and the set of sources, and
sampled with a 250-m interval. The velocity field is
interpolated at these nodes.
3.2.2. Double-Difference Tomography Results
[42] The checkerboard tests show that owing to the

distribution of the seismic sources and receivers, the model
can be estimated correctly in a limited volume (Figure 9). In
this application, our interest will be focused on the southern
caldera–upper east rift zone of the Kilauea volcano, where
the checkerboard test indicates a correct resolution of the
tomographic inversion.

Figure 6. (continued)
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[43] The selection of similar events allows an accurate
computation of time delays by cross-spectral analysis.
These time delays are used as data in the double-difference
earthquake relocation and tomography. Earthquake reloca-
tions are first performed by double-difference relocation in
the regional tomographic model, to be used as a priori
information in the double-difference tomographic problem.
A priori information for these double-difference reloca-
tions are the absolute locations obtained in the regional
tomographic model from hand-picked arrival times, with
large covariance estimates (10 km, Figure 10a). This
relocation process provides stable and accurate locations,
even though the events are declustered. Double-difference
tomographic inversion is therefore performed by using the
regional tomographic model (Figure 8) and the double-
difference relocations as a priori information. A priori
model standard deviation is chosen from the optimization
procedure to be sh = 1000 m for the hypocenters, and sv =
500 m/s for the velocity parameters; correlation length is
l = 1 km. A detailed parametric study of the cost function
equals f (penalty function) shows that l = 1 km is the
optimal value (Figure 10b). Recall that choosing a shorter
correlation length does not ensure that the details of
the model will be more accurately reconstructed: where
the data constrain a small wavelength of the model, the
optimal a priori information does not constrain the result.
Optimal a priori information only stabilizes the result
where the data do not constrain the model.
[44] The double-difference tomographic inversion signif-

icantly modifies the velocity image of the volume (Figures
11b and Figure S1 in the auxiliary material1), introducing
small-wavelength variations in the initially smooth model
(Figure 8). The change is stable, and the double-difference
tomographic image exhibits a few random fluctuations.
This image has to be compared with the results of the
tomographic inversion of the travel times of the same set

of 614 events (Figure 11a) and the corresponding check-
erboard test (Figure 9). In the area where the model is well
estimated, double-difference tomographic results are
strongly correlated to the surface geological structures of
the Kilauea volcano. There is no systematic positive or
negative change in the velocity model directly related to
the distribution of earthquakes. RMS smoothly decreases
with iteration number and the final RMS is of the same
order of magnitude as the uncertainty on the time delay
measurements (0.01 s).

4. Discussion

4.1. Regional-Scale Tomography

[45] Checkerboard tests tends to indicate that the
velocity model is well reconstructed in most active areas
of island of Hawaii, where stable and strong velocity
contrasts are evidenced. Results of the regional-scale
tomography very clearly reveal the main geological
features of the island of Hawaii, namely the magmatic
complexes forming the calderas and the rifts. These
results are comparable to those obtained by Rowan
and Clayton [1993], although the methods used are very
different (Figure 9a, top, of Rowan and Clayton [1993]
is, however, quite similar to our Figure 8, at the depth
of 5 km). They confirm the results obtained by Okubo
et al. [1997] and Benz et al. [2003]. These results may
also be compared to the profiles obtained by Haslinger
et al. [2001] and Hansen et al. [2004] in the east rift
zone.
[46] The magmatic complexes appear as fast cores, sur-

rounded by slow materials. This feature was already
evidenced by all former authors and appears to be a stable
tomographic characteristic of the island of Hawaii
volcanism. The east rift zone of Kilauea volcano is
unambiguously imaged from 3 km to 10 km depth, through
a 30-km-long horizontal distance. Another striking feature
is the well-defined slow body embedded between the faster
magmatic complexes forming the Mauna Loa and the
Kilauea calderas, which may correspond to the one identi-
fied by Thurber [1984]. A simple interpretation concerning
these velocity contrasts and spatial distribution may be that
fast cores correspond to the dense magma set in place at
high pressure by dikes progressively expanding with time,
as the Mauna Loa and Kilauea flanks move seaward. Low-
velocity materials may be understood as being the result of
the progressive superficial filling of volcano flanks by the
erupted, decompressed lava. The well-defined slow body
existing between Mauna Loa and Kilauea volcanoes may
therefore be interpreted as a topographic valley filled by
lava (which is in accordance with what can be seen at the
surface), though the magma ridges progressively rose while
lava was filling the valley. We also notice the strong
horizontal velocity gradient in the south flank of Kilauea,
which seems to coincide with the Hilina fault system up to
�9 km depth. This feature is also noticeable, more or less
clearly, in the results of all the authors cited at the beginning
of this paragraph.

4.2. Double-Difference Tomography

[47] Comparing the results of travel time and double-
difference tomographic inversion (Figure 11) with the same

Figure 7. Cost function and RMS as a function of the
iteration number during the tomographic process. Solid line
indicates cost function; dashed line indicates weighted
(Mosteller and Tukey’s [1977] weight with a = 5, see text)
RMS. The fast convergence indicates good conditioning
and optimal a priori information.

1Auxiliary material is available at ftp://ftp.agu.org/apend/jb/
2004JB003466.
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Figure 8. Maps at various depths of the P wave seismic velocity after tomographic inversion at regional
scale (l = 5 km, sv = 1 km/s).
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Figure 9. Checkerboard test (double-difference tomography) represented in the southeast of Kilauea
caldera at various depths. Color scale indicates P wave velocity in km/s.
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Figure 9. (continued)
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events in the same volume shows significant changes in the
tomographic image of that region, especially at shallow
depths where the southern caldera–east rift zone region is
well reconstructed (Figure 9). First notice that the double-
difference tomographic image corresponds to coherent
structures and does not display random high-frequency
velocity changes. A striking feature of the double-difference
tomographic inversion results is the presence, between 4 and
9 km depth, of a fast (dense) magmatic complex cylindrical
body beneath the east rift zone (Figures 11b–12) which is
not imaged in the travel time tomography (Figure 11a). This
occurs in a well-defined volume where the model is
expected to be correctly estimated (Figure 9). A fast (dense)
magmatic cylindric body is the signature of the presence of
magma conduits in which magma is cooling without

decompressing. The dense bodies may therefore outline
the magma transport system of Kilauea volcano. An inter-
esting feature of the double-difference tomographic results
is the evidence of a change in direction of the magma
transport system between 4 and 6 km. Magma coming from
the depths below the caldera and southward, takes a N120�
direction corresponding closely to the east rift zone root
near the caldera, with an approximate 25�NW dip.
[48] At greater depths, the velocity model in the southern

caldera–upper east rift zone region may be correctly recon-
structed up to �8.5 km depth (Figure 9). The results tend to
indicate that the magma transport system is composed of
two different feeding zones between 8.5 and 7 km depth
(Figure 11b–12). Another striking feature is that the north-
ern zone is approximately cylindrical from 8.5 to 7 km
depth before joining the southern zone. It parallels the upper
east rift zone and approximately dips 25�SE between 8.5 and
7 km depth. It turns to be subvertical between 6 and 4 km
depth. The southern zone is approximately vertical. Both
structures intersect just beneath the caldera between 6 and
7 km depth. Between 6 and 4 km depth, the most striking
feature is the development of the upper east rift zone branch.
The travel time tomography results (Figure 11a) do not
display these features, although the images are not incom-
patible: travel time tomographic results appear as an ‘‘av-
eraged’’ image of the double-difference tomographic
results.
[49] There is little work directly comparable to these

results in that small region of the Kilauea volcano. Dawson
et al. [1999] used a 67-station network with an average
650-m station spacing within 5 km of the center of Kilauea
caldera, during a 1-month experiment. They record
206 events of the caldera, most of them shallower than
3 km in depth. The 3-D velocity model was computable
within a 100-km2 square surface centered on the Kilauea
caldera, up to an average depth of �5 km, using 0.5� 0.5�
0.5 km velocity cells. Results are published up to 2.5 km
depth, with an announced resolution of 0.5 km. They show
a 27 km3, 10% low-velocity anomaly in the southeastern
edge of the caldera, between the surface and 2.5 km depth.
In that volume, Thurber [1984] detected a low-velocity
anomaly. Our study shows high P wave velocities between
4.5 and 9 km depth beneath the caldera, although the
contrast between the velocities beneath and around the
caldera tends to disappear at 4 km depth. Studies by
Thurber [1984] and Okubo et al. [1997] also found high
P wave velocities at 5–8 km depth beneath the caldera. The
lack of a dense station network near the surface in our study,
the lack of deep earthquakes (>3 km), and the size of the
experiment in the study by Dawson et al. [1999] explain
that the two studies do not overlap, leaving a gap of about
2 km between the top of our results and the bottom of
Dawson et al.’s [1999]. Both approaches (dense station
network/dense earthquake array) are finally complementary
and have the potential to reach the same resolution. Another
conclusion that may be attempted is that Dawson et al.’s
[1999] results image an active magma storage zone, where
fluid magma occupies a significant part of the volume. In
contrast, our results image a magma transfer zone, where
the fast anomaly has been built by the progressive intrusion
of nondecompressed magma, and where fluid magma only
occupies a very limited volume. Figure 9 shows that a 20–

Figure 10. (a) Cost function (solid line) and weighted
RMS (dashed line) as a function of the a priori standard
deviation on spatial hypocentral parameters (double-
difference location in the regional velocity model). (b) Cost
function represented as a function of the penalty function
(a posteriori model variance), for various correlation lengths
l, and sv = 0.5 km/s (local double-difference tomography).
Cost and penalty functions (see equation (8)) are
adimensional.

B12306 MONTEILLER ET AL.: DOUBLE-DIFFERENCE TOMOGRAPHY, KILAUEA

16 of 22

B12306



Figure 11a. Maps of the P wave seismic velocity in the south flank of Kilauea at various depths after
local travel time tomography (l = 1 km, sv = 0.5 km/s). Geographical labels are in the upper left subplot.
KC, Kilauea caldera; UERZ, upper east rift zone; KSF, Kilauea south flank.
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Figure 11a. (continued)
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Figure 11b. Maps of the P wave seismic velocity in the south flank of Kilauea at various depths after
local double-difference tomography (l = 1 km, sv = 0.5 km/s). Geographical labels are in the upper left
subplot. KC, Kilauea caldera; UERZ, upper east rift zone; KSF, Kilauea south flank.
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Figure 11b. (continued)
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30 km3 10% low-velocity anomaly would not remain
undetected in the well-resolved volumes of our results.

5. Conclusion

[50] In this study, we have explored the numerical meth-
ods in seismic tomography and set up appropriate tools,
based on the optimization theory, for estimating as accu-
rately as possible P wave velocities in a heterogeneous
medium. We have shown that these tools allow the retrieval
of a stable velocity model on a regional scale. This model is
well correlated with the geological structures of the island of
Hawaii. A double-difference tomography algorithm has
been set up using the Tarantola-Valette approach. This study
allows us to evidence conditions necessary for the correct
use of double-difference tomography: (1) accurate indepen-
dent time delay measurements, (2) a stable, accurate 3-D
initial velocity model and travel time computation for
estimating reliable residuals, (3) extended correlated event
sets to limit trade-off between velocity and hypocentral
parameters and to reach good geometric conditioning from
data, (4) optimal a priori information to optimize the
conditioning and to give a criterion which allows the choice
of the final model. Double-difference tomography has been
performed using accurate time delays computed by the
cross-spectral method, from a well designed set of micro-
earthquakes recorded by the USGS HVO permanent seismic
network. In the volume where the medium is correctly
estimated, travel time and double-difference tomographic
results show significant differences. Double-difference
tomographic results exhibit a detailed and coherent image
of the magmatic system beneath Kilauea caldera and upper
east rift. They show a complex, but coherent trajectory for
the magma in the upper east rift zone.
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