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[1] We propose a possible model for the origin of the
spatial fluctuations of the stress field along faults and test
our model in the case of the Nojima fault, Japan where
unique estimates of the absolute stress field have been
obtained. The model consists of two parts: an up-scaling of
the fault morphology measured at laboratory scales and a
numerical computation using a boundary element approach
of the influence on the stress field along the fault of an
elastic squeeze of the fault asperities. Accordingly,
fluctuations of the stress field along the fault would
be dominated by quenched fault properties rather
than dynamical stress fluctuations produced during
earthquakes. Citation: Schmittbuhl, J., G. Chambon,

A. Hansen, and M. Bouchon (2006), Are stress distributions

along faults the signature of asperity squeeze?, Geophys. Res.

Lett., 33, L13307, doi:10.1029/2006GL025952.

1. Introduction

[2] Numerous recent studies have been proposed to
reconstruct slip and stress histories along faults during large
earthquakes [e.g., Tinti et al., 2005]. Even if different
inversions for the same fault show discrepancies, co-seismic
slip and stress drop distributions usually exhibit very
heterogeneous patterns [Mai and Beroza, 2002; Lavallée
and Archuleta, 2005]. Such observations suggest that either
dynamical processes during earthquakes roughen the stress
fields, or that strong heterogeneities of the stress field
persist along the fault over the seismic cycle. Each hypoth-
esis leads to very different modelling of seismic hazard.
Indeed the first case requires a careful description of the
mechanical instability and of the earthquake dynamics. In
the second case, on the contrary, a precise analysis of the
fault structure is required. To choose among these assump-
tions, estimates of the absolute stress field along the fault
are required though they are rather difficult to obtain.
[3] The 1995 Kobe, Japan, earthquake is a unique case

where the absolute stress field has been recovered with a
sufficiently high spatial resolution [Bouchon et al., 1998].
The estimate of the absolute stress field in Figure 1 relies on
the rotation of the slip vector during the earthquake and the
requirements of co-linearity between the directions of max-
imum shear stress and instantaneous slip [Spudich, 1992].
The grid size of estimated values is 61 � 22 with a spatial
resolution of 1 km � 1 km. Stress estimates are obtained
from the inverted slip distribution along the fault [Bouchon
et al., 1998] assuming that the friction is isotropic and that

the instantaneous slip direction is the direction of maximum
shear stress. The slip inversion computation implies an
interpolation but only limited to the lowest scales (<5km).
[4] The absolute initial stress field shows significant

spatial fluctuations (see Figure 1). The average initial stress
estimated over the inversion region is rather low: 3.3 MPa
with rms fluctuations of the same order: 1.9 MPa. Average
final stress are: 1.6 ± 1.2 MPa. Main asperities are is of the
order of 10 km and with an isotropic distribution. It is of
interest to note that although magnitudes of the peaks are
smaller in the final case, their positions are persistent with
respect to the initial stress field (except at large depth
around 20 km where local maxima of the initial stress are
significantly reduced by the earthquake - this area is
however the region of weakest resolution). Accordingly, a
significant part of the heterogeneities of the stress field is
quenched along the fault, and only weakly modified by
dynamical stress fluctuations that result from earthquake
propagation.
[5] Micro-earthquake activity is another possible signa-

ture of structural asperities along the fault [Rubin et al.,
1999]. The case of the Izmit region, Turkey around the 1999
Kocaeli, earthquake is a good example. Indeed, a significant
activity has been monitored before the main event [Bariş et
al., 2002] and followed after the earthquake [Özalaybey et
al., 2002].
[6] In this letter, we propose a possible mechanism for

the origin of the stress fluctuations along the fault. We
attempt to link the stress field distribution to the roughness
of the fault plane. This is based on the analysis of the
transformation of fault asperities when submitted to a
normal load. We limit ourselves to an elastic deformation
of the topography which might be dominant at large scales.
In doing so, we ignore plastic strain which might occur
locally on small asperities. We however include the broad
range of asperity size as observed on natural fault surfaces.

2. Fault Roughness

[7] Roughness of the fault plane has been largely studied
both at laboratory scale [Scholz, 1997; Power and Durham,
1997] and at field scale [Power et al., 1987; Schmittbuhl et
al., 1993]. We complete here former results at laboratory
scales with the measurement of the topography of two fault
planes: one extracted from the Bastille Hill fault (BF) near
the city of Grenoble, France and the second one from the
Aegion fault (AF) in the Gulf of Corinth, Greece. An optical
profiler has been used with a resolution of 3 mm for
positions along the mean fracture plane and of 1 mm for
height estimates [Renard et al., 2004]. The grid was 4100 �
873 for BF and 2050 � 2050 for AF, with a mesh of
24 mm � 24 mm.
[8] Analysis of the roughness has been performed using

the rms topography at scale l: s(l) [Schmittbuhl et al.,
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1995a, 1995b]. A power law behavior with a slope that
defines the Hurst exponent of the fault roughness, is very
consistent with the data over three decades (see Figure 2).
We obtained Hr = 0.81 ± 0.03 for BF and Hr = 0.76 ± 0.03
for AF. These results are similar to other measurements
[e.g., Scholz, 1997]. Moreover, the results obtained at
laboratory scales is also valid at field scale [Schmittbuhl
et al., 1993; Renard et al., 2006] thus providing a geomet-
rical model of fault topography at all scales.
[9] To get a full description of the fault asperity geom-

etry, the prefactor of the scaling function has also to be
characterized. For instance, using the standard deviation of
the height differences over a length scale Dx, the prefactor
can be defined as: s(Dx) = lr

1�HDxH where H is the Hurst
exponent and the prefactor lr is the topothesy of the fault
roughness [Simonsen et al., 2000]. The latter is a charac-
teristic length scale along x for which typical fluctuations of
the roughness are of the same order: s(lr) = lr. In other
words, lr is the typical length scale to get a 45� slope. The
topothesy of the measured fault planes is very small: lr � 3
10�6m for BF and lr � 3 10�7m for AF, meaning that fault
surfaces are rather smooth.
[10] We confirmed our results by using an independent

technique: the Average Wavelet Coefficient technique
[Simonsen et al., 1998]. It starts from the wavelet transform
along horizontal stress profiles:

Wa;b ¼
1ffiffiffi
a

p
Z þ1

�1
dx y

x� b

a

� �
jtðx; z ¼ constÞj ð1Þ

where y is in our case a Daubechies-4 wavelet. Wavelet
coefficients are then averaged over the translation factor b
for each length scale a: Wa = hWa,bib. For a self-affine field,
the average wavelet coefficient scales as: Wa / aHt+1/2. The
topothesy could similarly be defined from the wavelet
spectrum: W(a) = ar

1�H a1/2+H with W2/3(ar) = ar. We
obtained for the fault roughness, ar = 9 10�5m for BF and
ar = 2 10�10m for AF.
[11] Despite the relatively large scattering of the fault

topothesy values, it is possible to get an estimate of the
magnitude of fault asperities at field scale, from the scaling
property of the measured fault roughness at laboratory scale.
For instance, at a kilometric scale, s(1 km) � 5–20m and at
a 60 km scale, like the inverted region extension for Kobe
earthquake (Figure 1), s(60km) � 100–600m. This shows
that the fault is essentially flat at large scale (i.e., small
aspect ratio su(Dx)/Dx = lr

0.2 Dx�0.2) but still includes a large
scale pattern of small magnitude asperities.

3. Asperity Squeeze Model

[12] The first step in the link between topography and
stress, is to estimate the normal stress field from the full
squeeze of the fault asperities. The difficult part consists in
the non independence of the asperities during deformation
owing to their strong spatial correlations and the long range
elastic coupling. The approach is based on the work of
Hansen et al. [2000] and Batrouni et al. [2002] which
consists of a boundary element modeling of the elastic
deformation of a rough interface using Fourier acceleration.
The code provides an estimate of the normal stress distri-
bution when squeezing a rigid rough surface against a
elastic half space which is an equivalent problem to two
rough elastic surfaces in contact. Therefore, it transforms
geometrical asperities under a free boundary condition to an
elastically loaded interface in partial or full contact with or
without cohesion. It converges iteratively toward a mechan-
ical equilibrium of the interface which is submitted to mixed
boundary conditions: imposed displacement for the contacts

Figure 1. Absolute shear stress distributions along the
Nojima Fault, Japan: (top) before (initial stress) and
(bottom) after (final stress) the Kobe, 1995 Earthquake
(modified after Bouchon et al. [1998]). Dark gray areas
correspond to local maxima, x- and z- axes are respectively
horizontal and vertical directions. These distributions show
persistent spatial fluctuations: relative maxima are located at
similar positions along the fault plane (except at large
depth).

Figure 2. Scaling of fault roughness at laboratory scale.
Two fault plane are sampled: the Bastille hill fault,
Grenoble, France (BF) and the Aegion fault, Greece (AF).
Fits are: W(a)/a1/2 = 0.17 a0.81 and s(l) = 0.09 l0.81 for the
Bastille Fault and s(l) = 0.027 l0.76 for the Aegion fault.
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and imposed stress for non contact areas. Figure 3 presents
the AWC spectrum of the produced stress field for different
normal load in the case of a synthetic fault with properties
equal to that measured at laboratory scale (lr = 3 10�7 and
Hr = 0.8) without cohesion along the fault. At full contact
and with cohesion, the Hurst exponent of the normal stress
field Hs approaches: Hs = Hr � 1 as shown by Hansen et al.
[2000]. It is of interest to note that under the conditions of
full contact, the scaling exponent becomes negative. Ac-
cordingly, the fluctuations of the stress field increases when
scale decreases. For instance, in the case of a scaling valid
over a very large range of length scales, e.g., from a sub-
millimeter scale to 100 km scale, the ratio of the stress
fluctuations estimated at these two different scales, could be
as small as: ss(100km)/ss(0.1mm) � 10�2. If partial
contact takes place, the effective Hurst exponent is evolving
with load from positive at smaller load to negative at higher
load.
[13] As a second step, we propose that the fault asperity

squeeze process could be a possible mechanism for explain-
ing the general feature of the stress field along faults at the
onset of an earthquake. Indeed, we assume that a friction
law exists along the fault that locally relates the shear stress
t to the normal stress s: t = ms with a friction coefficient m.
On this basis, the average shear stress field is related to the
distribution of the friction coefficient and that of the normal
stress: htifault = hm � sifault. The simplest assumption is to
consider that the friction coefficient is constant like for a
Coulomb criterion. In this case, the shear stress is simply
proportional to the normal stress, and the self-affine scaling
of the normal stress field also applies to the shear stress:
Ht = Hs. Hence we predict that the Hurst exponent of the
shear stress is Ht = Hr � 1 � �0.2 if the Hurst exponent of
the fault roughness is Hr � 0.8.

[14] The knowledge of the scaling of the stress field
allows us to produce synthetic stress fields that reproduce
observed fluctuations. Figure 4 shows an example of two
synthetic stress fields computed using a similar grid to
observed data and a similar stress magnitude (same average
stress and same rms). The upper plot is a smoothed stress
field with a smoothing at small scales similar to inverted
data. The stress field is computed from the fractional
integration of a white noise in the Fourier domain. Indeed
a self-affine surface with an Hurst exponent H has 1D
power spectra with a slope s = �1 � 2H in a log-log plot.
Accordingly, after producing a white noise with a flat power
spectrum, its 2D Fourier transform is multiplied by the
factor: k�1�H where k is the wavenumber [Méheust and
Schmittbuhl, 2001; Lavallée and Archuleta, 2003]. An
inverse Fourier transform provides the synthetic stress field
as shown in Figure 4. The second plot in Figure 4 is without
smoothing and represents an extended scaling down to the
grid size (the kilometer scale). Fluctuations are significantly
larger at small scales and display anti-persistent correla-
tions. Such a behavior is expected to be generic for squeeze-
induced normal and shear stresses, since roughness
exponents of fault surfaces are systematically below unity
for a wide range of scales.

4. Case of the Nojima Fault, Japan

[15] In terms of stress magnitude, our stress computation
predicts (using the prefactor of the fit of Figure 3 for AF
with l = 105) that the magnitude of the stress field at large
scale (i.e., 100km) and with a full asperity squeeze and a
cohesion condition (i.e., Ht = �0.2), would be of the order
of: st(100 km) = 8 10�4 pmE/(1 � n2). Classical values of
E, n and m: E = 3 1010 Pa, n = 0.25 and m = 0.6, lead to
st(100 km) � 50 MPa instead of the 2MPa measured along
the Nojima fault. Let us first recall that the average stress
along the Nojima fault is very low compared to classical
estimates. Second the prefactor in st estimate is propor-
tional to the roughness topothesy lr. A lower magnitude of
the topothesy of the Nojima fault could contribute to a lower
prediction of st. Otherwise, a lower E modulus at large
scale or a more complex friction coefficient distribution
could also explain some of the difference. Moreover we did
not account for any yield stress though plastic strain
definitively develops at local scale during asperity squeeze
under large load. These aspects will be included in a
forthcoming work.
[16] To describe the scaling of the heterogeneities of the

stress field t(x, z), presented in Figure 1, where x and z are
respectively the horizontal and vertical coordinates, we
search for possible spatial correlations of the stress fluctua-
tions. Along horizontal profiles, we computed the auto-
correlation function of the local stress estimates. More
precisely, we looked for power law auto-correlation func-
tions. Indeed, if the auto-correlation function of a stress
profile is a power law and scales as: ht(x), t(x + d)ix / d2Ht,
then the stress field is self-affine with Ht the Hurst exponent
if multi-affinity is excluded.
[17] One way to estimate the auto-correlation function is

to compute the power spectrum which is its Fourier trans-
form. Figure 5 shows the power spectra of the of initial and
final stress profiles along x in a log-log plot. Though the

Figure 3. Scaling of dimensionless normal stress field
when squeezing the fault roughness elastically (E is the
Young modulus and n is the Poisson coefficient). Normal-
ized AWC spectrum are computed for different imposed
normal displacements applied to the fault. The grid is 512 �
512. Magnitude of the normal load is monitored from the
ratio of the effective area of contact to the total area of the
interface (i.e., full contact is 100%). The roughness of
the deformed topography has the same scaling as for
Aegion Fault (AF).

L13307 SCHMITTBUHL ET AL.: STRESS DISTRIBUTIONS L13307

3 of 5



absolute stress fields obtained for the Kobe earthquake
present the best resolution accessible with existing seismo-
logical data, only limited ranges of scaling are available.
Two regimes can be proposed: at small scales, i.e., large
wave numbers, (between 1km and 5km) the behavior can be
attributed to data interpolation and resolution limitations. At
large scales, i.e., low wave numbers, (above 5 km), a power
law with an exponent 0.7 ± 0.1 is a possible fit. The latter
indicates a self-affine behavior with a negative Hurst
exponent of Ht = �0.15 ± 0.1. An uncorrelated noise
would show a Hurst exponent H = �0.5, i.e., a flat
horizontal behavior in Figure 5 [Hansen et al., 2001].
Accordingly, stress fluctuations are weakly correlated but
sufficiently to be non independent. Moreover a negative
Hurst exponent means that fluctuations are larger at small
scales than at large scales. It is important to note that the
proposed fit at large scales is valid for both the initial and
final stress fields. This is consistent with the persistence of
the stress field because of quenched structures along the
fault.
[18] The prediction of the squeeze model compares well

with what has been obtained at large scale (i.e., above the
smoothing length scale) for the Kobe earthquake as shown

Figure 4. Example of a synthetic stress field produced from a self-affine distribution with a Hurst exponent Ht = �0.2.
(top) A similar interpolation to observed data at small scales is introduced. (bottom) No smoothing at small scales is done.

Figure 5. Power spectra of the horizontal stress profiles
averaged over the 10 first kilometers: IS for initial stress
field and FS for final stress field (shown in Figure 1).
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in Figure 5. It also implies, as mentioned earlier, that the
magnitude of the shear stress fluctuations could be larger
locally than at large scale. Indeed, rms of the stress field
filtered at scale l, evolves as: st(l) / l�0.2.

5. Conclusions

[19] In conclusion, we analyzed the 1995 Kobe earth-
quake for which it has been possible to reconstruct not only
the relative stress field during the event (stress drop), but
also the absolute stress field [Bouchon et al., 1998]. It
appears that distributions of initial and final stresses before
and after the earthquake, show strong similarities. This
suggests that the stress distribution constitutes an intrinsic
property of Nojima fault, and is only slightly affected by
earthquakes. Shear stresses along Nojima fault exhibit
strong spatial variability.
[20] Despite a small range of resolution, the power

spectrum of the stress field is shown to be consistent with
a self-affine scaling with a slightly negative Hurst exponent
(Ht = �0.2) that comes from the elastic squeeze of up-
scaled fault asperities.
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