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1Laboratoire de M2C, Université de Caen, UMR CNRS/INSU 6143, Caen, F-14000, France. E-mail: daniel.amorese@unicaen.fr
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S U M M A R Y
The Gutenberg–Richter b-value is thought to reflect the stress conditions in the crust; therefore,
spatial and/or temporal variations of the b-value can provide important information regarding
crustal tectonics. We investigate the variation of b-value with depth in seven selected areas
of Southern California. A previous study provided a detailed mapping of the variations of
b with depth in California; our study is less systematic than this study. Our approach is
more similar to the regional one used by Mori & Abercrombie. In comparison to these
previous studies, our investigation indicates that the variability of b is often not statistically
significant and that the decrease of b with depth should be interpreted with caution. The
seismic catalogues used are subsets of a set of about 100 000 seismic events recorded by the
Southern California Seismic Network (SCSN) and relocated by Richards-Dinger & Shearer.
We study the performance of Utsu’s test compared to bootstrap tests for comparison of b-values.
The results of our investigation also raise the question of the relevancy of Utsu’s test when
comparing b-values. Both simulations and real cases show that the Utsu’s test is biased towards
rejection of the null hypothesis in favour of the hypothesis that b-values are significantly
different.

Key words: Numerical approximations and analysis; Spatial analysis; Statistical seismology;
North America.

1 I N T RO D U C T I O N

A fundamental statistical description of seismicity is the Gutenberg–
Richter (G–R) law (Gutenberg & Richter 1944)

log10 N (M) = a − bM, (1)

where a and b are constants, M is the magnitude, and N(M) is
the number of earthquakes that occur in a specific time window
with magnitude ≥M . The b-value characterizes each frequency–
magnitude distribution (FMD) by reflecting the relative proportion
of the number of large and small earthquakes in a time interval for
a given region. Because b is often interpreted as an indicator of
applied shear stress and material heterogeneity (Mogi 1962; Scholz
1968; Main et al. 1992; Mori & Abercrombie 1997; Schorlemmer
et al. 2005), an important question is whether significant spatial or
temporal variations of the b-value exist. In short, when the con-
fining pressure is increased with depth, the b-value is expected to
decrease whereas the average earthquake magnitude is expected to
increase. Therefore this inferred link of b-value with the applied
stress explains why b-value variations are considered valuable data
in statistical seismology and seismic hazard studies (estimation of
recurrence times of large earthquakes) and in volcanic seismology
(mapping of the magma chamber) (Wiemer & Wyss 2002; Zuniga

& Wyss 2001; McNutt 2005; Murru et al. 2007). Many results are
presented to support the spatial and/or temporal heterogeneity of b
(Wiemer & Benoit 1996; Amelung & King 1997; Molchan et al.
1997; Mori & Abercrombie 1997; Wiemer & Wyss 1997; Wyss
et al. 1997; Power et al. 1998; Wiemer et al. 1998; Wyss et al.
2000; Gerstenberger et al. 2001; Zuniga & Wyss 2001; Rydelek
et al. 2002; Schorlemmer et al. 2003; Murru et al. 2004; Bridges
& Gao 2006; Murru et al. 2007). Nevertheless, some seismolo-
gists have shown that the apparent variability of the b-value was
in some cases not significant (Del Pezzo et al. 2003) and others
interpreted the b-value variability as an artefact due to a lack of
statistical rigour (Kagan 1999). Such viewpoints are not surpris-
ing, when one acknowledges the numerous sources of instabilities
and uncertainties in b-value determinations. Following ‘Ockham’s
Razor’ principle, the simplest explanations are the most likely. Thus,
when temporal changes or spatial variations in b-value are observed,
one may suspect that these are due to changes in network operating
parameters or to spatial variations in seismic station density. Nev-
ertheless, errors in b-value calculation can also result in potentially
misleading b-value variations. Wiemer & Wyss (2000) showed that
a significant bias may be introduced in b-value computation by
a wrong choice of the threshold magnitude. Marzocchi & Sandri
(2003) recently pointed out the biases introduced by the use of
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binned magnitudes and the effect of measurement errors on mag-
nitude. But other problems and sources of error are possible when
computing the b-value

(i) insufficient sample size;
(ii) the mixing of magnitude types;
(iii) the contamination by blasts and
(iv) earthquake clusters.

It should be noted that some studies (Wyss et al. 2000; Rydelek
et al. 2002) supporting a b-value variation drew their conclusions
about this possible phenomenon without performing any statisti-
cal test of hypothesis. Most studies (Mori & Abercrombie 1997;
Bridges & Gao 2006; Gerstenberger et al. 2001; Zuniga & Wyss
2001; Murru et al. 2004) only used a single test method to sup-
port their results regarding b-value changes, namely the Utsu’s test
(Utsu 1992, 1999). Unfortunately, this test is a goodness-of-fit and
homogeneity test; therefore, it does not evaluate the significance
of a one-sided null hypothesis. In this study, we propose additional
tests for the statistical significance of b-value differences. Our first
approach is based on bootstrapping to estimate the relevancy of the
b-value comparison statistic, when b-values are calculated through
the Aki–Utsu formula (Aki 1965; Utsu 1965). Our results are cross-
checked, when possible, using a non-parametric linear regression
method for the computation of b-values.

After a brief summary of previous results on b-values for South-
ern California, these methods are presented. Several numerical sim-
ulations are then performed to compare the different computation
techniques of b-value (Aki–Utsu formula and the non-parametric
method). Next we perform numerical simulations to compare the
results of various significance tests on the differences in b-value.
Finally, the dependence of b-value on depth is investigated for seven
subzones of Southern California, with areas ranging from 900 to
2500 km2.

2 S O M E P R E V I O U S R E S U LT S
O N b - VA LU E S F O R S O U T H E R N
C A L I F O R N I A

This section is mostly focused on the Gerstenberger et al.’s work
(Gerstenberger et al. 2001). In their paper, Gerstenberger et al.
(2001) tested the hypothesis that the b-value for the shallowest
part of the crust is significantly higher than the bottom part of
the crust. They systematically mapped the ratio (rb) of shallow to
deep b-values in California and tested to see if the difference was
significant at the 99 per cent level. Their tests were carried out both
on Northern and Southern California data. For Southern California,
Gerstenberger et al. stated that they used the high quality relocated
Southern California catalogue of Richards-Dinger & Shearer (2000)
from 1981.3 to 1998.2. As several quarries are located in Southern
California, these authors removed all daytime events between the
hours of 16:00 and 3:00 GMT. Their study areas were sampled at
5 km node spacing by using cylinders containing 1000 earthquakes.

To compute the ratio of shallow to deep b-values (rb) each cylin-
der with radius smaller or equal to 40 km was divided into a a top
zone from 0 to 5 km and a bottom zone from 8 to 15 km. A maxi-
mum magnitude cut-off of M5.5 was adopted by these authors with-
out explanation and calculations of b-values were done using the
Aki–Utsu (Aki 1965; Utsu 1965) equation. A minimum of 50 events
of magnitude greater than m0 (threshold magnitude) was required for
each b-value computation. To determine if the difference between

the top and bottom zone b-value was significant, Gerstenberger et al.
applied the Utsu’s test (Utsu 1992).

Whereas the study of Gerstenberger et al. was concerned with
both Northern and Southern California, our study is focused on
Southern California where Gerstenberger et al. found 34.4 per cent
of the area showing rb values greater than 1.0 (top zone b-value
greater than bottom zone b-value). They compared this value with
the small area showing rb < 1.0 (1.1 per cent of the Southern
California sample area). From their analysis of both the Southern
and the Northern California catalogues, Gerstenberger et al. were
in agreement with previous studies (Mori & Abercrombie 1997;
Wiemer & Wyss 1997; Wiemer et al. 1998) and concluded that the
general trend was a decrease in b-value with depth. Moreover, com-
bining random simulations and the Utsu’s test, Gerstenberger et al.
suggested that rb values smaller than 1.0 might simply represent
random fluctuation of b.

3 M E T H O D S

3.1 Computation of the b-values

Many equations have been proposed to represent the distribution of
earthquake magnitudes, although the original G–R relation seems
to be the most suitable for many cases (Utsu 1999). Therefore, we
have calculated b-values for California under the assumption that
magnitudes were distributed in accordance with the G–R formula.
Although some investigators (Marzocchi & Sandri 2003) recently
noted an improvement provided by Tinti and Mulargia (1985, 1987)
to the estimation of the b-value, we have followed Gerstenberger
et al.’s (2001) and employed the Aki–Utsu (Aki 1965; Utsu 1965)
equation. This choice was made to use the most widely used equa-
tion for the computation of the b-value. The Aki–Utsu (Aki 1965;
Utsu 1965) equation with continuity correction (in this study, mag-
nitude values have been rounded to one decimal place) reads

bAU = log10(e)/[m̄ − (m0 − 0.05)]. (2)

Here m̄ is the mean magnitude and m0 is the threshold magnitude.
Thus, a high mean magnitude is equivalent to a low b-value. In
this study, m0 was determined following the change-point method
proposed by Amorèse (2007). Aki (1965) and Shi & Bolt (1982)
gave error estimates for maximum likelihood b-values

SESB = 2.30bAU2

√∑N
i=1(Mi − m̄)2

N (N − 1)
. (3)

This error estimate is too low because possible sources of errors
are neglected by the underlying statistical model. The most cited
error source is from the uncertainty in the threshold magnitude, but
uncertainties in magnitude estimation should also be considered
(Rhoades 1996). This was not directly possible in this study as the
data set that was used did not include the information on magnitude
uncertainties. Thus, like Schorlemmer et al. (2003) and Amorèse
(2007), we simply adopted a bootstrap approach to estimate more
realistic errors in b. The bootstrap approach is intended to simulate
the variability of FMDs.

In this study, to strengthen our results, we were concerned with
an alternative way to estimate b-value. Many authors show that the
estimation of the b-value by a least squares technique is statistically
unjustified and/or biased (Weichert 1980; Bender 1983; Sandri &
Marzocchi 2007). For instance, b-value calculated by the method
of linear least squares regression has the major drawback of being
strongly influenced by the distribution of a few large earthquakes in
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the FMD. Thus, our attention was directed towards a non-parametric
regression technique using Siegel’s repeated medians (Siegel 1982).
This method is highly resistant to outliers and large measurement
errors (Smirnov 2003) and requires limited a priori information
regarding errors. For the G–R relation, if n magnitude intervals are
considered, for each point i , n − 1 slopes are computed, between i
and the other points

bi j = log10(N j ) − log10(Ni )

M j − Mi
, (4)

where Mi �= M j .
Then, for each point i, the median of slopes is taken. This results

in n median values. In the repeated medians technique, the slope
estimator is the median from these n medians. Therefore, the b-value
is

bRM = −Med[Med(bi j )]. (5)

The standard error (SE) of this slope can be estimated through a
bootstrap approach as follows (Siegel, pers. comm., 2007 November
27):

(i) the sample of n (M , log10(N )) pairs is treated as a population
and sampled with replacement.

(ii) the bRM value is calculated for this bootstrap sample.
(iii) stages #1 and #2 are repeated B times [B is large enough

when B > 1000 (Efron & Tibshirani 1993; Mooney & Duval 1993)].
(iv) the bootstrap standard error of bRM is the standard deviation

of the B bootstrap bRM values.

Thus, if B is the number of replicates, the bootstrap standard error
of bRM is estimated by

SE(bRM) =
√√√√ 1

B − 1

B∑
i=1

(
bRM

i − b̄RM
)2

. (6)

In this study, the repeated medians regression technique was used
to fit incremental FMDs. The bin size was taken to be equal to 0.1
magnitude unit.

3.2 Significance test of the difference in b-value between
two groups

This question has been addressed by Utsu (1966, 1992, 1999).
The first solution proposed by Utsu (1966) was based on the F-
distribution. Given two earthquake groups A and B, this test con-
sisted in testing the hypothesis b0A = b0B (b-values of populations)
by comparing bB/bA(b-values of the samples, bA < bB) with the
F-value with 2sA and 2sB degrees of freedom at a given confidence
level, where sA and sB are the numbers of earthquakes in A and B.

Utsu also proposed (Utsu 1992, 1999) a similar test based on
the Akaike information criterion (AIC). This later test is certainly
the most widely used when b-values have to be compared (Mori
& Abercrombie 1997; Zuniga & Wyss 2001). For two earthquake
groups A and B, it consists in computing the difference in AIC

�AI C = − 2(NA + NB)ln(NA + NB) + 2NAln(NA + NBbA/bB)

+ 2NBln(NAbB/bA + NB) − 2, (7)

where NA and NB are the number of earthquakes used to calculate
b-values bA and bB, respectively. Usually, the difference in AIC is
considered significant if it exceeds about 2. A relationship exists to
derive a probability value from �AIC (Utsu 1992)

p�AI C = exp

(−�AI C

2
− 2

)
. (8)

Therefore, if �AIC = 2, p�AIC � 0.05. It should be noted that two
data sets with different magnitude thresholds could only be tested
by this �AIC test if the assumed Gutenberg–Richter relation is
similar (Utsu 1999). Until now, this assumption is still a debatable
point (Rydelek & Sacks 2003; Wiemer et al. 2003). But the most
important limitation for both the F-test and the AIC test consists
in their null hypothesis (‘the data follow a specified distribution’),
because these two tests are goodness-of-fit tests. Therefore, these
procedures do not provide strong indications on the significance
of comparison null hypotheses (‘b1 − b2 = 0’), particularly when
one-sided alternative hypotheses are tested (‘b1 − b2 > 0’).

In this study, we used the bootstrap resampling procedure to test
the difference in bAU. The bootstrap method (Efron 1979; Efron &
Tibshirani 1993) allows to carry out crude statistical inference while
empirically incorporating all the sources of uncertainty in the com-
putation of b-value. The fundamental assumption of the bootstrap
method is that the observed data are representative of the underlying
population. Schorlemmer et al. (2003) used a bootstrap method to
compute the stability and significance of a b-value contrast.

Several statistical quantities can be estimated with the bootstrap.
In this study, the bootstrap was focused on obtaining estimates of

(i) standard errors of bRM (see Section 3.1);
(ii) p-values for test statistics under the null hypothesis that two

population bAU-values are equal.

The method principle consists in generating replicates (resamples)
from the original sample with a Monte-Carlo simulation. The boot-
strap procedure is computer-time consuming and requires a reliable
pseudo-random number generator. With modern computers, these
two following requirements are easily satisfied:

(i) computer power is progressively growing and is inexpensive;
(ii) the free R statistical environment (Ihaka & Gentleman 1996)

provides several efficient pseudo-random number generators.

The procedure for obtaining estimates of standard errors of bRM

has been previously described in Section 3.1. The procedure for
estimating p-values for test statistics is as follows. For the correct
estimation of p-values, resampling must be performed under an ap-
propriate null hypothesis. We consider the case of two independent
random samples of earthquake magnitudes and we are interested
in the difference in population b-value. To get the null distribution
of the difference, we need to force the b-values to be equal when
creating replicates. This can be achieved by drawing both samples
with replacement from the pooled magnitude set. This is the resam-
pling version of the R.A. Fisher’s permutation test (Fisher 1934),
but using b-values instead of means as a comparison statistic. The
algorithm of our ‘seismological’ version of the Fisher’s permutation
test statistic is as follows:

(i) All the n + m magnitude values from both FMDs are com-
bined together to form x.

(ii) B samples of size n + m are drawn with replacement from
the pooled magnitude set x. The first n observations are called z∗i

and the remaining m observations are called y∗i , for i = 1, 2, . . . ,B.
(iii) On each sample, T (.) is evaluated, T (x∗i ) = b(z∗i ) − b(y∗i ),

i = 1, 2, . . . ,B.
(iv) The bootstrap one-sided p-value of the test is defined as

pB = No. of T (x∗i ) ≥ T0

B
, (9)

where T0 is the value of T computed from the observed samples
(i.e. the observed difference in b-value).
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To test the difference in bRM, we followed A.F. Siegel’s recommen-
dation (Siegel, personal communication, 2007 November 27) of a
bootstrap t-test and formed the statistics

t = bRM
A − bRM

B√
SE2

A + SE2
B

, (10)

where SEA and SEB are the bootstrap-derived standard errors for
each bRM value. If |t | > 1.96, then the difference is significant at
the 5 per cent level.

4 T E S T S O N S Y N T H E T I C S E I S M I C
C ATA L O G U E S

We compared the performance of b-value calculation techniques and
of the difference test procedures on synthetic seismic catalogues.
The complete part of the catalogue was modeled by the G–R relation
and the incomplete part of the FMD was modeled by a normal
cumulative distribution function

F(M |μ, σ ) = 1

σ
√

2π

∫ m0

−∞
exp(− (M − μ)2

2σ 2
)dM. (11)

In this equation, μ denotes the magnitude at which 50 per cent of the
earthquakes are detected and σ is the standard deviation describing
the magnitude range of the incomplete part of the FMD. This choice
was not based on physical reasoning but instead based on ‘shape
likeness’ used by Ogata & Katsura (1993) and Woessner & Wiemer
(2005). After generating the synthetic catalogues, the magnitude
values were sorted with a fixed bin width of 0.1 to mimic the
discrete magnitude values in a real catalogue.

Synthetic seismic catalogues were used to investigate only ran-
dom fluctuations and to eliminate effects that may be due to spatial
and/or temporal variations in the natural seismicity. Two synthetic
seismic catalogues were generated (Fig. 1), each including one and
a half million events with 90 per cent of them above M = 0.98.
Theoretical b = 1.0 and 0.7 FMDs were simulated, respectively.

4.1 Comparison of the performance of b-value calculation
techniques

Our regression technique has not been previously used in b-value
estimation; therefore, initial tests were concerned with the ability
of the repeated medians regression to compute correct values of b
and the associated uncertainties. The opportunity was also taken to
check the accuracy of the standard error estimates for maximum
likelihood b-values. From each of our two one and a half million
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Figure 1. Synthetic frequency magnitude distributions, for the cases b = 1 (a) and b = 0.7 (b).

events catalogues, we randomly extracted 10 000 different seismic
catalogues. The sizes of these 10 000 samples (i.e. ‘subcatalogues’)
were trimmed to get the number of data above or equal to the thresh-
old magnitude uniformly ranging from 50 to 2500 events. These size
limits were not arbitrary because various studies adopted 50 as the
minimum number of events for stable b-value results (Murru et al.
1999; Gerstenberger et al. 2001; Schorlemmer et al. 2003; Bridges
& Gao 2006). In the same studies, it was rare when regional b-
values were computed with more than 2500 events. For each of
the 10 000 catalogues, m0 (threshold magnitude) was determined
from 1000 bootstrap replicates of each FMD, following Amorese’s
procedure (2007). Then, we calculated bAU, bRM and their error
estimates

(i) SESB for bAU (eq. 3).
(ii) SEAU, the bootstrap standard error from 1000 replicates for

bAU

(iii) SERM, the bootstrap standard error from 1000 replicates for
bRM.

To investigate the bias in the estimated b-value, in Fig. 2, we reported
the different b-values as a function of the number of data above or
equal to the threshold magnitude, for the cases b = 1 and 0.7. Fig. 2
shows that bAU values are quite close to the theoretical b-values
whereas bRM and especially bLS values seem to underestimate true
b-values (Fig. 2). We find that bRM values appear to be reliable
estimates only when N is larger than 600. This is the reason why in
the following, the repeated median regression is only applied on the
largest data sets. The repeated median regression is certainly not the
most efficient technique for computing the b-value. Anyhow, this
is always a better method than the least-squares regression. Under
favourable conditions (large N), the repeated median regression
has the advantage of being an efficient alternative approach to the
Aki–Utsu equation.

The precision of results was investigated by plotting the relation-
ships between the different b-values standard errors as a function
of the number of events above or equal to the threshold magnitude
(Fig. 3). As expected, in each case, the standard error gets smaller
as the sample size gets larger (Fig. 3). An interesting observation
is that standard errors that are derived from the Shi and Bolt equa-
tion (eq. 3) (Shi & Bolt 1982) seem to underestimate true standard
errors: in Fig. 3, root mean square error values (taken to repre-
sent true standard errors) are systematically larger than the Shi and
Bolt’s estimates for standard errors. In contrast, root mean square
error values and bootstrap standard errors show a good agreement
(Fig. 3).
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Figure 2. Plots of b-value versus number of data above or equal to the threshold magnitude for the Monte-Carlo simulation of various b-value estimation
methods, for the cases true b = 1 (top) and true b = 0.7 (bottom). Three fitting techniques are compared: the Aki–Utsu equation (AU), the repeated median
regression (RM) and the orthogonal least squares regression (LS). Each box-and-whisker plot includes at least 140 simulations. Into each box, the horizontal
line shows the median. The bottom and top of the box show the 25th and 75th percentiles, respectively. The whiskers (dashed lines) show the range of the data,
excluding outliers. An outlier is any value that lies more than 1.5 times the interquartile range (length of the box) from either end of the box. Numbers of data
above or equal to the threshold magnitude are grouped into 16 class intervals.

4.2 Performance of tests for determining the statistical
significance of a difference between b-values

Numerical simulations were also used to compare p-values associ-
ated with the various significance tests. Our comparative experiment
was performed as follows:

(i) From our synthetic catalogue of 1 500 000 events with a b-
value of 1.0, we randomly extracted two samples of size N1 and
N2.

(ii) For each sample, the b-value was computed both through
the Aki–Utsu formula and the repeated median regression.

(iii) Type I error (namely, rejecting null hypothesis when it is
true) p-values of the difference in b-value (two-sided hypothesis)
between the two earthquake samples were calculated from the two-
sample bootstrap test (comparison of bAU values) and the (�AIC)
Utsu’s test. Calculations were performed on 1000 replicates.

(iv) The procedure was repeated 10 000 times.

We performed two kinds of runs: N1 = N2 = 1000 and N1 =
N2 = 300. Results are shown in Fig. 4. In all cases, Utsu’s test
p-values are never larger than 0.4; this surprisingly small value
is inherent in eq. (8): when b-values are equal, it can be shown

that p = exp(−1) = 0.37. Utsu’s test p-values are overall smaller
than bootstrap test p-values (Figs 4a and b). Moreover, whereas
data samples comes from the same artificial population, the Utsu’s
test always shows a high rate of rejection of the null hypothesis.
Actually, few small p-values are expected as the null hypothesis
is actually ‘true’: the two compared samples are coming from one
‘population’ only. For the Utsu’s test about 12 per cent of the p-
values are smaller than 0.05 (Figs 4a and b) and about 3 or 4 per
cent of the p-values are smaller than 0.01. The Utsu’s test is biased,
whereas the bootstrap test is apparently correct, for example, for
the bootstrap test, more than 90 per cent of the p-values are larger
than 0.1, more than 95 per cent of the p-values are larger than 0.05
(Figs 4a and b).

5 DATA

The study that was made by Gerstenberger et al. (2001) is one of the
fundamental works about the variation of b-value with depth. Their
study partly inspired us. Whereas these authors investigated both
Southern and Northern California, our study was only restricted to
Southern California because this area, according to Gerstenberger
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Range of N ≥ m0

(A)

Range of N ≥ m0

0.06 0.08 0.10 0.12

Root mean square error

(B)

1:1

SB

BSE

Figure 3. Comparisons of b-value standard errors. (a) Plots of b-value standard error versus number of data above or equal to the threshold magnitude for
the Monte-Carlo simulation of b-value estimation methods, for the case true b = 1. Two computation techniques are compared : the standard error for the
Aki–Utsu b-value estimate following Shi and Bolt (Shi & Bolt 1982) (SB) and the bootstrap standard error for the Aki–Utsu b-value estimate (BSE). Each
box-and-whisker plot includes at least 140 simulations. Into each box, the horizontal line shows the median. The bottom and top of the box show the 25th and
75th percentiles, respectively. The whiskers (dashed lines) show the range of the data, excluding outliers. An outlier is any value that lies more than 1.5 times
the interquartile range (length of the box) from either end of the box. In each N interval, the cross represents the root mean square error (RMSE), as defined

as RM SE =
√

1
n

∑n
i (b̂ − 1.0)2, where b̂ is the estimated b-value and n is the number of simulations in the interval. To keep the figure clear, only eight class

intervals for N are plotted. (b) Plot of medians of SB and BSE versus RMSE.
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Figure 4. Scatterplots with marginal histograms showing the relationship
between the two-sample bootstrap (comparison of bAU values) and the
(�AIC) Utsu’s tests’ p-values. Reported p-values are type I error p-values
for 10 000 pairs of samples being compared in each graph. The line 1:1 is
shown for reference. (a) The size of both samples is 1000. (b) The size of
both samples is 300.

et al.’s (2001) Plate 1, showed ‘wide’ zones of constant or almost
constant rb value.

Gerstenberger et al. (2001) showed that while individual areas
with high rb values may exist, they may be difficult to detect when
a b-value was calculated for a large area. Therefore, they used sam-
pling cylinders with radii of 40 km or less to map rb values. Though
rb mapping was not the aim of our study, we used sampling volumes
with roughly the same size as Gerstenberger et al.’s cylinder radii:
we investigated seven quadrangular areas showing a minimum and

a maximum side of 28 and 67 km, respectively. These seven sub-
areas both showed sufficient density of seismic events and rb > 1,
according to Gerstenberger et al.’s (2001, Plate 1b). In our study,
the choice of exactly demarcated areas (their limits are given in
Table 1 and shown in Fig. 5) for the computation of b-values guaran-
teed the reproducibility of the calculations. Our investigations were
performed on high-quality data provided by the relocated South-
ern California catalogue (Richards-Dinger & Shearer 2000), which
is practically the same data set from Richards-Dinger & Shearer
(2000) (http://www.data.scec.org/ftp/catalogs/dinger-shearer) that
was used by Gerstenberger et al. (2001): the time interval ana-
lyzed spanned from 1981.3 (April 1981) to 1998.2 (March 1998).
Because we were interested in natural seismicity, we used only
nighttime events by discarding all events between 16:00 and 3:00
GMT from our analysis. This daytime period was also adopted
by Gerstenberger et al. (2001). Nevertheless, we note that another
choice was possible for Southern California: Richards-Dinger &
Shearer (2000) discarded daytime events between 7:00 and 19:00
PST (14:00–2:00 GMT).

Using a small number of events can lower the robustness of
the calculations (Howell 1985; Pickering et al. 1995; Mori &
Abercrombie 1997). This fact is illustrated in Fig. 2. Therefore,
we decided to compute b-values from data sets that included at
least about 200 events (Table 1). According to results from Sec-
tion 4.1, the repeated median regression was used only for data
sets that included at least about 600 events (Idyllwild, Salton City;
Table 1). Following Gerstenberger et al., for each zone, we se-
lected events in depth ranges of 0–5 and 8–15 km. According to
Richards-Dinger & Shearer (2000), median vertical location un-
certainties (standard errors) for relocated events are about 740 m,
which is much smaller than the 3 km depth gap between the 0–5
km and the 8–15 km depth ranges. By using the highest quality
catalogue available, we were somewhat assured that uncertainties
in hypocentral locations were not responsible for apparent varia-
tions of the b-value with depth. Information on the data samples
used in the analysis are presented in Table 1. And because the stud-
ied seismic regions are relatively small, a significant spatial vari-
ation in completeness in each quadrangle is not expected. In each
quadrangle, completeness was calculated following the Amorese’s
procedure (2007). We did not directly take into account possible
temporal variations of the completeness magnitude. Nevertheless,
these variations (http://completeness.usc.edu) are always smaller
than uncertainties in m0 values (Table 2).

The definition of aftershocks notwithstanding (De Rubeis et al.
2007), many authors (Oncel & Alptekin 1999; Knopoff 2000; Chan
& Chandler 2001) suggested the use of declustered catalogues in
the computation of local b-values. Gerstenberger et al. (2001) did
not declustered their data before they calculated b-values. In our
study, four (Santa Paula, Glendale, Salton City, Imperial, Fig. 5) of
our seven areas under investigation may be affected by possible con-
tamination from the aftershocks of larger events. Following Mori &
Abercrombie (1997), we did suspect that contamination by clusters
was a key issue. Therefore, to create an additional ‘declustered’ data
set for these four areas, we adopted the same kind of declustering
procedure as used by Mori & Abercrombie (1997). It consists in
separating out the larger aftershock sequences for earthquakes of
magnitude about 6.0 and above. Thus, we removed events that were
located within 30 km radius around the Whittier Narrows (1987 Oc-
tober 1, 34.1◦N, 118.1◦W, ML5.9), the Elmore Ranch/Superstition
Hills (November 24, 1987, 33◦N, 115.8◦W, Mw 6.1 and 6.6) and
the Northridge (1994 January 17, 34.2◦N, 118.5◦W, Mw 6.7) main-
shocks. Actually, the 30 km threshold roughly corresponds to one
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Table 1. Information on the data samples used in the analysis.

Area name Area limits Depth range (km) Sample size Magnitude range Nearby large events

Arvin 35.2◦–35.6◦N 0–5 1250 0.1–3.7
118.9◦–118.5◦W 8–15 288 0.2–3.4

Santa Paula 34.3◦–34.6◦N 0–5 689 [540] 0.3–5.2 [0.3–3.4] Northridge
119.2◦–118.6◦W 8–15 1666 [1491] 0.4–5.1 [0.4–5.1]

Glendale 33.9◦–34.2◦N 0–5 272 [268] 0.9–3.6 [0.9–3.6] Whittier Narrows
118.6◦–118.0◦W 8–15 453 [293] 0.7–5.9 [0.7–5.9] Northridge

Santa Ana 33.6◦–34.0◦N 0–5 507 0.7–3.1
118.0◦–117.5◦W 8–15 193 0.8–3.5

Idyllwild 33.4◦–33.8◦N 0–5 1307 0.9–3.3
117.2◦–116.7◦W 8–15 1214 0.9–3.9

Salton City 33.1◦–33.4◦N 0–5 1753 [1750] 0.2–4.1 [0.2–4.1] Elmore Ranch/
116.2◦–115.9◦W 8–15 900 [900] 0.1–4.4 [0.1–4.4] Superstition Hills

Imperial 32.8◦–33.4◦N 0–5 5301 [4239] 0.2–6.6 [0.2–5.7] Elmore Ranch/
115.9◦–115.5◦W 8–15 583 [525] 0.2–4.7 [0.2–4.1] Superstition Hills

Note: Bracketed values are for ‘declustered’ samples.

fault length distance to mainshock for a M6.7 event (Wells &
Coppersmith 1994). Whereas Mori and Abercrombie removed
events for 1 year following the date of each large mainshock, we
removed events for only 12 days after each occurence. This smaller
time interval results in the same kind of temporal pattern in Schus-
ter’s diagrams (Figs 6b and c) (Rydelek & Hass 1994) that an
entire year removal. Thus, some large ‘pig tail’ features (Fig. 6a)
were removed without reducing data sizes too far. Obviously, af-
ter removals, some curly patterns remain in Schuster’s diagrams
(Figs 6b–d) showing that our declustering procedure is certainly
not perfect. Indeed, in our declustering procedure, we do not re-
move aftershocks that are linked to smaller mainshocks (M < 6).
A perfect declustering is beyond the scope of our study. We did not
use declustering algorithms (Reasenberg & Jones 1989; Frohlich &
Davis 1993) because they remove the smaller aftershocks, resulting
in systematically lower b-values (Mori & Abercrombie 1997). After
this coarse declustering, we were left with 65 113 and 34 492 night-
time events for Southern California (32.6–36◦N; 119.5–115◦W)
for the depth ranges 0-5 and 8-15 km, respectively. The decluster
procedure removed only about 2.6 per cent of the total number of
seismic events (2619 ‘aftershocks’) but 43 per cent of these after-
shocks were located in one of our study areas (Imperial area). As
stated in the following section, we confirmed our initial suspicion
and found that the clustering of earthquakes in our data did substan-
tially alter our results. Actually, aftershocks do not show a different
magnitude-frequency distribution than any other set of earthquakes
but they happen so rapidly that they overwhelm the detection sys-
tem. This results in a higher completeness threshold and then leads
to a smaller b-value than the rest of the data set (Helmstetter et al.
2005).

6 R E S U LT S

6.1 Arvin area

In this area, the top data sample includes 1250 earthquakes, whereas
the bottom data sample shows only 288 events. The Aki–Utsu equa-
tion provides b = 0.90 and 0.70 for the top and bottom zone, re-
spectively (Table 2 and Fig. 7). The Utsu’s test suggests that the
probability that the two depth zones have the same b-values can be

rejected at a confidence limit in excess of 99 per cent (Table 2). The
two-sample bootstrap test for the comparison of bAU values fails
to reject the null hypothesis (p = 0.16, Table 2). According to the
results of Section 4.2, we reject any significant changes of b-value
with depth in the Arvin area.

6.2 Santa Paula

The b-bottom value (0.77) is smaller than the b-top value (0.97).
The null hypothesis can be rejected at the 1 per cent significance
level by any of the test statistics (Table 2). FMDs are shown in
Fig. 7.

Table 1 shows that both the top and the bottom zones can be sig-
nificantly influenced by possible aftershocks (22 and 10 per cent of
the seismicity, respectively). Actually, the raw data samples resulted
in lower b-values for both the bottom (b = 0.68) and top data sets
(b = 0.72). In this case, this did radically change the results from
the comparison tests, that is, the b-values are no more significantly
different from each other (p = 0.32 for the two-sample bootstrap
test). Because we have chosen to draw our conclusions from declus-
tered data’s results, we suggest that the b-value is decreasing with
depth in the Santa Paula area. However, one should bear in mind
that this inference is not free from the declustering procedure.

6.3 Glendale area

Very few events are available to compute b-values in the depth
ranges 0–5 and 8–15 km in the Glendale area (Table 1); the bot-
tom zone b-value is calculated with only 140 magnitude values
(Table 2). The two FMDs are seen to be identical in their low
magnitude parts (Fig. 7). The FMD for the 8–15 km depth sample
shows a tail in the higher magnitude range. This feature is due to
a M5 event that occurred on 1988 December 3 in the epicentral
area of the Whittier Narrows mainshock, thus suggesting that our
declustering procedure is possibly not adequate. We are facing the
data quality-versus-quantity dilemma: too strict of a declustering
procedure would impede stable calculations. Therefore, we choose
to keep this M5 event and probably several other aftershocks in
our data sets. The results from the three tests are consistent with
the hypothesis that the bottom b-value is not significantly smaller
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Figure 5. Southern California map showing the seismicity from the re-
located Southern California catalogue (Richards-Dinger & Shearer 2000)
and the seven investigated areas of this study. Only nighttime events of the
‘declustered’ catalogue are plotted (all events between the hours of 16:00 and
3:00 GMT have been removed) from 1981.3 to 1998.2 in the depth ranges
(0–5 km) and (8–15 km). White stars locate the epicenters of the Whitthier
Narrows, Elmore Ranch/Superstition Hills and Northridge earthquakes.

than or different from the top b-value (Tables 2 and 3). The seis-
micity in the Glendale area shows that clustering of earthquakes
can substantially alter b-value comparison results; if computations
are performed with the raw data sets, b-top and b-bottom values
are 1.13 and 0.71, respectively and both the Utsu’s �AIC and the
two-sample bootstrap tests agree with the hypothesis of a decreas-
ing b-value with depth, with p-values smaller than 10−2. Actually,
in this case, the comparison is mostly between seismic events in
the 0–5 km depth range and aftershocks of the Whittier Narrows
earthquake in 8–15 km depths where 35 per cent of the seismic
events can be considered as possible aftershocks (Table 1). From
the declustered data sets, we conclude that the b-value is constant
with depth in the Glendale area.

6.4 Santa Ana area

The Santa Ana area also includes relatively few seismic events and
the bottom b-values are calculated with less than 150 magnitude
values (Table 2). In this region, the two Utsu’s tests indicate rejection
of the null hypothesis of b-value homogeneity, whereas the bootstrap
test suggests that there is not enough evidence for rejection (Table 2).
The bootstrap test for the comparison of bAU values also fails to
reject the null hypothesis at the 1 per cent significance level against
the alternative hypothesis that the b-bottom value is smaller than
the b-top value (Table 3). By looking at the FMDs (Fig. 7), we can
surmise that the slopes are not accurately known. For the Santa Ana
area, we offer that there is no reliable basis to conclude that b-values
are varying with depth.

6.5 Idyllwild area

More than 700 magnitude values are used to compute b-values in
each of the two depth intervals in the Idyllwild area (Table 2);
therefore, the most reliable results are expected from these two data
sets. As data sets are large, tests on repeated median b-values are
possible and can be convincing. Once again, as for the Glendale area,
the null hypothesis cannot be rejected at the 1 per cent significance
level by any of the test statistics (Table 2). Even the bootstrap
one-sided tests cannot reject the null hypothesis in favour of the
alternative that ‘the b-bottom value is smaller than the b-top value’ in
the Idyllwild area (Table 3). In reality, there is not enough evidence to
reject the null hypothesis at even the 5 per cent level of significance.
The two FMDs overlap almost perfectly up to M = 2 (Fig. 7). For
the Idyllwild area, we therefore infer that the b-value is constant
with depth.

6.6 Salton City area

The Salton City area also has a relatively large number of data used
to calculate b-values: 1281 and 575 events in the top and the bottom
zones, respectively. Under these conditions, it is reasonable to pre-
sume that b-values and their uncertainties are reliably estimated. In
the Salton City area, the bottom zone b-value is apparently larger
than the top zone b-value but none of the statistical tests suggest
a significant difference in b-values (Table 2). Of course, when the
test is one-sided (alternate hypothesis is ‘b-bottom is smaller than
b-top’), a very high p-value is obtained (Table 3). By looking at the
FMDs (Fig. 7), it appears that the data are fitted as well by lines
with bAU slopes, as by lines with bRM slopes. Moreover, the figure
clearly illustrates that the lines are almost parallel. Once again, our
results tend to disagree with those of Gerstenberger et al. in Plate 1
(Gerstenberger et al. 2001).

6.7 Imperial area

The variation of the number of earthquakes with depth is remark-
able in the Imperial area: whereas b-top values are calculated from
a relatively large data set (3162 magnitude values), b-bottom values
are estimated from less than 400 events (Table 2). The results from
the Utsu’s tests are consistent with the hypothesis that the bottom
b-value is different (Table 2) from the top b-value. Nevertheless, a
different conclusion is obtained from the bootstrap test (Table 2) or
when raw data sets are used for the b-value computations. From
raw data sets, the b-value of the bottom zone is 0.86, whereas the
b-value of the top zone is 0.94. In that case, all the comparison
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Table 2. Results summary.

Area z range m0
a N b bAUc bRMd Two-sided test p-value

(km) Ut.1e Ut.2f boot.1g boot.2h

Arvin 0–5 1.1[0.9–1.4] 798 0.90 ± 0.10 – 1.5 × 10−3 4.3 × 10−4 0.16 –
8–15 1.0[0.8–1.3] 210 0.70 ± 0.13 –

Santa 0–5 1.2[1.1–1.5] 366 0.97 ± 0.08 3 × 10−4 8.4 × 10−5 4 × 10−3 –
Paula 8–15 1.1[1.1–1.1] 1161 0.77 ± 0.02 –

Glendale 0–5 1.6[1.4–1.8] 172 1.13 ± 0.16 – 0.06 0.03 0.23 –
8–15 1.8[1.4–1.8] 140 0.91 ± 0.11 –

Santa 0–5 1.5[1.4–1.8] 312 1.12 ± 0.14 – 2.6 × 10−3 8.3 × 10−4 0.10 –
Ana 8–15 1.4[1.1–1.8] 142 0.82 ± 0.15 –

Idyllwild 0–5 1.1[1.1–1.1] 774 1.02 ± 0.04 1.06 ± 0.08 0.34 0.35 0.82 0.55
8–15 1.1[0.8–1.4] 747 1.00 ± 0.11 0.97 ± 0.13

Salton 0–5 1.1[1.0–1.4] 1281 1.00 ± 0.08 0.99 ± 0.11 0.27 0.22 0.58 0.67
City 8–15 1.1[1.1–1.3] 575 1.04 ± 0.06 1.07 ± 0.16

Imperial 0–5 1.4[1.4–1.6] 3162 1.01 ± 0.05 – 7.7 × 10−3 2.6 × 10−3 0.09 –
8–15 1.4[1.3–1.6] 373 0.87 ± 0.05 –

aThreshold magnitude for the computation of b-values. Bracketed values are respectively the 5th and 95th percentiles of the
bootstrap distribution of m0.
bNumber of data above or equal to the threshold magnitude.
cAki–Utsu b-value.
dRepeated median b-value.
eUtsu’s �AIC test.
f Utsu’s F-test.
gTwo-sample bootstrap test.
hTwo-sample bootstrap t-test.
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Figure 6. Schuster’s diagrams for the seismicity of the seven investigated
areas. Only nighttime events are summed. Aftershock sequences are sug-
gested to induce ‘pig tail’ features in phasor walks. In plots b, c and d, events
that were located within 30 km radius around largest mainshocks (M ≥ 6)
have been removed. The removing time interval after each mainshock is
respectively 1 year, 12 days and 10 days long for plots b, c and d.

tests fail to reject the null hypothesis. The clustering of earthquakes
alters the b-value in the same direction as for the Santa Paula and
the Glendale areas (decrease) but for the Imperial area this bias does
not allow the rejection of the null hypothesis because aftershocks
are mostly contaminating the top part (20 per cent of the seismic
events; Table 1). On the basis of these observations, we tend to
conclude that there is no significant decrease in the b-value as a
function of depth in the Imperial area.

7 D I S C U S S I O N

There appears to be a distinct low b-value in the depth range 8–
15 km in the Santa Paula area. Other results given here, however,
indicate that the decrease of b-value with depth in Southern Califor-
nia is a less common phenomenon than previously believed. Con-
sidering that the seven investigated subzones cover about 12 700
km2, the percentage of the area where the b-value is significantly
decreasing with depth is 14 per cent. This value takes into consid-
eration that the b-value is varying in the Santa Paula area (1815
km2). This results is far from the 34.4 per cent of the sample area
in the reference study by Gerstenberger et al. (2001). Of course,
there is a problem in the geographical representation of our results:
the seven studied subzones cover only about one fifth (Fig. 5) of
the area sampled by Gerstenberger et al. in Southern California
(Plate 1b). Nevertheless, one should keep in mind that the seven
studied subzones are supposed to be homogeneous regions where
there is a significant decrease in b-value with increasing depth, ac-
cording to Plate 1b in Gerstenberger et al.. Therefore, our results
are clearly at odds with the results of Gerstenberger et al.

Our results of the variability of b-value with depth also disagree
with the study of Mori & Abercrombie (1997), where a somewhat
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Figure 7. Frequency magnitude distributions (FMDs) of top 0–5 km depth range (triangles) and bottom 8–15 km depth range (circles) earthquakes for the
investigated areas. Solid lines show the maximum likelihood estimates of the b-value. Dashed lines show the repeated median estimates of the b-value. To
facilitate comparison, the a-value is fitted to force lines to pass through a common point, which is the [m0, N (m0)] point of each FMD.
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Table 3. Results summary.

Area name One-sided test p-value

boot.1 boot.2

Arvin 0.08 –
Santa Paula 2 10−3 –
Glendale 0.11 –
Santa Ana 0.05 –
Idyllwild 0.40 0.27
Salton City 0.69 0.67
Imperial 0.04 –

Note: The alternative hypothesis is
that b-top is greater than b-bottom.

different approach than Gerstenberger et al. was used. Whereas
Gerstenberger et al. only required a minimum of 50 events with
magnitude greater than Mc for their computation of b-value in each
(relatively small) zone, Mori and Abercrombie considered larger re-
gions of California. Mori and Abercrombie were aware that ample
data were required for statistically reliable results, while Gersten-
berger et al. suggested that individual areas of b-value change may
be difficult to detect when a single b-value was calculated for a
large area. In this respect, we took an in-between approach: small
areas and b-values were always computed with at least 140 magni-
tude values in each area. For a data set from Southern California,
Mori and Abercrombie reported a collective b-top value (z = 0–3
km) equal to 1.29 ± 0.01 and a b-bottom value (z = 12–15 km)
equal to 0.97 ± 0.02 (Table 1 Mori & Abercrombie 1997), with
reported uncertainties corresponding to 95 per cent confidence lim-
its. They had removed aftershocks from their catalogue and used
a minimum magnitude of 2.0. We did the same calculations on
our reference data set for the area within 32.6–36◦N latitude and
115–119.5◦W longitude. We found no significant difference be-
tween the top b-value (0.92 ± 0.03) and the bottom b-value (0.87
± 0.02), with reported uncertainties obtained from the bootstrap
b-value standard errors. Thus, we agree with Gerstenberger et al.’s
statement that b-value variations may be difficult to detect when a
collective b-value is calculated for a large area. For Southern Cal-
ifornia, Gerstenberger et al. found 1.08 ± 0.13 and 0.90 ± 0.12
for the b-top and the b-bottom, respectively. All these results are
different (Table 4), which is not unexpected given the different data
sets and diversity of the calculation parameters. For information
purposes, our b-top value was calculated from a data set including
65 113 seismic events, using a threshold magnitude m0 = 1.6 and
our b-bottom value was calculated from a set of 34 492 events, using
m0 = 1.4.

Several factors may affect the comparison of b-values. The first is
an erroneous estimation of FMD slopes. We have checked the abil-
ity of two independent computation methods to estimate b-values
(Fig. 2). Because aftershocks are known to affect the calculation of
background b-values, we used both clustered and declustered data
sets. In addition, we have taken great care to plot each FMD that
we have studied (Fig. 7). No significant departure from the linear
G–R relation was observed in any of these plots, which is fortu-
nate because our analysis does not take into account the possible

Table 4. Collective b-values for the top (0–3 or 0–5 km) and bottom zones (12–15 or
8–15 km) in Southern California.

Depth range Mori & Abercrombie (1997) Gerstenberger et al. (2001) This study

Top 1.29 ± 0.01 1.08 ± 0.13 0.92 ± 0.03
Bottom 0.97 ± 0.02 0.90 ± 0.12 0.87 ± 0.02

nonlinearity of the FMDs (Aki 1987; Knopoff 2000). A key issue
is how the uncertainties in magnitude measurements may propa-
gate into the estimates of b-value (Marzocchi & Sandri 2003; Del
Pezzo et al. 2003), which was not addressed in our study. However,
regardless of this possible additional source of bias, we have no com-
pelling reasons to suppose that our b-value calculations are overly
corrupted and that reliable comparisons are impossible to perform.
The same argument may probably apply to b-values computed by
Gerstenberger et al.

The second factor that can affect comparisons lies in methods of
comparisons. One of the most common ways to assess differences
in b-values is to rely on the (�AIC) Utsu’s test p-value. Converging
evidence from simulations (Fig. 4) and examples (Tables 2 and 3)
indicated that the Utsu’s comparison tests tend to favour rejection
of the null hypothesis of no change in b-values. Thus, the decrease
in b-value with increasing depth reported by Gerstenberger et al.
could be explained by random fluctuations in the errors in b-value
calculations. In other words, the simplest explanation for an appar-
ent decreases of b with depth in many places of Southern California
may not be related to depth-dependent earthquake physics.

Our results do not lend support of the view that a decrease in b-
value with increasing depth is a widespread phenomenon in South-
ern California; however, we observe an anomaly in the Santa Paula
area that indicates there are relatively more smaller events at the
shallowest depths. A simple interpretation of this observation in
terms of mechanical variations in the crust may suggest a more
homogeneous stress field and fewer fractures at depth (Mogi 1962;
Scholz 1968; Mori & Abercrombie 1997) in this area.

To our best knowledge, this is the first time that the performance
of Utsu’s test has been thoroughly examined and that spatial varia-
tions in b-value have been investigated using various methods, that
is, we have explored alternative means of determining b-values, un-
certainties in b-values and the significance of the difference between
b-values. The results of Gerstenberger et al.’s study has been partly
compared here but our research suggests that other studies could
have overestimated the degree of variation of the b-value, which
may argue for a more rigorous analysis and careful interpretation of
results.

8 C O N C LU S I O N S

Using bootstrap and non-parametric statistics, we investigated the
variations in b-value with increasing depth in seven selected ar-
eas of Southern California. Statistically reliable results are mostly
expected from the relatively large sample and high quality data
obtained from the Southern California earthquake catalogue. In
contrast with previous studies, we found that there was no firm evi-
dence for the decrease of the b-value with depth in several areas of
Southern California with the exception of a clear effect in the Santa
Paula area. Thus, the change in the b-value as a function of depth
appears to be less common than the literature suggests.

It is important to note that previous investigations were mostly
based on the Utsu’s test to infer the significance of differences
in b-values. Here we have shown by numerical simulations that
Utsu’s test does not provide the correct Type I error rate and it is
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biased towards rejection of the null hypothesis; therefore, it may lead
to erroneous conclusions and interpretations regarding the spatial
variability of b-values and should be used with caution.

Regardless of possible errors involved in estimating earthquake
magnitude, we have also confirmed results from Woessner &
Wiemer (2005): by bootstrap analysis, it is possible to show that
uncertainties in b-values may be underestimated by the usual for-
mula in eq. (3) because it does not take into account the influence
of the uncertainty associated with the determination of the thresh-
old magnitude; therefore, the significance of spatial (or temporal)
variations of the b-value may have been overestimated in many
studies.

Finally, we submit that many previous results based on b-value
variations, and especially those at borderline significance levels,
should be viewed with caution simply because their authors did not
acknowledge sources of errors in the calculation of b-values, among
which the overwhelming of the detection system by clusters, is a
key issue.

The results of our study suggest that the significance of spatial
and/or temporal variations in b-value may be somewhat overesti-
mated. These variations could be just localized anomalies, rather
than a widespread phenomenon that would have important implica-
tions for crustal structure, stress modelling, and earthquake physics.
This is consistent with the results of a detailed study of seismic-
ity from the very dense and high-quality seismic networks located
throughout Japan (Ishibe et al. 2008). Whereas it was found that b-
value was dependent on focal mechanisms (normal faulting events
had higher b-value than strike slip events), there was no indication
of depth dependence in b-value for the shallow (declustered) seis-
micity in the Japan catalogue. It was further suggested that unknown
biases in magnitude determination and/or in location may be factors
in the apparent depth dependence of b-values.

We propose new quantitative methods that seismologists can
use to compute b-values (repeated median regression technique)
or test and evaluate the significance of changes in b-values (boot-
strap tests). When the number of magnitude values is large enough,
the repeated median regression provides a reliable estimate of the
b-value. Bootstrap hypothesis testing or, to a lesser degree, non-
parametric statistical procedures could be used as surrogate tools
for improving the reliability and quality of crustal imaging via b-
value variations.
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