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Abstract. Using a helical shell model of turbulence, Chen et al. (2003) showed that both
helicity and energy dissipate at the Kolmogorov scale, independently from any helicity input.
This is in contradiction with a previous paper by Ditlevsen & Giuliani (2001) in which, using
a GOY shell model of turbulence, they found that helicity dissipates at a scale larger than the
Kolmogorov scale, and does depend on the helicity input. In a recent paper by Lessinnes et al.
(2011), we showed that this discrepancy is due to the fact that in the GOY shell model only
one helical mode (+ or −) is present at each scale instead of both modes in the helical shell
model. Then, using the GOY model, the near cancellation of the helicity flux between the +
and − modes cannot occur at small scales, as it should be in true turbulence. We review the
main results with a focus on the numerical procedure needed to obtain accurate statistics.

1. Introduction

Helicity is a scalar quantity which, like energy, is quadratically invariant. It means that the flux
of helicity is constant along a range of scales between the forcing (large) scale of motion and the
scale k−1

H below which helicity dissipates. Using a GOY shell model of turbulence Ditlevsen &
Giuliani (2001) suggested that k−1

H > k−1
E , where k−1

E is the scale of energy dissipation. They
expect two inertial ranges, one with coexisting cascades of energy and helicity at scales larger
than k−1

H , and a range between k−1
H and k−1

E where the flow is non helical.
In contrast, using an other shell model of turbulence based on helical wave decomposition,

Chen et al. (2003) found that both scales were equal k−1
H = k−1

E , implying that the idea of
two inertial ranges is irrelevant. They confirmed their results with direct numerical simulation
though, as noted by the authors, the computational limitations prevent them to have a Reynolds
number sufficiently large to really discriminate between both scenarii.

In Lessinnes et al. (2011), we explain why such a discrepancy occurs between both shell
models, GOY and helical. Decomposing the velocity into positively and negatively polarized
helical waves (±), we show that the scale k−1

H found in the GOY model is in fact k−1
H± , the scale

of helicity dissipation for each helical wave. As found by Ditlevsen & Giuliani (2001) we may
have kH± < kE . However we always have kH = kE as found by Chen et al. (2003).

2. Kolmogorov phenomenology

Before going into the details of the two shell models we come back on the Kolmogorov scaling
analysis. From now we assume isotropy, considering that the spectral quantities E and H depend
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on k = |k|. In the inertial range the non linear transfer rates of energy and helicity must satisfy

ε ∼ kE(k)/τE(k), δ ∼ kH(k)/τH(k) (1)

where ε and δ are respectively the injection rate of energy and helicity, τE(k) and τH(k)
characteristic times of transfer. Assuming that both times are equal to the turn over time

τE(k) ∼ τH(k) ∼ k−1u(k)−1 (2)

with
u(k) ∼ k1/2E(k)1/2, (3)

leads to

E(k) = CEε
2/3k−5/3, H(k) = CH(δ/ε1/3)k−5/3 (4)

where CE and CH are some constants. As noted in Ditlevsen & Giuliani (2001), taking
u(k) ∼ H(k)1/2 instead of (3) and replacing it in (2) would be misleading unless no energy
is injected in the system, that we do not consider here.

Following the line of developments by Ditlevsen & Giuliani (2001), the velocity in the spectral
space can be expanded in a basis of polarized helical waves h± defined by ik × h± = ±kh±
(see for example Waleffe (1992)). Using incompressibility k · u(k) = 0 we have u(k) =
u+(k)h+ + u−(k)h−. The energy and helicity in the mode u(k) then become respectively

u(k) · u∗(k)/2 = (|u+(k)|2 + |u−(k)|2)/2 (5)
u(k) · ω∗(k)/2 = k(|u+(k)|2 − |u−(k)|2)/2 (6)

where ω(k) is the vorticity in the spectral space.
Introducing the spectral densities of energy and helicity for the helical modes ±, we have

E(k) = E+(k) + E−(k) (7)
H(k) = H+(k) +H−(k) (8)
H±(k) = ±kE±(k). (9)

Then, from (4) we have

E+(k) = (CE/2)ε2/3k−5/3 + (CH/2)(δ/ε1/3)k−8/3 (10)

E−(k) = (CE/2)ε2/3k−5/3 − (CH/2)(δ/ε1/3)k−8/3 (11)

which are the equations (9) and (10) of Ditlevsen & Giuliani (2001). Then in addition to (4),
in the inertial range we expect at leading order in k

E±(k) =
CE
2
ε2/3k−5/3, H±(k) = ±CE

2
ε2/3k−2/3. (12)

From the Navier-Stokes equation in the spectral space, we can show that the quantity X,
standing for E or H must satisfy the equation

∂tX
s(k, t) = T sX(k, t)− 2νk2Xs(k, t) + F sX(k, t) (13)

where the superscript s is used only when dealing with helical modes. The quantities T sX and
F sX are the non linear transfer function and injection rate of X, in the helical mode s (= ±) or
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in both modes (without superscript). The time rate of change of Xs due to the non linear terms
in (13) is defined by

Πs<
X (k, t) = −

∫ k

0
T sX(p, t)dp. (14)

For s = ±, it defines the flux of X from scales smaller than k in the helical mode s, towards all
scales of the other helical mode −s, and towards scales larger than k in the same helical mode s.
A crucial difference between the flux from both modes Π<

X and the ones from each mode Π±<
X

is that the latter also includes the flux at the same scale from one mode to the other. Assuming
a stationary statistical state, its time average satisfy

Πs<
X (k) = F sX − 2ν

∫ k

0
p2Xs(p)dp (15)

where the injection rates are denoted FE = ε, FH = δ, F±
E = ε±, F±

H = δ± (with
δ− < 0). Assuming that they occur at the same scale kF , they satisfy ε = ε+ + ε− and
δ = δ+ + δ− = kF (ε+ − ε−).

Replacing (4) and (12) in (15) we find the following fluxes in the inertial range

Π<
E = ε− 3

2
CEνε

2/3k4/3 (16)

Π±<
E = ε± − 3

4
CEνε

2/3k4/3 (17)

Π<
H = δ − 3

2
CHνδε

−1/3k4/3 (18)

Π±<
H = δ± ∓ 3

7
CEνε

2/3k7/3. (19)

From (16) to (19) we see that at zero order in k the fluxes are constant and equal to F sX , provided
that F sX is not zero. The value k = ksX for which Πs<

X (k) = 0 is peculiar in the sense that for
k > ksX the dissipation of Xs is stronger than the injection rate F sX . We call it the dissipation
scale of Xs. In the Kolmogorov theory the end of the (energy cascading) inertial range is given
by the viscous scale

kE =

(
2ε1/3

3CEν

)3/4

. (20)

For k > kE the viscous dissipation is dominant and (16) is not valid anymore.
The other scales for which Πs<

X (k) = 0 are given by

kH = (CE/CH)3/4 kE (21)

k±E = (2ε±/ε)3/4 kE (22)

k±H/kF = (7ε±/2ε)3/7(kE/kF )4/7 (23)

In Ditlevsen & Giuliani (2001) the cancellation of the k−5/3 terms in (10) and (11) has been
ignored in the calculation of H(k), leading to a different result for kH . As in Chen et al. (2003)
we predict that helicity H and energy E both dissipate at the viscous scale kE , and that H±

dissipates at a larger scale k±H ∝ k
4/7
E . Taking ν = 10−7 and ε = 1 leads to kE ∼ 105. For kF ∼ 1

we further have k±H ∼ 103. The difference between both scales kE and k±H should be visible in a
shell model simulation, as shown in the next section.
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3. Helical shell models for Navier-Stokes turbulence

Shell models of hydrodynamic turbulence originate back to the seventies with Lorenz (1972),
Gledzer (1973) and Desnianskii & Novikov (1974). The main idea is to describe the statistics of
homogeneous and isotropic turbulence in spectral space using a simple set of ordinary differential
equations. The shells being logarithmically spaced, and taking one unknown per shell, such
models allow to investigate some turbulence properties at a numerical cost drastically lower than
a direct numerical simulation. It is then possible to reach Reynolds numbers defined at scale
kF by Re = C

1/2
E ε1/3k

−4/3
F ν−1, as large as 107 as will be done below. Helical shell models were

developed by Benzi et al. (1996), and are based on the helical Fourier modes decomposition as
introduced above. As pointed out in Lessinnes et al. (2009), such helical modes can be retrieved
from the helical triadic systems of the Navier-Stokes equations in helical basis. This approach
leads to a single formula for four independent models:

dtu
±
n = Q±

n − νk2
nu

±
n + f±n , (24)

with

Q±
n = ikn

[
(s1λ− s2λ2)u±s1n+1u

±s2
n+2

+ (s2λ− λ−1) u± s1
n−1 u

±s2s1
n+1 (25)

+ (λ−2 − s1λ−1) u±s2n−2u
±s1s2
n−1

]∗
,

where each model is retrieved for one particular choice of (s1, s2) with s1, s2 = ±1. In (25) the
parameter λ is the logarithmic shell spacing and the wave number is defined as kn = λn. We
use a forcing fn only in the first shell (kF = 1) with a random phase.

The shell model (25) is designed such that total energy E and helicity H are conserved in
the absence of forcing and viscosity ν. They are defined by

E =
N∑
n=1

En, H =
N∑
n=1

Hn (26)

where N is the number of shells in the model. The energy En and helicity Hn in shell n are
defined in total analogy with equations (5) and (6)

En = E+
n + E−

n , E±
n =

1
2
|u±n |2, (27)

Hn = H+
n +H−

n , H±
n = ±1

2
kn|u±n |2 (28)

The GOY model used in Ditlevsen & Giuliani (2001) corresponds taking (s1, s2) = (−1,+1)
in the helical model (25). In this case, two uncoupled sets of variables appear: (u+

1 , u
−
2 , u

+
3 , . . . )

and (u−1 , u
+
2 , u

−
3 , . . . ). In the GOY model, only one of these sets is considered neglecting the

other variables and thereby implying that only H+
n or H−

n is described within each shell n but
not both. Therefore the canceling of the leading terms in equations (10) and (11) leading to
H(k) in (8) can not be obtained with a GOY model. On the other hand, the arguments in Chen
et al. (2003) where illustrated with the model corresponding to (s1, s2) = (+1,−1). This time,
all variables are coupled and both H±

n and Hn are available within each shell n. We shall
prolongate this work in the rest of the paper investigating the energy and helicity spectra and
fluxes in each helical mode or both.

For that we define the energy and helicity fluxes as

Π<
E(n) = Π+<

E (n) + Π−<
E (n), (29)

Π<
H(n) = Π+<

H (n) + Π−<
H (n), (30)
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with

Π±<
E (n) = −

n∑
m=1

Q±
mu

±∗
m + cc, (31)

Π±<
H (n) = ∓

n∑
m=1

kmQ
±
mu

±∗
m + cc. (32)

These quantities are defined in total analogy with those of (14). In figures 1 and 2 the results
are presented for respectively a helical and a non helical case. The parameters are ν = 10−7,
kF = 1 and λ = 1.618. For the helical case ε+ = ε = 1, implying δ = δ+ = 1 and ε− = δ− = 0.
For the non helical case ε+ = ε− = 1/2, implying ε = 1, δ+ = −δ− = 0.5 and δ = 0. In each
figure the top and bottom rows correspond respectively to energies and helicities.

Figure 1. Helical case: ε = ε+ = 1, δ− = ε− = 0 (ν = 10−7). Energy and helicity are
respectively represented on the top and bottom rows versus log k.The positive and negative
helical modes are denoted by ◦ and •, the sum of both modes by +.The spectra (resp. fluxes)
are represented in the top (resp. down) row.

The spectra log10X versus log10 k are plotted in the left column. Energies E(k) and E±(k)
scale in k−2/3 (straight line) corresponding to power spectral densities in k−5/3 in agreement
with (4), (10) and (11). Helicities H±(k) scale in k1/3 (straight line) corresponding to power
spectral densities in k−2/3 in agreement with (9). In the helical case, the total helicity H(k)
scales in k−2/3 corresponding to a power spectral density in k−5/3 in agreement with (4). In the
non helical case H(k) is the sum of two opposite quantities H±(k) and then has no clear scaling.
Compared to H±(k) it can be considered as negligible, in agreement with (4) taking δ = 0.
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Figure 2. Non helical case: ε− = ε+ = 1/2, δ = 0. The same presentation as in Fig. 1

In the right columns, fluxes are plotted in a log10-log10 frame. In the helical case we clearly
see the power scalings expected from (17) and (19) in the inertial range. For such a helical case
we have ε− = 0 and δ− = 0 implying respectively |Π−<

E (k)| ∝ k4/3 and Π−<
H (k) ∝ k7/3. In

addition we clearly identify the dissipation wave number k+
H ∼ 103 such that for k ≥ k+

H the
dissipation of H+ is larger than δ+, implying from (19) that |Π+<

H (k)| ∝ k7/3.
In the non helical case we also identify the dissipation wave numbers k+

H = k−H ∼ 103 such that
for k ≥ k±H the dissipation of H± is larger than |δ±|, implying from (19) that |Π±<

H (k)| ∝ k7/3.
The little overshoot at k ∼ 103 is due to the absolute value representation of the sign change of
Π±<
H (k).

4. Numerical aspects of the simulations

We summarize here four numerical issues that we had to face for our problem.

A first issue is related to the numerical stiffness of the system (25). Indeed from Navier-Stokes
equations, or from (24), we can define two characteristic times τu ∝ (ku)−1 and τν ∝ (νk2)−1

which are respectively the advective and diffusive time scales. The characteristic time of the
problem corresponds to the smallest one between τu and τν which is τu ∝ (k)−2/3 in the iner-
tial range, and τν ∝ ν−1k−2 in the dissipative range. Therefore the characteristic time of the
problem may vary considerably from large to small scales. In our simulations it is about unity
for k = 1 and about 10−7 for k = 107 (ν = 10−7). To deal with this stiffness we use a VODE
time-stepping scheme as suggested in Brown et al. (1998).
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In addition, a high accuracy is needed here because we want to reproduce a helicity scal-
ing H(k) ∝ k−5/3 resulting from the difference of the two terms |H+(k)| and |H−(k)|, each
one scaling as |H±(k)| ∝ k−2/3 at leading order (see section 2). It corresponds to a ratio
|H(k)|/|H±(k)| ∝ k−1, which reaches a value as small as 10−5 for the parameters of figure 1 and
2. To reach this accuracy we take a relative error of 10−6 in the VODE time scheme.

An other source of error could arises if the dissipative range is not solved with a sufficiently
large number of shells. Typically we take about 10 shells in the dissipative range, the energy of
the 3 last ones remaining equal to zero.

Finally we have to deal with fluctuations of helicity |H±(k)| which are stronger than those of
energy |E±(k)| by a factor k. Reaching statistically stationary spectra of helicity then requires
more data. The convergence of the calculation versus the number of data is illustrated in figure
3. We find that increasing ζ = QT , where Q is the number of independent runs each one
performed during the same time T , the spectrum of H converges, in both cases helical and non
helical. The convergence seems to scale as ζ−1/2. It is related to the formula

δ〈a〉 =
δa√
N
, (33)

where a is a Gaussian process, δ〈a〉 the variation of the mean value of a due to the finite
sampling, δa the standard deviation of a and N the number of independent values of a within
the sampling.

k k

Figure 3. Mean helicity spectra for different amount of statistics measured by the parameter
ζ, for the helical (left) and non helical (right) case.
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