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Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment
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We present measurements performed in a spherical shell filled with liquid sodium, where a 74-mm-radius inner
sphere is rotated while a 210-mm-radius outer sphere is at rest. The inner sphere holds a dipolar magnetic field
and acts as a magnetic propeller when rotated. In this experimental setup called “Derviche Tourneur Sodium”
(DTS), direct measurements of the velocity are performed by ultrasonic Doppler velocimetry. Differences in
electric potential and the induced magnetic field are also measured to characterize the magnetohydrodynamic
flow. Rotation frequencies of the inner sphere are varied between −30 Hz and +30 Hz, the magnetic Reynolds
number based on measured sodium velocities and on the shell radius reaching to about 33. We have investigated
the mean axisymmetric part of the flow, which consists of differential rotation. Strong super-rotation of the
fluid with respect to the rotating inner sphere is directly measured. It is found that the organization of the mean
flow does not change much throughout the entire range of parameters covered by our experiment. The direct
measurements of zonal velocity give a nice illustration of Ferraro’s law of isorotation in the vicinity of the inner
sphere, where magnetic forces dominate inertial ones. The transition from a Ferraro regime in the interior to a
geostrophic regime, where inertial forces predominate, in the outer regions has been well documented. It takes
place where the local Elsasser number is about 1. A quantitative agreement with nonlinear numerical simulations
is obtained when keeping the same Elsasser number. The experiments also reveal a region that violates Ferraro’s
law just above the inner sphere.

DOI: 10.1103/PhysRevE.83.066310 PACS number(s): 47.35.Tv

I. INTRODUCTION

The Earth’s fluid core below the solid mantle consists of a
3480-km-radius spherical cavity filled with a liquid iron alloy.
A 1220-km-radius solid inner core sits in its center. It has
been accepted since the 1940s [1,2] that the flows stirring the
electrically conducting liquid iron in the outer core produce
the Earth’s magnetic field by dynamo action. The fluid motion
is thought to originate from the cooling of the Earth’s core,
which results both in crystallization of the inner core and in
convection in the liquid outer core [3].

The last decade has seen enormous progress in the nu-
merical computation of the geodynamo problem after the first
simulation of a dynamo powered by convection [4–7]. It is,
however, still unclear why many characteristics of the Earth’s
magnetic field are so well retrieved with simulations [8], since
the latter are performed with values of important dimensionless
parameters that differ much from the appropriate values
for the Earth’s core. The main numerical difficulty is the
simultaneous computation of the velocity and the magnetic
and temperature fields with realistic diffusivities, respectively,
the fluid viscosity and the magnetic and thermal diffusivities.
Those differ indeed by six orders of magnitude in the outer core
[9]; such a wide range is at present out of reach numerically,
the simulations being performed at best with two orders of
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magnitude difference between the values of the diffusivities.
An experimental approach of the geodynamo is, in that respect,
promising, since the fluid metals used in experiments have
physical properties, specifically diffusivities, very close to the
properties of the liquid-iron alloy in the Earth’s outer core.
Moreover, experiments and simulations are complementary,
since they span different ranges of dimensionless parameters.

Magnetohydrodynamics experiments devoted to the dy-
namo study started some 50 years ago (see the chapter authored
by Cardin and Brito in [10] for a review). To possibly induce
magnetic fields, the working fluid must be liquid sodium
in such experiments. Sodium is indeed the fluid that best
conducts electricity in laboratory conditions. A breakthrough
in these dynamo experiments occurred at the end of 1999,
when amplification and saturation of an imposed magnetic
field were measured for the first time in two experiments, in
Riga [11] and in Karlsruhe [12]. The common property of those
setups was to have the sodium motion very much constrained
spatially, in order to closely follow fluid flows well known
analytically to lead to a kinematic dynamo, respectively, the
Ponomarenko flow [13] and the G.O. Roberts flow [14]. More
recently, the first experimental dynamo in a fully turbulent
flow was obtained in a configuration where two crenelated
ferromagnetic rotating discs drive a von Kármán swirling flow
in a cylinder [15]. Earth’s like magnetic field reversals were
also obtained in this experimental dynamo [16]. Other similar
experiments have been run where sodium flows are driven
by propellers in a spherical geometry [17,18]. In order to
emphasize the specificity of the experimental study presented
in the present paper, it is worth mentioning two common
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features of the previously mentioned sodium experiments: the
forcing of the sodium motion is always purely mechanical and
the magnetic field is weak in the sense that Lorentz forces are
small compared to the nonlinear velocity terms in the equation
of motion [19].

The “Derviche Tourneur Sodium” (DTS) experiment has
been designed to investigate a supposedly relevant regime for
the Earth’s core, the magnetostrophic regime [20–22], where
the ratio of Coriolis to Lorentz forces is of the order one. The
container made of weakly conducting stainless steel is spher-
ical and can rotate about a vertical axis. An inner sphere
consisting of a copper envelope enclosing permanent magnets
is placed at the center of the outer sphere; the force-free
magnetic field produced by those magnets enables exploration
of dynamical regimes where Coriolis and Lorentz forces are
comparable. The sodium motion in the spherical gap is driven
by the differential rotation between the inner sphere and the
outer sphere, unlike in the Earth’s core where the iron motion is
predominantly driven by convection [23] and maybe minorly
by differential rotation of the inner core [24].

The DTS experiment has not been designed to run in a
dynamo regime. It has instead been conceived as a small
prototype of a possible future large sodium spherical dynamo
experiment that would benefit from its results. Note that,
meanwhile, Daniel Lathrop and collaborators have built a
3-m-diameter sodium spherical experiment with an inner
sphere differentially rotating with respect to the outer sphere,
like in DTS. Schaeffer, Cardin, and Guervilly [25,26] have
shown numerically that a dynamo could occur in a spherical
Couette flow at large Rm in a low magnetic Prandtl number
fluid such as sodium (Pm = ν/λ, see Table I).

Numerical simulations in a DTS-type configuration [27–29]
of Couette spherical flows with an imposed magnetic field
all show azimuthal flows stabilized by magnetic and rotation
forces. Using electric-potential measurements along a merid-
ian of the outer sphere boundary, we concluded in our first
report of DTS experimental results [30] that the amplitude
of the azimuthal flow may exceed the velocity of sodium
in solid-body rotation with the inner sphere, as predicted
theoretically in the linear regime [31].

The DTS experiment offers a tool to investigate nonuniform
rotation of an electrically conducting fluid in the presence of
rotation and magnetic forces. The differential rotation of a
body permeated by a strong magnetic field and the waves
driven by the nonuniform rotation have received considerable
attention since the work of Ferraro [32,33]. Indeed, the absence
of solid envelopes makes nonuniform rotation possible in stars,

TABLE I. Physical properties of pure liquid sodium at 130◦C
(documents from CEA, Commissariat à l’Energie Atomique et
aux énergies alternatives). The sound velocity in sodium has been
precisely measured in the present study using the ultrasonic Doppler
velocimetry apparatus.

ρ Density 9.3 102 kg m−3

σ Electric conductivity 9 106 �−1m−1

ν Kinematic viscosity 6.5 10−7 m2s−1

η Magnetic diffusivity 8.7 10−2 m2s−1

c Sound velocity 2.45 103 m s−1

TABLE II. Typical values of the dimensionless numbers in the
DTS experiment, computed for f = �/2π = 25 Hz.

Re b2�/ν 1.3 106

Rm b2�/η 10
	 σB2

0 /ρ� 1.9
Ha (Re	)1/2 1.6 103

where it plays an important role in the mixing of chemical
elements [34], in contrast with the case of planetary fluid
cores. Ferraro found that the angular rotation in an electrically
conducting body permeated by a steady magnetic field sym-
metric about the axis of rotation tends to be constant along
magnetic lines of force. MacGregor and Charbonneau [35]
illustrated this result and showed, in a weakly rotating case,
that Ferraro’s theorem holds for Ha � 1 (Ha, the Hartmann
number, measures the magnetic strength, see Table II). An
intense magnetic field, probably of primordial origin, is the
key actor in the transfer of angular momentum from the solar
radiative interior to the convection zone [36,37]. Finally, in
a geophysical context, Aubert recently found, investigating
zonal flows in spherical shell dynamos, that Ferraro’s law of
isorotation gives a good description of the geometry of the
zonal flows of thermal origin [38].

In the second study of the DTS experiment [39], we
investigated azimuthal flows when both the inner boundary and
the outer boundary are rotating but at different speeds, using
Doppler velocimetry and electric potential measurements.
Specifically, we discussed the transition between the outer
geostrophic region and the inner region where magnetic forces
dominate. Extending the asymptotic model of Kleeorin et al.
[40], we could explain the shape of the measured azimuthal
velocity profiles. We had to use a specific electric potential
difference as a proxy of the differential rotation between the
two spheres as, unfortunately, the electrical coupling between
the liquid sodium and the copper casing of the interior magnets
was apparently both imperfect and unreliable. Finally, we
reported in on our third article [41] about the DTS experiment
the presence of azimuthally traveling hydromagnetic waves
that we inferred mainly from electric potential measurements
along parallels.

We investigate here again the main flows when the outer
sphere is at rest. Our new study benefits from a comparison
with our earlier work [39] for a rotating outer sphere. There
is no need any more to use an indirect measure of the global
rotation of the fluid as the electrical coupling between liquid
sodium and copper has become unimpaired. Furthermore,
the DTS experiment has been equipped with a host of new
measurement tools. The flow amplitude is measured along
seven different beams using Doppler velocimetry. Assuming
axisymmetry, we have thus been able to map the azimuthal
flow in most of the fluid. It turns out that the electric potential
differences evolve monotonically with the inner core rotation
but cannot be interpreted directly as a measure of the velocity
below the outer viscous boundary layer. We have also entered
a probe inside the cavity to measure the induced magnetic field
in the interior. The dense measurements in the DTS experiment
give a nice illustration of the Ferraro law of isorotation [32]
in the inner region where magnetic forces dominate. In the
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outer region, we retrieve axially invariant azimuthal flow as the
Proudman-Taylor theorem holds there, even though the outer
sphere is at rest. The variation of the geostrophic velocity with
the distance to the axis differs, nevertheless, from the case of a
rotating outer sphere as recirculation in the outer Ekman layer
plays an important role in the latter case.

The organization of the paper is as follows. In Sec. II, we
describe the experimental setup and the techniques that we
use to measure the magnetic, electric, and velocity fields;
we illustrate them with a discussion of a typical experimental
run. In Sec. III, we present the governing equations and the
relevant dimensionless numbers of the experiment. We devote
one section of the article to the observation of differential
rotation and another one to the meridional circulation. Then,
the experimental measurements are compared to numerical
simulations of DTS. We summarize and discuss the results of
our study in Sec. VII.

II. THE DTS EXPERIMENT

A. The experimental set-up

The DTS experimental setup [30,39,41] is shown in Fig. 1.
It has been installed in a small building purpose-designed for
sodium experiments.

As shown in Fig. 1, liquid sodium is contained in a spherical
shell between an outer sphere and an inner sphere. The radius
of the outer sphere is a = 210 mm and that of the inner sphere
is b = 74 mm. The outer sphere is made of stainless steel
and is 5 mm thick. The copper inner sphere (Figs. 2 and 3)
contains magnetized rare-earth cobalt bricks assembled such
that the resulting permanent magnetic field is very close to an
axial dipole of moment intensity 700 Am2, with its axis of
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FIG. 1. (Color online) Diagram and picture of the experimental
setup. (A) Movable sodium reservoir, (B) shielded electric slip-
ring, (C) electromagnetic valve, (D) outer sphere, (E) magnetized
rotating inner sphere, (F) spherical shell containing liquid sodium,
(G) magnetic coupling entraining the inner sphere shaft,
(H) crenelated belt, (I) brushless electric motor driving the inner
sphere, (J) expansion tank for sodium, (K) thermostated chamber.
The total height of the setup is 3.9 m.

symmetry aligned with the axis of rotation. The magnetic field
points upward along the rotation axis and its magnitude ranges
from 345 mT at the poles of the inner sphere down to 8 mT at
the equator of the outer sphere.

Sodium is kept most of the time in the reservoir at the bottom
of the setup. When needed to run an experiment, sodium is
melted and pushed up from that reservoir into the spherical
shell by imposing an overpressure of Argon in the reservoir.
When liquid sodium reaches the expansion tank at the top
of the spherical shell, an electromagnetic valve located just
below the sphere (see Fig. 1) is locked such that sodium is kept
in the upper part during experiments. In case of emergency, the
valve is opened and sodium pours directly into the reservoir.

The central part of the experiment is air-conditioned in
a chamber maintained at around 130◦C during experiments:
four 1 kW infrared radiants disposed around the outer sphere
heat the chamber, whereas cold air pumped from outside cools
the setup when necessary. Liquid sodium is therefore usually
kept approximately 30◦C above its melting temperature during
experiments. Some physical properties of sodium relevant to
our study are listed in Table I. The whole volume containing
sodium, from the reservoir tank up to the expansion tank,
is kept under Argon pressure at all times in order to limit
oxidization of sodium.

The rotation of the inner sphere, between f = −30 Hz and
f = 30 Hz, is driven by a crenelated belt attached to a 11 kW
brushless motor (SGMH-1ADCA61 from Yaskawa Electric
Corporation, Tokyo, Japan). The belt entrains a homemade
magnetic coupler located around the inner sphere shaft as seen
in Fig. 1. The coupler is composed of an array of magnets
located outside the sodium container, another array of magnets
inside the container being immersed in liquid sodium. The
inner magnets are anchored to the rotating shaft of the inner
sphere such that when the belt is rotated outside, the inner
sphere is rotated as well. Such a coupler has the advantage of
not requiring any rotating seal in liquid sodium. Torque values
up to about 70 N·m have been efficiently transmitted through
this coupler in the experiment.

B. Measurements

1. Ultrasonic Doppler velocimetry

We use ultrasonic Doppler velocimetry (UDV) [42] in order
to measure liquid-sodium velocities in the spherical shell. This
nonintrusive technique has been used by our group for the past
decade, in particular in rotating experiments performed either
in water or in liquid metals [43–46]. The technique consists in
the emission from a piezoelectric transducer of a succession
of bursts of ultrasonic waves that propagate in the fluid.
When the wave encounters a particle with a different acoustic
impedance, part of the ultrasonic wave is backscattered toward
the transducer. The time elapsed between the emitted and the
reflected waves and the change in that time, respectively, give
the position of the particle with respect to the transducer and
the fluid velocity along the beam direction. Data processing is
internal to the DOP2000 apparatus [59].

The ultrasonic probes are held in circular stainless steel caps
attached to the outer sphere, as shown in Fig. 3(a). There are six
locations with interchangeable caps on the outer sphere such
that fluid velocities can be measured from any of these different

066310-3



D. BRITO et al. PHYSICAL REVIEW E 83, 066310 (2011)

(a) (b)

FIG. 2. (Color online) (a) Picture of one hemisphere of the inner sphere. Different pieces of magnets in gray are assembled in the bulk of
the inner sphere. (b) View from the side of the inner sphere and its rotating shaft. Note that the wheels at the top and bottom (only one is shown
in the picture) of the rotating shaft are attached to the outer sphere.

positions. The thickness of the stainless steel wall between
the probes and liquid sodium has been precisely machined to
1.4 mm in order to ensure the best transmission of energy
from the probe to the fluid [47]. Small sodium oxides and/or
gas bubbles are present and backscatter ultrasonic waves as
in gallium experiments [46]. We keep the surface of the caps
in contact with sodium as smooth and clean as possible to
perform UDV measurements.

We use high temperature 4 MHz ultrasonic transducers
(TR0405AH from Signal Processing) 10 mm long and 8 or
12 mm in diameter (piezoelectric diameter 5 or 7 mm). The
measurements shown throughout the paper were performed
with pulse repetition frequency (PRF) varying from 3 kHz
to 12 kHz and with a number of PRF per profile varying
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FIG. 3. (Color online) (a) 3D perspective view of the outer sphere
and its interior. Caps at various latitudes hold ultrasonic velocity
probes to perform UDV. The divergent ultrasonic beams emitted from
each cap are shown in perspective with different colors (and numbers
for the gray-scale version). The five superimposed horizontal slices
of magnets are assembled in the heart of the inner sphere. Differences
in electric potential are measured between points from latitude +45◦

to latitude −45◦, with steps of 10◦ (holes along a meridian at the
right of the figure). (b) Meridional view of the normalized coordinates
(s/a,z/a) covered by the ultrasonic trajectories numbered from 1 to 7.
Some of the corresponding rays are plotted in (a) with the same color
code (same numbers). The distance d from the outer sphere along the
ultrasonic beam is marked by small dots drawn every 20 mm. The
dotted lines are field lines of the imposed dipolar magnetic field.

from 8 to 128. A present limitation of this UDV technique
is that the maximum measurable velocity obeys the following
function umax = c2/4fePmax, where c is the ultrasonic velocity
of the medium, fe is the emitting frequency, and Pmax is
the maximum measurable depth along the velocity profile.
Applying this relationship to the parameters used in DTS,
Pmax � 200 mm (approximative length of the first half of the
beam in Fig. 3) and fe = 4 Mhz, the maximum measurable
velocity is of the order 2.2 m/s. In particular cases, it is possible
to overcome this limitation by using aliased profiles of velocity
[43], as shown later in the paper. The spatial resolution of the
velocity profiles is about 1 mm, and the velocity resolution is
about 0.5% or better for the aliased profiles.

We have measured both the radial and oblique components
of velocity in the bulk of the spherical shell. The radial
measurements were performed from the latitudes +10◦, −20◦,
and −40◦. The oblique measurements were performed from
different locations and in different planes, along rays that all
deviate from the radial direction by the same angle (24◦). Thus,
they all have the same length in the fluid cavity. At the point
of closest approach, the rays are 11 mm away from the inner
sphere. The seven oblique beams used in DTS are sketched in
Fig. 3(b). The way to retrieve the meridional and azimuthal
components of the velocity field along the ultrasonic beam is
detailed in the Appendix.

We use UDV measurements to confirm the strong magnetic
coupling between the inner rotating sphere and sodium. In a
smaller version of DTS performed in water, maximum angular
velocities (normalized by that of the inner sphere) of the order
0.16 are obtained for a hydrodynamic Reynolds number of 105

in the vicinity of the equatorial plane, close to the rotating inner
sphere [26]. For similar Re in DTS, sodium is in super-rotation
close to the inner rotating sphere and maximum measured
velocities are instead around 1.2.

2. Magnetic field inside the sphere

The measurement technique described so far does not
require probes that protrude inside the sphere. In order to
measure the magnetic field inside the sphere, in the liquid,
we have installed magnetometers inside a sleeve, which enters
deep into the liquid. The external dimensions of the sleeve are
114 mm (length inside the sphere) and 16 mm (diameter).
It contains a board equipped with high-temperature Hall
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magnetometers (model A1384LUA-T of Allegro Microsys-
tems Inc). We measure the radial component of the magnetic
field at radii (normalized by the inner radius a of the outer
sphere) 0.93 and 0.74. The orthoradial component is measured
at 0.97 and 0.78, and the azimuthal component at 0.99, 0.89,
0.79, 0.69, 0.60, and 0.50. The sleeve is mounted in place of a
removable port (at a latitude of either 40◦, 10◦, or −20◦). The
measured voltage is sampled at 2000 samples/second with a
16-bit 250 kHz PXI-6229 National Instruments acquisition
card. The precision of the measurements (estimated from
actual measurements when f = 0) is about 140 μT and
corresponds to about 20-unit bits of the A/D converter.
Magnetic fields up to 60 mT have been measured.

3. Differences in electric potentials on the outer sphere

Differences in electric potentials are measured along several
meridians and along one parallel of the outer sphere [30,39,41].
In the present study, we are interested in the measurements
performed along meridians since they are linked to the
azimuthal flow velocity uϕ [we denote (r,θ,ϕ) the spherical
coordinates]. The measurements are performed between suc-
cessive electrodes located from −45◦ to +45◦ in latitude, with
electrodes 10◦ apart as sketched in Fig. 3(a). We note the
difference between the electric potential at latitudes 45◦ and
35◦ as �V40 = V45 − V35. Electric potentials are measured
by electrodes soldered to brass bolts 3 mm long, those being
screwed into 1-mm-diameter, 4-mm-deep blind holes drilled
in the stainless steel wall of the outer sphere. The measured
voltage is filtered by an RC anti-aliasing 215 Hz low-pass
filter and then sampled at 1000 samples/second with a 16-bit
250 kHz PXI-6229 National Instruments acquisition card.
The precision of the measurements (estimated from actual
measurements at f = 0) is about 80 μV and corresponds
to about 10-unit bits of the A/D converter. Electric potential
differences up to 7 mV have been measured.

Denoting E the electric field, we introduce the electric
potential V through E = −∇V , which is valid in a steady state.
Then, the electric potential measurements are analyzed using
Ohm’s law for a moving conductor, j = σ (u × B + E), where
σ is the electric conductivity, j the electric current density
vector, u the velocity field, and B the magnetic field. If the
meridional electric currents jθ are small compared to σuϕBr

in the fluid interior and away from the equatorial plane, where
Br = 0, and if the viscous boundary layer adjacent to the outer
sphere is thin, which ensures the continuity of Eθ through
the layer, then the measured differences in electric potential
depend on the product of the local radial magnetic field Br by
uϕ , the azimuthal fluid velocity,

�V

a�θ
= uϕBr , (1)

where �θ = 10◦ is the angle between two electrodes. How-
ever, we shall question below the assumption on the smallness
of jθ , referred to as the frozen flux hypothesis.

FIG. 4. (Color online) Records of the inner core rotation fre-
quency f , torque C, and differences in electric potential �V40, �V30,
�V20, �V10, �V−20, �V−30, �V−40 as a function of time. The
subscript denotes the latitude (in degrees) of the electric potential
difference.

4. Velocity and torque measured from the motor driving
the inner sphere

The electronic drive of the motor entraining the inner
sphere delivers an analog signal for its angular velocity and its
torque. We checked and improved the velocity measurement
by calibrating it using a rotation counter, which consists of a
small magnet glued on the entrainment pellet and passing once
per turn in front of a magnetometer. The torque signal is used
to infer the power consumption in Sec. II D.

C. A typical experiment: A complete set of measurements

A complete set of measurements performed during a typical
experiment is analyzed below. The run was chosen to illustrate
the various measurements but also to depict how the different
observables evolve with f . During that run of 600 seconds,
the inner sphere was first accelerated from 0 to f = 30 Hz
in around 120 seconds, then decelerated back to 0 during 120
seconds. The inner sphere was then kept at rest for about
100 seconds and accelerated in the opposite direction to f =
−30 Hz in 120 seconds. It returned to zero rotation in 120
seconds again. That cycle of rotation is shown in Fig. 4. The
torque delivered by the inner sphere motor is also shown and
evolves clearly nonlinearly during those cycles.

Figure 4 shows electric potential records (see Sec. II B 3)
obtained during this experiment and time averaged over 0.1 s
windows. The differences of potential vary in sync with the
inner sphere rotation frequency as expected if the various
�V measure the differential rotation between the liquid
sodium and the outer sphere to which the electrodes are
affixed (Sec. II B 3). However, it is also apparent that the
fluid rotation as measured from the �V does not increase
linearly with the inner-sphere frequency. We interpret it as
an indication that braking at the outer boundary, which
opposes the entrainment by the inner core rotation, varies
nonlinearly with the differential rotation. As expected, records
from electrodes pairs are antisymmetrical with respect to the
equator, since the forcing is symmetrical while the radial
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FIG. 5. (Color online) UDV measurements performed along ray number 6 (see Fig. 3) during the second half of the typical experiment,
when the inner sphere was rotated from rest to −30 Hz and then back to rest. (a) Spatiotemporal representation of the measured velocity, given
by the color scale (in m/s). (b) Velocity at three distances from the probe as a function of time, extracted from the spatiotemporal shown in (a).
The velocity profiles are clearly aliased since the profiles are discontinuous. (c) After applying a median time-filtering window of 0.2 s and
unfolding the profiles, the correct velocities are retrieved as a continuous function of time.

component of the imposed magnetic field changes sign across
the equator.

Figure 5 shows the fluid velocity u(d) measured by UDV
during the first half of the experiment along ray 6 as a function
of time and distance. Velocity profiles were recorded along a
total distance d � 80 mm. As demonstrated in Fig. 5(b), the
velocity is aliased since the maximum measurable velocity,
for the ultrasonic frequency used during the experiment, is
exceeded. Since the azimuthal velocity profiles are quite
simple in shape, it has been straightforward to unfold those
profiles and retrieve the correct amplitudes as shown in
Fig. 5(c). The evolution with f is similar to that of the
electrodes, but indicates a stronger leveling-off as f increases.

Figure 6 shows the magnetic field induced inside the fluid
during the typical experiment. The measurements are taken
in the sleeve placed at 40◦ latitude. The induced azimuthal
field in Fig. 6(a) is measured at six different radii (given in
Sec. II B 2). Its intensity reaches 60 mT near the inner sphere
and gets larger than the imposed dipole in some locations.

Note the simple evolution with f , which contrasts with that of
the electric potentials and velocities in that it increases with an
exponent close to 1. The induced meridional field (Fig. 6) is
approximately 20 times weaker. It is dominated by fluctuations
and does not change sign when f does. Note that the evolution
with f is not monotonic. Similar behaviors are observed at
latitudes 10◦ and −20◦.

D. Power scaling

The power dissipated by the flow is shown in Fig. 7 as a
function of the rotation frequency f . It is computed from the
product 
 × 2πf , where 
 is the torque retrieved from the
motor drive. We subtracted the power measured with an empty
shell (dash-dot curve) to eliminate power dissipation in the
mechanical setup. The dissipation in the fluid reaches almost
8 kW for the highest rotation frequency of the inner sphere
(f = ±30 Hz). The small spread of the data dots indicates
that power fluctuations are small. The continuous line is the
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FIG. 6. (Color online) (a) Azimuthal bϕ , (b) radial br - and orthoradial bθ -induced magnetic field at a latitude of 40◦ in the sleeve at different
radial positions recorded during the two triangles sequence of Fig. 4. A top view of the sleeve at the bottom of (a) gives the radial position and
the orientation of the various Hall magnetometers. The intensity of the induced azimuthal field reaches 60 mT near the inner sphere and has
the sign of −f . The fluctuations reach about 10% of the mean. The meridional components of the induced magnetic field are much weaker
and dominated by fluctuations, which have been filtered out here (0.2 Hz low-pass filter).

record of power versus f when the inner sphere is ramped
from 0 to −30 Hz as in Fig. 4. The corresponding increase in
kinetic energy only slightly augments power dissipation.

Power dissipation is found to scale as f 2.5, which does
not differ from the scaling obtained in the laminar numerical
study of Sec. VI. There, it is explained as the result of the
balance between the magnetic torque on the inner sphere and
the viscous torque on the outer sphere, assuming that the fluid
angular velocity below the outer viscous boundary layer is
of the order of the inner sphere angular velocity. Although
the outer boundary layer displays strong fluctuations, the
situation is completely different from Taylor-Couette water
experiments [48].
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FIG. 7. Power dissipated by the flow in DTS. The data dots are
from measurements of the motor torque for plateaus at given f . The
dissipation in the mechanical setup has been removed. It is obtained
by rotating the inner sphere before filling the shell with sodium. It is
drawn here upside-down in the lower panel (empty symbols) and can
be fit by Pempty(W) = 4 × |2πf | + 0.03 × (2πf )2 (dash-dot curve).
Dissipation in the flow scales as f 2.5 and is here compared with
f 2 (dotted line) and f 3 (dashed line).

III. GOVERNING EQUATIONS

A spherical shell of inner radius b and outer radius a is
immersed in an axisymmetric dipolar magnetic field Bd,

Bd(r,θ,ϕ) = B0

(
b

r

)3

[2 cos θer + sin θeθ ] ,

where (r,θ,ϕ) are spherical coordinates. The outer boundary
is kept at rest and the inner sphere rotates with the constant
angular velocity � = 2πf along the same axis as the dipole
field that it carries. We assume that the electrically conducting
fluid filling the cavity is homogeneous, incompressible, and
isothermal. We further assume that the flow inside the cavity
is steady.

The inner body consists of a magnetized innermost core
enclosed in an electrically conducting spherical solid envelope
of finite thickness db. We choose b as unit length, b� as unit
velocity, ρb2�2 as unit pressure, and b2�B0/η = RmB0 as
unit of induced magnetic field b (B = Bd + Rmb). Then, the
equations governing the flow u and the induced magnetic field
are

∇ · u = 0 (2)

∇ · b = 0 (3)

(u · ∇)u = −∇p + 	((Bd · ∇)b + (b · ∇)Bd) + Re−1∇2u

(4)

∇2b = −∇ × (u × B), (5)

where p is a modified pressure. The notation 	 refers to
the Elsasser number, classically used for rotating flows in the
presence of a magnetic field. That number 	 compares the
magnetic and inertial forces in the vicinity of the magnetized
inner sphere. In the shell interior, the two forces are better
compared by a “local” Elsasser number: 	l = (b/r)6	 (with
(b/a)6 � 1.83 10−3). Finally, it is of interest to introduce
the Hartmann number (Ha) that compares the magnetic and
viscous forces. We have Ha = (	Re)1/2. In the shell interior,
the number (b/r)3Ha is more appropriate to compare the two
forces. Typical values of these dimensionless numbers can be
found in Table II.
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The set of Eqs. (2)–(5), where the nonlinear terms are
neglected, was the subject of the analytical study of Dormy
et al. [31], which described how the differential rotation
between the fluid interior and the outer sphere drives an
influx of electrical currents from the mainstream into the outer
viscous Hartmann boundary layer. Electrical currents flow
along the viscous boundary layer and return to the conducting
inner body along a free shear layer located on the magnetic
field line tangent to the outer boundary at the equator. As
these electrical currents cannot flow exactly parallel to the
magnetic field line, they produce a Lorentz force, which
sustains “super-rotation” of the fluid. Recent studies have
extended the analysis to the case of a finitely conducting outer
sphere [49,50]. On increasing the conductance of the container,
Dormy et al. (2010) found that more and more electrical
currents leak into the solid boundary and the super-rotation
rate gets as large as O(Ha1/2). Though the analytical results
have set the stage for the interpretation of the experimental
results, the neglected nonlinear effects are crucial in the DTS
experiment, even for the smallest rate of rotation of the solid
inner body.

Upon reversal of �, uϕ and bϕ change into −uϕ and −bϕ ,
while the other components of u and b are kept unchanged.

IV. DIFFERENTIAL ROTATION

A. Transition between the Ferraro and geostrophic regimes

In this section, we use the UDV records to delve into the
geometry of isorotation surfaces.

The L number associated to each dipolar magnetic field line
enters the equation of the surfaces spanned by dipolar lines of
force:

r = L sin2 θ. (6)

Accordingly, L gives the radius of the intersection of the
magnetic field line with the equatorial plane. The notation
L refers to the L value (or L-shell parameter) widely used
to describe motions of low-energy particles in the Earth’s
magnetosphere. Figure 8 shows that, for L � 2.7, the angular
velocity measured along rays 2 and 3, which are the most
appropriate to map the azimuthal velocity field, is, to a large
extent, a function of L only. Thus, the angular velocity does not
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FIG. 8. (Color online) Rotation frequency of the fluid sodium over the inner-sphere rotation frequency as a function of the magnetic field
lines L for four ultrasonic velocity profiles (trajectories 1, 2, 3, and 6, with the same color code as in Fig. 3) and four inner sphere rotation
frequencies (f = −1.5, −3, −6, and −10 Hz). The dashed line is a straight line to help the eye.
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FIG. 9. (Color online) Rotation frequency of the fluid sodium normalized by the inner-sphere rotation frequency as a function of s, for
various ultrasonic velocity profiles and four inner-sphere rotation frequencies (f = −1.5, −3, −6, and −10 Hz). The colors of the profiles
(numbers) follow the conventions laid out in Fig. 3.

vary along magnetic field lines near the inner sphere, where
the magnetic field is the strongest. We interpret this result as a
consequence of Ferraro’s theorem of isorotation. The latter is
written

Bd · ∇
(uϕ

s

)
= 0. (7)

It is obtained from the ϕ component of the induction equa-
tion for steady fields, ignoring magnetic diffusion. Although
often invoked in the framework of ideal magnetohydrodynam-
ics (MHD), where magnetic diffusion is negligible, Ferraro’s
law does not require a large Rm [51]. It implies that there is
no induced magnetic field and that, as a consequence, the
magnetic force is exactly zero. More precisely, deviations
from this law lead to the induction of a magnetic field, which
produces a magnetic force that tends to oppose this induction
process. Writing u = u0 + u1, where u0 obeys Eq. (7), we
obtain b ≈ u1 from Eq. (5). Then, the momentum Eq. (4) yields
u1 ≈ (Re	)−1u0 = Ha−1u0 (as numerically verified in [35])
when the inertial term, on the left hand side, can be neglected.
Ferraro’s law of isorotation, though, is not the only way to
cancel the magnetic force. In the presence of electric currents

parallel to the magnetic field, the magnetic force remains zero
and Eq. (7) can be violated [50,51]. For the geometry of the
DTS experiment, it cannot happen along the innermost dipolar
field lines that join the two hemispheres without touching the
outer sphere. Indeed, symmetry with respect to the equatorial
plane E implies that the currents do not cross E.

Thus, the observation of a velocity field obeying Ferraro’s
law is a symptom that magnetic forces predominate in that
region. Note that the fact that the two legs of the profile along
ray 2 show similar velocities even for large L only probes the
symmetry of the flow with respect to the equatorial plane.

Now, Fig. 9 shows that for s � 0.6, the azimuthal velocity
is largely a function of s only. There, the Proudman-Taylor
theorem holds and azimuthal flows are geostrophic as the
inertial forces predominate. In contrast with the case of a
rotating outer sphere (see Fig. 7 in [39]), there is no region
of uniform rotation: zonal velocities are z-independent but
vary with the distance to the z axis.

The transition between the Ferraro and geostrophic regimes
(Fig. 10) occurs at smaller distances from the axis as the
rotation frequency of the inner core increases (unfortunately,
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FIG. 10. (Color online) Normalized cylindrical radius s/a along
the UDV trajectories number 1 (blue square), 2 (red circle), and
3 (black cross), where ffluid = f (i.e., f ∗ = 1) as a function of
the inner sphere rotation frequency. Pale line: 	l = 0.5; dark line:
	l = 2.5.

we cannot get reliable UDV data for larger f ). It takes place
where the local Elsasser number 	l , which compares the
magnetic and inertial forces, is of order 1. It is noteworthy that
the Elsasser number 	 defines the location (cylindrical radius)
where 	l = 1. The surface 	l = 1 separates two regions
of the fluid cavity. Inside this surface, the magnetic forces
predominate, while outside it the rotation forces are the most
important ones. Finally, the value of 	 largely defines the
geometry of isorotation surfaces.

In the geostrophic region, magnetic stress integrated on the
geostrophic cylinders remains strong enough to overcome the
viscous friction at the outer boundary and to impart a rapid
rotation to the fluid but becomes weaker than the Reynolds
stress (which can be represented as a Coriolis force). As a
result, the fluid angular velocity is still of the order of the
angular velocity of the inner sphere and the velocities are
predominantly geostrophic.

B. Inversion of velocity profiles

Flow velocity is constrained by its projection on the several
ultrasonic rays that we shoot. We invert the Doppler velocity
profiles for the large-scale mean flow, assuming that the steady
part of the flow is symmetric about the axis of rotation
and with respect to the equatorial plane. A poloidal/toroidal
decomposition,

u = uϕeϕ + ∇ × (upeϕ), (8)

is employed. We first consider the azimuthal velocity uϕ , which
is expanded in associated Legendre functions with odd degree
and order 1, i.e.,

uϕ(r,θ ) =
lmax∑
l=0

ul
ϕ(r)P 1

2l+1(cos θ ). (9)

The functions ul
ϕ(r) are decomposed into a sum from k = 0

to kmax of Chebyshev polynomials of the second kind on the
interval [0,1] mapped onto the interval [b/a,1], i.e., the fluid
domain. The azimuthal velocity is not constrained to vanish

at the inner and outer boundaries, in order to account for the
presence of thin unresolved boundary layers.

Azimuthal velocities are more than 10 times larger than the
poloidal (i.e., meridional) velocities. Nevertheless, the latter
projects onto the ultrasound rays. We take the difference of the
profiles acquired for f and −f in order to eliminate this small
contribution (the meridional circulation does not change sign
while the azimuthal velocity does).

Figure 11 shows the isovalues of angular frequency f ∗
inverted for f = ±3 Hz, with lmax = 3 and kmax = 7. A
crescent of super-rotation is present near the inner sphere.
There, isorotation contours roughly follow magnetic field
lines, in agreement with Ferraro’s theorem, as anticipated
above. At larger cylindrical distance from the inner sphere,
the flow becomes geostrophic: the contour lines are vertical.
We note that angular velocities just above the north pole of
the inner sphere do not comply with Ferraro’s law. Instead,
velocities decrease to quite low values inside the cylinder
tangent to the inner sphere. Such violations have been shown
to occur when the electric conductivity of boundaries is high
[50,51]. We speculate that we might be in this situation inside
the tangent cylinder because the opening of the sphere at the
top and bottom (see Fig. 3) replaces the poorly conducting
stainless steel wall by sodium.

Figure 11 compares the synthetic angular velocity profiles
to the observed Doppler velocity profiles along the various
rays. Note that super-rotation is clearly visible in the raw
profiles. The drop in velocity just above the inner sphere is
constrained by profiles 4 (green in online image) and 6 (cyan
in online image), but its vertical extent is not.

C. ffluid deduced from differences in electric potential
and from UDV

As in the previous study of DTS with rotating outer sphere
[39], we observe that the amplitudes of the differences in elec-
tric potential �V vary linearly with �V40, the proportionality
factor increasing from the equator toward the poles due in
particular to the increase of Br in Eq. (1). We show, however,
in the present study that measuring the electric potential does
not yield a reliable indicator of the angular velocity f ∗ using
Eq. (1). In Fig. 12, we compare the normalized fluid angular
velocity f ∗ retrieved from the �V , for four different latitudes,
to f ∗ obtained directly by UDV at the nearest measured point,
around d/a = 0.1. The frequencies f ∗ obtained from �V and
from UDV in Fig. 12 would be similar if both measurement
techniques were only sensitive to uϕ in the interior below
the outer viscous boundary layer. The strong discrepancy
between these two sets of frequencies reveals instead that the
outer boundary layer in DTS cannot simply be reduced to a
Hartmann layer, outside of which the meridional currents jθ

can be neglected. We further discuss this point in Sec. VI.

V. MERIDIONAL CIRCULATION

The meridional circulation is constrained from Doppler
velocity profiles of the radial velocity (shot along the radial
direction), from profiles shot in a meridional plane, and from
the projection of the meridional velocity on “azimuthal” shots.
The latter is obtained by taking the sum of the profiles
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FIG. 11. (Color online) (a) Reconstructed isovalue map of fluid angular frequency f ∗ (the fluid angular frequency normalized by f ) at
f = ±3 Hz in a meridional plane, assuming axisymmetry and symmetry with respect to the equator. Three dipolar field lines (dash-dot white)
are superimposed in the angular velocity maps. Super-rotation (f ∗ > 1) is clearly visible near the inner sphere, where the Ferraro law of
isorotation applies. Contours become vertical further away, where geostrophy dominates. The fluid frequency is higher than 0.4 everywhere
except in thin unresolved boundary layers. The color lines are the projection in the upper half (s,z) plane of the ultrasonic rays used in the
inversion (see Fig. 3). (b) Comparison between the measured ultrasonic Doppler f ∗ (shown by their error bars) and the synthetic profiles
(solid lines) computed from the angular frequency map of (a) for f = ±3 Hz. The x axis gives the distance along the ray (in a units). The
corresponding rays are plotted in (a) with the same color code (and indicated with trajectory numbers referring to Fig. 3).

acquired for f and −f , in order to eliminate the azimuthal
contribution. The same is done for the radial and merid-
ional profiles to remove any contamination from azimuthal
velocities.

The poloidal velocity scalar uP of Eq. (8) is expanded in
associated Legendre functions with even degree and order 1,
i.e.,

uP (r,θ ) =
lmax∑
l=0

ul
P (r)P 1

2l(cos θ ). (10)

FIG. 12. (Color online) f ∗ deduced from the measurements of
�V using Eq. (1). Solid blue line: f ∗ value obtained with UDV
measurements on the trajectory number 1 at the distance d/a = 0.1.
Dashed red line: f ∗ value obtained with UDV measurements on the
trajectory number 2 for d/a = 0.1.

The radial ur and orthoradial uθ components of velocity are
then obtained as

ur (r,θ ) =
lmax∑
l=0

ul
P (r)

r

1

sin θ

d

dθ

[
sin θ P 1

2l(cos θ )
]
, (11)

uθ (r,θ ) = −
lmax∑
l=0

[
ul

P (r)

r
+ dul

P (r)

dr

]
P 1

2l(cos θ ). (12)

The functions ul
P (r) are decomposed into a sum of

sin[kπ (r − b/a)/(1 − b/a)] from k = 0 to kmax. The radial
velocity is thus constrained to vanish at the inner and outer
(rigid) boundaries, but the orthoradial velocity is not, in order
to account for the presence of thin unresolved boundary layers.
Figure 13 shows the streamlines of the meridional circulation
inverted for f = ±3 Hz, with lmax = 4 and kmax = 8. The
fluid is centrifuged from the inner sphere in the equatorial
plane and moves north in a narrow sheet beneath the outer
boundary. It loops back to the inner sphere in a more diffuse
manner. Meridional velocities are more than ten times weaker
than azimuthal velocities.

Figure 14 compares the synthetic radial and meridional
profiles to the observed Doppler velocity profiles along the
various rays. Velocities are normalized by 2πf a.

Over a decade (from f = 1.5 Hz to = 15 Hz), radial
velocities are consistently centrifugal at 10◦ latitude and
centripetal at 40◦, and are roughly proportional to f . The radial
profiles at 20◦ are more complex and evolve with f , indicating
a nonmonotonic evolution of the meridional circulation, also
evidenced by the records of the r and θ components of the
induced magnetic field inside the fluid (see Fig. 6). Figure 15
compiles the rms value of radial velocity at 20◦ for various f .
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FIG. 13. (Color online) Reconstructed stream lines of the merid-
ional circulation at f = ±3 Hz in a meridional plane, assuming
axisymmetry and symmetry with respect to the equator. The interval
between lines is 1.6 × 10−3. The fluid is centrifuged away from the
inner sphere in the equatorial region and moves up to the pole along
the outer boundary. The color lines are the projection in the upper
half (s,z) plane of the ultrasonic rays used in the inversion.

Note that the fluctuations are larger than this value, which is
almost 50 times smaller than azimuthal velocities.

VI. COMPARISON WITH NUMERICAL SIMULATIONS

Two previous numerical studies are particularly relevant
to our work. Hollerbach et al. studied exactly the DTS
configuration but for values of 	 much larger than its value
in the experiment in Ref. [29]. They focus their study on the
modification of the linear solution by inertial effects, stressing
that the magnetic field line tangent to the outer sphere at the
equator loses its significance in the nonlinear regime. As a
result of the relatively large value of 	, the inertial effects
remain too weak—when the outer sphere is at rest—to make
a geostrophic region arise at large distances from the axis.
The solutions of Garaud [52] (see the Figs. 7 and 11) for a
slightly different problem do show the transition between a
Ferraro and a geostrophic region. In Garaud’s model, which
pertains to the formation of the solar tachocline, a dipolar
magnetic field permeates a thick spherical shell as in DTS,
the rotation of the outer boundary is imposed and the rotation
of the inner boundary is a free parameter: a condition of zero
torque is imposed on that boundary. Numerical models [29,39]
of the DTS experiment when the outer sphere is rotating also
clearly show a Ferraro region near the inner sphere, where
the magnetic field is strong, and a geostrophic region in the
vicinity of the equator of the outer sphere. We argue below that
all these results obtained for a rotating outer sphere provide us
with a useful guide to interpret the numerical solutions when
the outer sphere is at rest.

A. The numerical model

The model consists of four nested spherical layers (see
Fig. 16). The fluid layer is enclosed between a weakly con-
ducting outer container and a central solid sphere composed
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FIG. 14. (Color online) Comparison between the measured ul-
trasonic Doppler velocity profiles (shown by their error bars) and
the synthetic profiles (solid lines) computed from the meridional
circulation map of Fig. 13 for f = ±3 Hz. (a) Radial profiles along
the radial direction r1, r2, and r3 shown in Fig. 13. (b) “Azimuthal”
profiles. The contribution from the azimuthal flow has been removed
by taking the sum of profiles acquired for f and −f . The x axis
gives the distance along the ray (in a units) and the y axis is the
velocity measured along the ray, adimensionalized by 2πf a. The
corresponding rays are plotted in Fig. 13 with the same color code
(for the gray-scale version, the trajectory numbers in (b) refers to
those in Fig. 3).

of an inner insulating core and of a strongly conducting outer
envelope.

The velocity field is decomposed as stated in Eqs. (8) and
(9). The variables ul

ϕ(r) and ul
p(r) are then discretized in

radius. Analogous decompositions of variables denoted bl
ϕ(r)

and bl
p(r) are employed to represent the induced magnetic

field. The truncation level lmax [see Eq. (9)] is 120, and at least
450 unevenly spaced points are used in the radial direction.
Specifically, the density of points strongly increases close to
the boundaries in order to resolve the viscous boundary layers.

Equations (4) and (5), modified to include all the nonlin-
earities and the time derivatives of u and b, are transformed
into equations for ul

ϕ , ul
p, bl

ϕ , and bl
p. We treat the nonlinear

terms explicitly. To advance from one time step to the
next, we use an Adams-Bashforth method. Diffusive terms,
however, are treated implicitly. Finally, Laplace’s equation in
spherical coordinates separates which makes it easy to write
the magnetic boundary conditions.

The dimensionless numbers Re and 	 are chosen so that
steady solutions exist and are stable, with Pm � 1 (Pm enters
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FIG. 15. Compilation of the rms radial velocity amplitude as a
function of the absolute value of f . The rms velocity is computed
from Doppler velocimetry profiles shot at a latitude of 20◦, from
3 cm beneath the outer shell down to the inner sphere (to avoid
spurious values close to the outer boundary). Radial velocity is
roughly proportional to f , but there is a large dispersion, as the
shape of the profiles changes with f . Note that for f = 10 Hz, the
tangential velocity on the inner sphere reaches 465 cm/s.

the definition of the unit induced field). We strive to reproduce
the experimental values of 	 and Rm. Solutions are obtained
after time-stepping the equations until a stationary or periodic
state is reached. They have been successfully compared to
solutions obtained with another numerical code PARODY,
which is not restricted to axisymmetric variables [26,53].

It is not possible to simulate the Reynolds number of the
experiment, which is about 106. For the experimental range of
	, steady solutions are obtained with Re ∼ 103.

Stainless steel

Sodium,

Copper, 4.2

inner core
Insulating

FIG. 16. (Color online) Geometry of the numerical model. The
relative conductance of the solid outer shell is σbδ/σa = 1/336, with
σb and δ, respectively, the conductivity and the thickness of the
outer sphere. It reproduces the experimental value with σb chosen
as the conductivity of stainless steel at 140◦C. The conductivity
ratio between layers 2 and 3 reproduces the ratio (4.2) between the
conductivity of copper and sodium.

B. Steady axisymmetric solutions

Figure 17 displays a typical solution for the angular and
meridional velocities that illustrates well the experimental
results. The fluid rotates faster than the magnetized inner body
in its vicinity. There, the angular velocity is constant along
magnetic-field lines of force. Further away from the inner
core, the zonal shear becomes almost geostrophic. In addition
to the features that we have retrieved from the experimental
results, the numerical solution displays recirculation in the
outer boundary layer at high latitude. There, the interior flow
largely consists in rigid rotation and the boundary layer has the
characteristics of a Bödewadt layer with a region of enhanced
angular rotation.

For large enough Re [e.g., (a/b)2Re = 104 with
(b/a)2Ha = 20], circular waves are present in the Bödewadt
layer, above 60◦ of latitude. They propagate toward the axis.
Similar waves had been reported before in simulations of the
flow between a rotating and a stationary disk in the absence of
a magnetic field [54]. There, they eventually die out. Thus, the
persistence of propagation of circular waves in the boundary
layer attached to the sphere at rest may be attributed to the
presence of a magnetic field. On the other hand, these waves
arise for larger Re as Ha is augmented. Their emergence
delimits the domain of steady solutions.

We have checked that the thickness of the outer boundary
layer in the numerical solution scales as �−1/2. Note that it
corresponds to 3 mm for � = 1.5 s−1 and the viscosity of liquid
sodium. The fluid rotation is driven by the electromagnetic
torque acting at the inner boundary against the viscous torque
at the outer boundary. We have found that both the viscous
torque on the inner surface and the electromagnetic torque
on the outer surface are negligible. Comparing different
simulations, we have also checked that the main viscous
torque scales as ∼ �3/2, as expected from the thickness of
the Bödewadt layer. Thus, the power required to drive the fluid
rotation scales as �5/2, as does the experimentally measured
power, and torque measurements do not give indications on
turbulence (see Sec. II D).

The angular rotation just below the outer viscous layer
scaled by the inner-core angular rotation decreases with Re in
agreement with the experimental results. On the other hand,
the angular rotation that would be inferred from the electric
potential differences calculated at the outer surface using
Eq. (1) increases with Re. Figure 17(c) displays the angular
velocity as estimated from the electric potential, according to
Eq. (1). It can be compared to Fig. 17(a). The actual shear is
well retrieved where the magnetic force predominates, in the
region where Ferraro’s law of isorotation holds. There,
the electric current density j is limited by the strength of
the magnetic force, which needs to be balanced by another
force. That restriction makes it possible to neglect j in Ohm’s
law. Then, predictions made from Eq. (1) are correct. On
the other hand, the actual shear is not well recovered in
the geostrophic region where the electric current density is
not limited by the strength of the magnetic field. There, the
frozen-flux relation [Eq. (1)] can be violated. We thus explain
why the electric potential measurements at the surface of the
DTS experiment do not yield a good prediction of the angular
velocity immediately below the outer viscous boundary layer.
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FIG. 17. (Color online) (a) Angular and (b) meridional velocity in a meridional plane for Re = 9.5 102, Ha = 163, and Pm = 10−3.
(c) angular velocity estimated from V , using (1). Two dipolar field lines (white) are superimposed in the angular velocity maps, and the thick
black contour line is where the angular velocity is unity.

Our first discussion [30] of the electric potential measure-
ments was based on a numerical model calculated for the
experimental values of Ha and thus for too-large values of
	. As a result, the magnetic force, in the numerical model,
was dominant in the entire fluid layer and the frozen-flux
relationship [Eq. (1)] was verified, at least away from the
equator where Br = 0. However, Eq. (1), becomes less and
less valid as Re is increased and 	 decreased, in agreement
with the divergence that has been experimentally observed (see
Fig. 12) between the angular velocity calculated from Eq. (1)
and the actual velocity.

Incidently, cranking up the rotation of the magnetized
inner sphere stabilizes the fluid circulation, at least within a
certain parameter range. We have calculated the time-averaged
solution (not shown) for the same parameters as the steady
solution illustrated by Fig. 17 but for a lower Re. Both the
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FIG. 18. (Color online) Angular velocity along the ultrasonic rays
as a function of the distance from the probe: measured (solid lines,
3 Hz, 	 = 16) and retrieved from a time-averaged numerical solution
(dashed lines, Re = 1.5 103, Ha = 163, Pm = 10−3, 	 = 18). The
color lines refer to those used to define the ultrasonic beams in the
Fig. 3 (the numbers also refer to the ultrasonic-beam numbers defined
in the Fig. 3). The error bars of the experimental data are shown in
Fig. 11.

flow and the induced magnetic field are periodic for this set
of parameters. A second meridional roll, which is centripetal
in the equatorial plane, turns up in the outer region. There, it
creates a disk-shaped region where the rotation is slow and
the solution is strikingly different from the almost geostrophic
solution (Fig. 17) obtained for a slightly larger value of Re.

C. Comparison between numerical simulations and
experimental results

We find that reproducing the Elsasser number 	, rather
than a combination of 	 and Re, such as the Hartmann
number Ha = (Re	)1/2, is the key factor to recover the
experimental results. The parameters for the solution displayed
in Fig. 17 correspond to 	 = 28, which is the appropriate
value for experiments with � = 1.5 s−1. With Pm = 10−3,
the value of the magnetic Reynolds number is about right. It
remains too small for the poloidal field to be much different
from the imposed dipole field (again for the parameters of
Fig. 17).

Figure 18 shows that numerical solutions are able to sat-
isfactorily reproduce the ultrasonic measurements of angular
velocity, obtained for the same values of 	, as expected from
the similitude of the angular velocity maps 11 and 17. The
simulated velocities have weaker amplitude than the measured
ones in much of the fluid, though. We have checked that
increasing Re, while keeping 	 constant, favors enhanced
corotation between the fluid and the inner core. As our
calculations are for much smaller Re than the values realized
in the experiment, that result may explain the remaining
discrepancy between measured and simulated velocities.

VII. DISCUSSION AND CONCLUSION

In the presence of an imposed magnetic field, which favors
solid-body rotation, the inertial forces largely reduce to a
Coriolis force, even for large Reynolds numbers. Experimental
results can thus be interpreted using a single dimensionless
number, the Elsasser number. In that respect, experimental
results obtained with global rotation [39] provide a better
guide to interpreting the present results than the linear situation
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studied by Dormy et al. [28,31]. We estimate that, in DTS, the
rotation frequency f should be less than 0.1 Hz for the latter
to be approached.

Experiments have been conducted with the inner sphere
rotating in the range −30 Hz � f � 30 Hz. We have
been able to map extensively the shear in the fluid cavity
from ultrasonic Doppler velocimetry for |f | � 10 Hz. Our
observations provide a very clear experimental illustration of
Ferraro’s law of isorotation, demonstrating the predominance
of magnetic forces near the inner sphere. They also exhibit
a strong super-rotation: in the region where magnetic forces
dominate, the fluid angular velocity gets 30% larger than that
of the inner sphere. This contrasts with the results obtained
by Dormy et al. [28] when global rotation is present, which
indicate that the phenomenon of super-rotation is hindered by
the Coriolis force. The experimental results obtained in our
previous study with global rotation [39] could not address
this issue, and we plan to run additional experiments for that
purpose.

The experiments also display a clear violation to Ferraro’s
law: quite-low angular velocities are observed just above the
inner sphere, where the magnetic field is strongest (see Fig. 11).
We suspect that this is due to the presence of sodium at rest at
the top and bottom of the cylinder tangent to the inner sphere.
Indeed, such violations have been shown to occur when the
electric conductivity of boundaries is high [50,51].

We could follow the evolution of induced magnetic field,
electric potentials, and power across the full range of forcing.
In a first approximation, all observables associated with the
azimuthal flow (which dominates) can be described by a
universal solution, both velocities and induced magnetic-field
scaling with f . In a second approximation, the increase of the
dimensional fluid velocity with f thins the viscous boundary
layer at the outer sphere and increases friction accordingly,
thus reducing the adimensional velocity of the fluid inside
the sphere. At the same time, the effective Coriolis force that
results from the nonlinear (u · ∇)u term increases with respect
to the (linear) Lorentz force: the geostrophic region extends
further toward the inner sphere. This explains that the fluid
velocity increases with f less rapidly than f (Fig. 5) at large
f , while the torque instead increases more rapidly than f

(Fig. 4) (the electric potentials follow an intermediate trend).
The outer friction torque is balanced by the magnetic torque at
the inner boundary. This is consistent with an increase of the
induced magnetic field, near the solid inner body, that is steeper
than f (see Fig. 6). On the other hand, the description of Nataf
and Gagnière [55] pertains to the region where the shear is
geostrophic. There, the increased torque at the outer boundary
is balanced by the magnetic torque on the geostrophic cylinders
in the interior, which results from the shearing of the imposed
dipolar field. The direct measurement of the velocity (up to
10 Hz, see Fig. 9) shows that the adimensionalized shear does
not change significantly with f even though the velocity itself
decreases. In addition, the induced azimuthal magnetic field
that we measure inside the sphere (Fig. 6), for the whole
range of f , increases more rapidly than f . At large f , we
observe that bϕ gets larger than the imposed dipolar field in
much of the fluid layer. Eventually, this induced field is large
enough to modify the overall magnetic field and the resulting
flow.

This last regime, only achieved because the magnetic
Reynolds number is large enough, is probably the most
interesting one. Unfortunately, we cannot directly measure
the flow velocities with the ultrasound technique at these very
large f . Less direct techniques are now required to investigate
the zonal shear for f > 10 Hz. Inertial waves modified in
the presence of the dipolar and the induced magnetic fields
have been inferred from records of the electric potential along
parallels at the surface [41] and of the magnetic field along
a meridian. Both their period and their wave number vary
with the geometry of the differential rotation in the cavity.
Hopefully, it will be possible to invert the zonal shear from the
records of magnetoinertial waves.

Guided by the numerical model, we find that electric-field
measurements are difficult to interpret, particularly in the
equatorial region where the radial magnetic field Br vanishes.
The frozen-flux approximation [Eq. (1)] holds when there
is a mechanism that keeps under control the strength of
the electrical currents [56]. This is the reason why the
magnetic Reynolds number Rm is not relevant to discuss the
validity of the frozen-flux approximation in our quasisteady
experiment. That approximation has predictive power, instead,
in regions where the magnetic force is dominating. In the DTS
experiment, it corresponds to the inner region close to the
magnet where 	 � 1.

In a geophysical context, a similar approach is routinely
used [57] to invert the velocity field at the Earth’s core
surface from models of the time changes of the geomagnetic
field, the so-called secular variation. Taking the example of
a quasisteady state, this geophysical application has been
criticized from a strictly kinematic standpoint [58]. We
reckon instead that it is necessary to consider the balance
of forces to decide whether the frozen-flux hypothesis holds,
at least for a quasisteady state as illustrated by the DTS
experiment.

Features of the experiment that only depend upon dimen-
sionless numbers that do not involve diffusivities have been
simulated numerically. An analogous explanation has been
put forward to explain the intriguing successes of geodynamo
simulations [5].
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APPENDIX: ANGULAR AND MERIDIONAL VELOCITY
ALONG THE ULTRASONIC OBLIQUE RAYS

The seven oblique ultrasonic rays shot in DTS are sketched
in Fig. 3. We define the declination D as the angle between
the beam and the meridional plane (D counted positively
eastwards), the inclination I as the angle between the projected
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TABLE III. Latitude λ, inclination I , and declination D (in
degrees) at the origin of the shots (on the outer sphere) of the oblique
ultrasonic beams in DTS.

Trajectory number and color λ I D

1, blue 40 21.1 11.7
2, red 10 2.2 23.9
3, black 10 12.5 −20.6
4, green −20 20 −13.5
5, yellow −20 21.1 −11.7
6, cyan −40 21.1 11.7
7, magenta −40 −24 0

beam in the meridional plane and the radial direction (I
counted positively upward), and λ as the latitude of the
ultrasonic probe. Using those definitions, Table III gives the
characteristics of the beams.

1. Angular velocity

Along these oblique beams, the projection u(d) (d is the
distance from the probe) of the velocity is a combination of
the components ur , uθ , and uϕ of the total velocity field.
Velocity u(d) is counted positive in the shooting direction.
We assume that the mean fluid flow is axisymmetric and

also (ur ,uθ ) �uϕ , the meridional velocities amplitude in DTS
being less than 10% the amplitude of the azimuthal velocities.
Using projections along the beam, we retrieve the angular
velocity ω(d) along trajectories 1 to 6 using the following
relationship:

ω(d) = − u(d)

a cos λ sin D
. (A.1)

2. Meridional velocity

We have also exploited the observation that the meridional
velocity does not change sign when the rotation of the inner
sphere is reversed—it remains centrifugal in the equatorial
plane—whereas the angular velocity does change sign. Thus,
combining measurements obtained with two opposite rotation
rates of the inner core, we can separate azimuthal and
meridional velocities.

Assuming now that the mean meridional velocity is ax-
isymmetric and using projections, we can retrieve the radial
velocity,

ur (d) = u(d)r(d)

d − a cos D cos I
, (A.2)

and the orthoradial velocity

uθ (d) = u(d)r(d)s(d)

a[a cos D cos λ sin I − d cos2 D cos(λ + I ) sin I + d sin2 D sin λ]
, (A.3)

where r(d) =
√

x2 + y2 + z2 is the spherical radius and s(d) =
√

x2 + y2 is the cylindrical radius at the measurement point.
The (x,y,z) coordinates of the measurement point are given by

x(d) = a cos λ − d cos D cos(λ + I ), (A.4)

y(d) = −d sin D, (A.5)

z(d) = a sin λ − d cos D sin(λ + I ). (A.6)
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