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ABSTRACT
The Stak massif, northern Pakistan, is a newly recognized occur-

rence of eclogite formed by the subduction of the northern margin 
of the Indian continent in the northwest Himalaya. Although this 
unit was extensively retrogressed during the Himalayan collision, 
records of the high-pressure (HP) event as well as a continuous pres-
sure-temperature (P-T) path were assessed from a single thin section 
using a new multiequilibrium method. This method uses microprobe 
X-ray compositional maps of garnet and omphacitic pyroxene fol-
lowed by calculations of ~200,000 P-T estimates using appropriate 
thermobarometers. The Stak eclogite underwent prograde metamor-
phism, increasing from 650 °C and 2.4 GPa to the peak conditions of 
750 °C and 2.5 GPa, then retrogressed to 700–650 °C and 1.6–0.9 GPa 
under amphibolite-facies conditions. The estimated peak metamor-
phic conditions and P-T path are similar to those of the Kaghan and 
Tso Morari high- to ultrahigh-pressure (HP-UHP) massifs. We pro-
pose that these three massifs defi ne a large HP to UHP province in 
the northwest Himalaya, comparable to the Dabie-Sulu province in 
China and the Western Gneiss Region in Norway.

INTRODUCTION
The recent discovery of microdiamond and coesite inclusions in 

rocks previously considered as collision-type granulites (Kotkova et al., 
2011) suggests that evidence for subduction-related metamorphism is 
commonly obliterated during late collisional events. Le Fort et al. (1997) 
considered that the Stak massif in northern Pakistan (Fig. 1) is a retro-
gressed eclogitic massif, but the pervasive retrogression made it diffi cult 
to evaluate the peak metamorphic conditions, which were only con-
strained to be >1.3 GPa and >610 °C. We report a new approach involving 
X-ray mapping of a single thin section, 520 μm × 670 μm in size, which 
yielded information to determine a detailed pressure-temperature (P-T) 
path. This path is similar to those of eclogitic units of Kaghan and Tso 
Morari (~150 km and ~500 km from the Stak massif, respectively), which 
suggests the presence of a large high-pressure (HP) to ultrahigh-pressure 
(UHP) province in the northwest Himalaya.

GEOLOGICAL SETTING AND SAMPLE DESCRIPTION
The Stak area is located in the Indus valley northwest of Skardu, 

Pakistan (Fig. 1). High-pressure rocks are exposed on the northern edge of 
the Indian continental plate within the Main Mantle Thrust, between the 
Ladakh arc to the south and the Nanga Parbat–Haramosh gneisses (Higher 
Himalayan crystallines) to the north (Fig. 1B). These units (weakly meta-
morphosed garnet-free amphibolites of the Ladakh arc, strongly metamor-
phosed metasedimentary rocks of the Nanga Parbat, and felsic gneisses 
of the Nanga Parbat core) are imbricated in tight, multiphase folds up to 
a kilometer in scale with superimposed NNE-SSW and east-west trends. 
Mafi c dikes that originally intruded the sedimentary rocks form metric to 
decametric eclogitic boudins within the felsic gneisses in an area ~2 km 
wide by ~10 km long, with poorly delineated boundaries (Guillot et al., 
2008); this area is defi ned as the Stak massif. Our investigation focused 
on these eclogitized mafi c boudins, which contain layers of small rounded 
garnet and omphacitic pyroxene. The cores are rimmed by hydration prod-

ucts of amphibole and biotite formed during the Himalayan collision. Sen-
sitive high-resolution ion microprobe (SHRIMP) dating on zircon yielded 
scattered Himalayan ages between 70 and 50 Ma (Riel et al., 2008).

Samples show evidence for three deformation events, with each rep-
resented by a specifi c paragenesis. An early paragenesis (P1) consists of 
garnet with phengite inclusions and relict omphacitic pyroxene in small 
areas (<1 mm2) in the matrix. Omphacite is partially replaced by sym-
plectic intergrowths of secondary pyroxene, plagioclase, and amphibole 
(Fig. 2). The foliation associated with P1 is defi ned by the preferred ori-
entation of omphacite and garnet. A later paragenesis (P2) is composed of 
millimetric amphibole and biotite in discontinuous layers along the main 
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Figure 1. A: Map of northern India and Himalaya area with 
locations of known eclogitic massifs (Tso Morari, Kaghan, 
and Stak). B: Northwest Himalayan massif, modifi ed from 
Pêcher et al. (2008). NP—Nanga Parbat; H—Haramosh. C: 
Cross section through the Stak massif. Geological units: 
1—amphibolites (Kohistan) and Chilas complex (Ladakh); 
2—undifferentiated Kohistan and Ladakh units (volcano 
and metasediments, batholiths, and Eocene volcanics); 3—
Neotethyan sedimentary group; 4—Higher Himalayan crys-
tallines and Paleozoic intrusives; 5—basement gneiss.
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foliation (Fig. 2). The third paragenesis (P3) consists of calcite and chlo-
rite, which developed at the expense of garnet along fractures.

MICROPROBE MAPPING AND TREATMENT METHODS
A JEOL JXA-8200 electron probe microanalyzer at the Institute of 

Earth and Environmental Science, Potsdam University (Germany), was 
used to acquire spot analyses and X-ray compositional maps in wave-
length-dispersive mode (De Andrade et al., 2006; Lanari et al., 2012a). 
Analytical conditions for spot analyses were 15 keV accelerating voltage 
and 10 nA specimen current. Standards used were Fe2O3 (Fe), MnTiO3 
(Mn, Ti), diopside (Mg, Si), orthoclase (Al, K), anorthite (Ca), and albite 
(Na). The compositional mapping of 350,000 pixels over an area of 520 
μm × 670 μm was carried out at 200 ms per pixel (see De Andrade et al., 
2006, for a detailed statistical evaluation). Higher specimen current of 100 
nA was employed for mapping. During the mapping, spot analyses were 
also conducted along profi les in the analyzed area. The data were then 
used to calibrate the X-ray compositional maps.

The X-ray compositional maps were treated using a MATLAB©-based 
software, XMapTools, which identifi es mineral phases and their locations 
from X-ray images (Lanari et al., 2012b). In the program, the raw data 
were converted to quantitative concentrations using the results of spot 
analyses (one for each phase in the sample), and a structural formula was 
calculated for each pixel of the mapped area. Each mineral was separated 
into different compositional groups (for example, clinopyroxene was 
divided into four subgroups based on the Na and Fe contents). Finally, P-T 
conditions were calculated in XMapTools using empirical and semiem-
pirical thermobarometers.

CHEMICAL AND THERMOBAROMETRY RESULTS
Garnet shows similar compositions from core to rim (Alm48 Prp32−33 

Grs17−19 Sps1) with the exception of a thin (15 μm) rim that contains low 
pyrope (29%) and grossular (16%), and higher almandine and spessartine. 
The rim likely formed by reactions with amphibole during the late P3 
event. Phengite enclosed in garnet has intermediate Si content, 3.28 per 

formula unit (p.f.u.). Four groups of clinopyroxene were identifi ed. Pri-
mary clinopyroxene has high jadeite content (Jd41–Jd40 corresponding to 
omphacite) and shows an increase in Fe from 0.07 p.f.u. in the core to 0.19 
p.f.u. in the rim. The primary clinopyroxene is further divided into two 
subgroups based on the Fe contents, 0.07–0.13 and 0.13–0.19 p.f.u. The 
secondary clinopyroxene in symplectite is divided into two subgroups, 
one with high jadeite content (Jd30–Jd25) and the second with low jade-
ite content (Jd25–Jd10). This decrease in jadeite content correlates with the 
decreasing width of intergrowths. Plagioclase in symplectites has similar 
compositions from core (Ab87) to rim (Ab85). Three groups of amphibole 
were identifi ed. The fi rst group comprises small grains (10–30 μm) in the 
symplectite, and has low Fe3+ content in M1 (0.48 ±10 p.f.u.) and a high 
Na content in A (0.54 ± 0.6 p.f.u.). The second group has a larger grain 
size (>100 µm) and shows higher Fe3+ content in M1 (0.70 ± 15 p.f.u.) and 
lower Na content in A (0.39 ± 15 p.f.u.). The third group occurs as corona 
on garnet (Fe3+ in M1 of 0.54 p.f.u. and Na in A of 0.30 p.f.u.). Detailed 
composition data are provided in the GSA Data Repository1.

Pressure and temperature conditions were estimated for the differ-
ent paragenetic sequences outlined above. The fi rst assemblage, labeled 
A in Figure 3, is composed of garnet, omphacite, and phengite. Because 
omphacite shows a range in Fe content, the P-T conditions were estimated 
using varying omphacite compositions and fi xed garnet and phengite 
compositions. The calculation used the composition of phengite with the 
highest Si content and the average composition of garnet. The calcula-
tion used the garnet-omphacite thermometer of Ravna (2000b), which 
is the latest calibration, and the garnet-omphacite-phengite barometer of 
Waters and Martin (1993) and Waters (1996). The calculated P-T condi-
tions are plotted in a P-T diagram, and the pixels (~200,000) are shown 
in the mapped area (Fig. 3A). Omphacite crystallization started at 650 °C 
and 2.4 GPa (“a1”, orange-colored fi eld in Fig. 3) and continued to form 
during the peak metamorphic conditions of 750 °C and 2.5 GPa (“a2”, 
red-colored fi eld in Fig. 3).

The symplectite of clinopyroxene, amphibole, and plagioclase is a 
breakdown product of omphacite (Waters, 2003). This retrogressed assem-
blage is divided into two, based on crystal sizes in the symplectite; they 
are labeled B and C in Figure 3. Clinopyroxene grains in the symplectite 
assemblage B are larger and occur together with amphibole and plagioclase 
on the rims of relict omphacite. The second symplectite assemblage, C, 
has a smaller grain size. The P-T conditions refl ecting this textural change 
were calculated using equilibria involving pyroxene, plagioclase, and 
amphibole in the absence of quartz. The temperature was fi rst estimated 
from the distribution of Na and Ca between plagioclase and hornblende 
using the edenite-richterite calibration of Holland and Blundy (1994). The 
estimated temperatures vary from 680 °C where plagioclase is in contact 
with Jd30 clinopyroxene to 640 °C in contact with Jd10 clinopyroxene. Pres-
sure was estimated with fi xed composition of amphibole and plagioclase 
for the defi ned temperature ranges using the calibration of Waters (2002, 
2003) based on the reaction jadeite + tremolite = albite + edenite, involv-
ing clinopyroxene, plagioclase, and amphibole. Activities of end members 
were calculated for amphibole and clinopyroxene following the models of 
Dale et al. (2000) and Holland (1990), respectively. Activity of plagioclase 
was assumed to be ideal. The P-T estimates and the corresponding pixels 
are also plotted in Figure 3 and mapped in Figures 3B and 3C. Our results 
show that clinopyroxene with plagioclase and amphibole in the symplec-
tite crystallized under P-T conditions varying from 1.5 GPa and 680 °C 
(assemblage B) to 1 GPa and 650 °C (assemblage C).

The late assemblage (D in Fig. 3) includes large grains of amphibole 
(P2 in Fig. 2) and biotite, minor Fe-oxides, and quartz. The P-T conditions 
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1GSA Data Repository item 2013027, details of mineral groups and pseudo-
section, is available online at www.geosociety.org/pubs/ft2013.htm, or on request 
from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boul-
der, CO 80301, USA.

Figure 2. Photomicrograph showing the texture of the 
studied sample. Three main parageneses were identifi ed 
(labeled P1, P2, and P3; see text). Inset shows mapped 
area. Grt—garnet; Cpx—clinopyroxene; Pl—plagioclase; 
Amp—amphibole; Ti-Ox—Ti-oxide; Fe-Ox—Fe-oxide.

 as doi:10.1130/G33523.1Geology, published online on 6 November 2012



GEOLOGY | February 2013 | www.gsapubs.org 3

for the assemblage were estimated using the edenite-richterite calibra-
tion of Holland and Blundy (1994) and the barometer of Schmidt (1992). 
Although the Schmidt barometry is designed for granitic rocks, the 
observed mineral assemblage is similar to that of granitoids. The results 
(blue pixels in Fig. 3D) show the crystallization of large amphibole grains 
at 650 °C and 0.85 GPa. Such conditions are common during collisional 
events. The Fe-Mg exchange thermometer of Ravna (2000a) yielded tem-
peratures ranging from 510 to 460 °C for the crystallization of amphibole 
on the rims of garnet, which corresponds to the latest stage of exhumation.

To complement the P-T estimates, pseudosections were calculated 
in the NCFMASHO (Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O) system 
using various software packages including Perple_X (http://www.perplex.
ethz.ch/). Because different programs yielded similar results, the pseu-
dosections were made with Theriak-Domino software (de Capitani and 
Petrakakis, 2010) using the thermodynamic database of Berman (1988). 
The fi rst attempt was made using the bulk-rock composition data, but the 
results did not match the observed mineral abundances and mineral com-
positions of garnet under the HP conditions. The result indicates that the 
metamorphic reactions were not controlled by the bulk-rock composition. 
Therefore, the composition in a small area was calculated with XMap-
Tools from the observed mineral compositions and abundance (50% gar-
net and 50% omphacite) based on the X-ray maps. The pseudosection 
calculated from this local bulk composition agrees well with the observed 
mineral compositions at pressures ranging from 2.5 to 1 GPa along the 
P-T path prior to hydration of the rocks at pressures of ~0.9 GPa.

METAMORPHIC AND TECTONIC IMPLICATIONS
The calculated P-T evolution shows that omphacite and garnet started 

to crystallize near the end of the prograde path, from ~650 °C and 2.4 GPa 
to up to the peak conditions at 750 °C and 2.5 GPa (Fig. 3). During this 

period, garnet did not signifi cantly change its composition, as predicted by 
similar compositions of garnet (Alm50 Prp33 Grs16 at 650 °C and 2.4 GPa, 
and at 750 °C and 2.5 GPa) in the pseudosection (the detailed grid is avail-
able in the Data Repository). The absence of coesite in the Stak eclogite 
is consistent with the estimated peak pressure, which is below the sta-
bility fi eld of coesite (Fig. 3). Symplectite intergrowth is associated with 
hydration, which resulted in the crystallization of amphibole. The pseudo-
section (Fig. 3) shows the upper stability limit of amphibole at ~1.6 GPa 
and 700 °C, which is in good agreement with the highest pressure for 
amphibole obtained by empirical barometers. The observed clinopyrox-
ene compositions are also consistent with the calculated pseudosections. 
Clinopyroxene has a decreasing Na content, from 0.32 p.f.u. at 1.5 GPa 
and 680 °C to 0.22 p.f.u. at 1.3 GPa and 660 °C.

In summary, despite a pervasive overprint, a continuous P-T path 
was obtained for minerals in a single thin section from the Stak massif 
based on microprobe mapping data. The new approach uses the bulk com-
positions of small areas, the P-T conditions responsible for reactions in 
the small area, and microtextures, such as symplectite, to determine the 
reaction path; the estimated P-T path (Fig. 3) indicates that the growth 
of clinopyroxene, plagioclase, and amphibole symplectite continued dur-
ing the retrograde path (1.6–0.9 GPa) at the expense of omphacite. This 
study shows the usefulness of evaluating the effective bulk compositions 
responsible for microtextural reactions; such data, combined with mineral 
compositions, provide quantitative thermobarometric information, even 
for pervasively retrogressed rocks.

Furthermore, this work reveals that the Stak massif had a meta-
morphic evolution similar to that of the well-preserved Kaghan and Tso 
Morari HP to UHP massifs in the northwest Himalaya (Guillot et al., 
2008). Therefore, we propose that the Stak massif is another example 
of continental eclogitic metamorphism in the northwest Himalaya, and 
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suggest that the entire northwest margin of the Indian continent records 
continental subduction (Fig. 4).

Worldwide, the size of UHP domains varies widely (e.g., review by 
Guillot et al., 2009). The Dora Maira UHP unit in the western Alps cov-
ers a surface area less than 25 km2. In contrast, the Mesozoic metamor-
phic domain in China forms an essentially continuous HP-UHP terrane 
extending more than 4000 km, from Quinlin-Dabie to the Sulu belt (Yang 
et al., 2003). Similarly, the Western Gneiss Region in Norway forms a 
continuous HP-UHP unit covering more than 400 km × 200 km (Young 
et al., 2007). In the Himalaya, three recognized HP-UHP units (Kaghan, 
Stak, and Tso Morari; Fig. 1) likely form a HP-UHP terrane that is partly 
covered by the Kohistan-Ladakh arc and metamorphic Tethyan series. It 
is ~500 km long and 150 km wide (Fig. 4), which is comparable in size to 
the Western Gneiss Region in Norway and the Dabie-Sulu belt in China.
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Figure 4. Schematic section of the western Himalaya during closure of the Neo-Tethys at the Paleocene-Eocene boundary, and 
the pressure-temperature paths for the three eclogitic units: Stak (this study), Kaghan, and Tso Morari (modifi ed after Guillot et 
al., 2008). MBT—Main Boundary Thrust; LHC—Lower Himalayan crystallines; MCT—Main Central Thrust; HHC—Higher Himala-
yan crystallines; STD—South Tibetan detachment.
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