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Several teams have reported peculiar frequency spectra for flows in a spherical shell.
To address their origin, we perform numerical simulations of the spherical Couette
flow in a dipolar magnetic field, in the configuration of the DTS experiment. The
frequency spectra computed from time-series of the induced magnetic field display
similar bumpy spectra, where each bump corresponds to a given azimuthal mode
number m. The bumps appear at moderate Reynolds number (~2600) if the time-series
are long enough (>300 rotations of the inner sphere). We present a new method that
permits retrieval of the dominant frequencies for individual mode numbers m, and
extraction of the modal structure of the full nonlinear flow. The maps of the energy
of the fluctuations and the spatio-temporal evolution of the velocity field suggest
that fluctuations originate in the outer boundary layer. The threshold of instability
is found at Re. = 1860. The fluctuations result from two coupled instabilities: high-
latitude Bodewadt-type boundary layer instability, and secondary non-axisymmetric
instability of a centripetal jet forming at the equator of the outer sphere. We explore
the variation of the magnetic and kinetic energies with the input parameters, and show
that a modified Elsasser number controls their evolution. We can thus compare with
experimental determinations of these energies and find a good agreement. Because of
the dipolar nature of the imposed magnetic field, the energy of magnetic fluctuations is
much larger near the inner sphere, but their origin lies in velocity fluctuations that are
initiated in the outer boundary layer.
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1. Introduction

It is now well established that the magnetic field of most planets and stars is
generated by the dynamo mechanism (Larmor 1919; Elsasser 1946). Motions within
an electrically conducting medium can amplify infinitesimally small magnetic field
fluctuations up to a level where the Lorentz force that results is large enough to stop
their amplification. This is possible for large enough values of the magnetic Reynolds
number Rm = UL/n (where U is a typical flow velocity, L a typical length, and 7 is
the magnetic diffusivity of the medium).
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Analytical (Busse 1975) and numerical (Glatzmaier & Roberts 1995) convective
dynamo models, in which the flow is driven by the buoyancy force of thermal or
compositional origin, have demonstrated the relevance of the dynamo mechanism for
generating the Earth’s magnetic field. Other forcings, due to precession, tides or
impacts are also invoked to explain the fields of some other planets (Le Bars et al.
2011).

In 2000, two experiments demonstrated dynamo action in the lab (Gailitis et al.
2001; Stieglitz & Miiller 2001). In both cases, the forcing was mechanical, with a
dominant large-scale flow. Efforts to produce dynamo action with a highly turbulent
flow are still underway (Frick et al. 2010; Kaplan et al. 2011; Lathrop & Forest
2011), while a rich variety of dynamo behaviours have been discovered in the von
Kérmén sodium (VKS) experiment (Berhanu et al. 2007; Monchaux et al. 2007) when
ferromagnetic disks stir the fluid.

All these experiments use liquid sodium as a working fluid. The magnetic Prandtl
number Pm = v/n of liquid sodium is less than 107> (v is the kinematic viscosity),
so that experiments that achieve Rm of order 50 (as required for dynamo action)
have kinetic Reynolds number Re = UL/v in excess of 10°. This contrasts with
numerical simulations, which require lengthy computations with 1024° grid points
to reach Re = 10*. Since Reynolds numbers of flows in planetary cores and stars are
much larger, we have to rely on theory to bridge the gap. Dynamo turbulence is a
crucial issue because dissipation is very much dependent upon the scale and strength
of turbulent fluctuations. The question of instabilities and turbulence is also central
in the study of accretion disks (Balbus & Hawley 1991). Laboratory experiments can
bring some constraints since they exhibit intermediate Reynolds numbers.

In that respect, the observation in several experiments of very peculiar frequency
spectra, characterized by a succession of peaks or bumps, deserves some attention.
Such bumpy spectra have been obtained in both spherical and cylindrical geometries,
when rotation or/and magnetic fields are present, two ingredients that also play a major
role in natural systems.

Kelley et al. (2007) were the first to observe a bumpy spectrum in a rotating
spherical Couette experiment. A small axial magnetic field was applied and the
induced field was used as a marker of the flow. The authors showed that the frequency
and pattern of the modes correspond to a set of inertial modes. Inertial modes are
the oscillatory linear response of a fluid to a time-dependent perturbation where
the Coriolis force is the restoring force. Two hypotheses have been put forward to
explain the excitation of inertial modes in these experiments: overcritical reflection
off the inner Stewartson layer (Kelley et al. 2010), and turbulence from the tangent
cylinder on the inner sphere (Matsui et al. 2011). Most recently, Rieutord et al. (2012)
presented data recorded in the 3 m diameter spherical Couette experiment of Dan
Lathrop’s group at the University of Maryland, and proposed a new interpretation.
They stress that there is a critical Rossby number below which modes of a given
azimuthal mode number m are no longer excited, and show that this happens when
the frequency of the mode is equal to the fluid velocity in the Stewartson layer above
the equator of the spinning inner sphere. This interpretation in terms of a critical layer
opens new perspectives that need to be investigated in more detail.

Bumpy frequency spectra were also reported by Schmitt et al. (2008) in the
Derviche Tourner sodium (DTS) magnetized spherical Couette flow experiment
(Cardin et al. 2002; Nataf et al. 2006, 2008; Brito et al. 2011). An example
is shown in figure 1(a). Schmitt et al. (2008) could show, by correlating signals
measured at several longitudes, that each bump is characterized by a given azimuthal
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FIGURE 1. (Colour online) Spectral bumps in the DTS magnetized spherical Couette flow
experiment. (a) Frequency spectra of the three components of the surface magnetic field
(b,, by, b, in this order, bottom to top) measured at two different latitudes (5° and 45° as
indicated). The time window used is 4000 turns. Frequencies (x-axis) are normalized by the
rotation frequency of the inner sphere (f = —13.3 Hz). The spectral energy density (y-axis) is
normalized as in § 4.1 to facilitate the comparison with the corresponding simulation results.
The vertical scale applies to the lowest spectrum and successive spectra are shifted by one
decade for clarity (two decades between different latitudes). Note the succession of bumps
that dominate the spectra. (b) Covariance between two b, time-series recorded at points 128°
apart in longitude (same latitude = —35°), in a frequency—azimuthal mode number () plot.
This plot shows that each spectral bump in (a) corresponds to a well-defined integer m,
which increases with frequency (step-wise succession of positive covariance values starting at
m = 0) (marked with a white ‘+’) .

wavenumber m (figure 1b). Schmitt er al. (2013) further investigated the properties of
the bumps and showed a good correspondence with linear magneto-inertial modes, in
which both the Coriolis and the Lorentz forces play a leading role.

Finally, modes of azimuthal wavenumber m = 1 were observed in two magnetized
Couette flow experiments aimed at detecting the magneto-rotational instability (MRI):
in spherical geometry in Maryland (Sisan et al. 2004) and in cylindrical geometry in
Princeton (Nornberg et al. 2010). Sisan et al. (2004) discovered magnetic modes that
appeared only when the imposed magnetic field was strong enough and interpreted
their observations as evidence for the MRI, even though the most unstable mode is
expected to be axisymmetric (1 = 0) in their geometry. Rotating spherical Couette
flow in an axial magnetic field was studied numerically by Hollerbach (2009), who
suggested that instabilities of the meridional circulation in the equatorial region could
account for some of the modes observed by Sisan er al. (2004). Gissinger, Ji &
Goodman (2011) further investigated this situation and showed that the instabilities
that affect the Stewartson layer around the inner sphere, modified by the imposed
magnetic field, have properties similar to the MRI. In contrast to the standard MRI, the
instabilities found by Hollerbach (2009) and Gissinger et al. (2011) are inductionless.
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FIGURE 2. (Colour online) Sketch of the DTS experiment as modelled in this article. The
inner sphere of radius ; rotates around the vertical axis at angular velocity £2. It consists of
a copper shell enclosing a permanent magnet, which produces the imposed dipolar magnetic
field B,. Liquid sodium of electric conductivity o fills the gap between the inner sphere and
the stainless steel outer shell of inner radius r,. The spherical coordinate system we use is
shown.

In the cylindrical Taylor—Couette geometry with a strong imposed axial field,
Nornberg et al. (2010) observed m = 1 rotating modes. They claimed that these modes
could be identified with the fast and slow magneto-Coriolis waves expected to develop
when both the Coriolis and Lorentz forces have a comparable strength. Considering
the fast magnetic diffusion in their experiment (Lundquist number of about 2), this
interpretation was rather questionable, and indeed Roach et al. (2012) have recently
reinterpreted these observations in terms of instabilities of an internal shear layer, in
the spirit of the findings of Gissinger et al. (2011).

Clearly, magnetized Couette flows display a rich palette of modes and instabilities,
and it is important to identify the proper mechanisms in order to extrapolate to natural
systems. Hollerbach has investigated the instabilities of magnetized spherical Couette
flow in a series of numerical simulations (Hollerbach & Skinner 2001; Hollerbach,
Canet & Fournier 2007; Hollerbach 2009). However, bumpy spectra as observed by
Schmitt et al. (2008) were never mentioned. In this article, we perform numerical
simulations in the geometry of the DTS experiment, and focus on the origin of these
bumpy spectra. The observations of Schmitt et al. (2008) are illustrated by figure 1,
but the reader should refer to their article for a more detailed presentation. More
specifically, we wish to answer the following major questions: How and where are the
various modes excited? Are these spectra observed because of the large value of the
Reynolds number?

We present the numerical model and the mean flow in §2. We perform spectral
analyses in §3, and investigate fluctuations and instabilities in §4. A discussion
concludes the article.
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2. Numerical model and mean flow

The DTS experiment that we wish to model is a spherical Couette flow experiment
with an imposed dipolar magnetic field. Liquid sodium is used as the working fluid. It
is contained between an inner sphere and a concentric outer shell, from radius » = r; to
r=r, (r; =74 mm, r, =210 mm). The inner sphere consists of a 15 mm-thick copper
shell, which encloses a permanent magnet that produces the imposed magnetic field,
whose intensity reaches 175 mT at the equator of the inner sphere. The stainless steel
outer shell is 5 mm thick. The inner sphere can rotate around the vertical axis (which
is the axis of the dipole) at rotation rates f = 2ns2 up to 30 Hz. Although the outer
shell can also rotate independently around the vertical axis in DTS, we only consider
here the case when the outer sphere is at rest.

All these elements are taken into account in the numerical model, which is sketched
in figure 2. In particular, we reproduce the ratio in electric conductivity of the three
materials (copper, sodium, stainless steel). In the experiment, the inner sphere is held
by 25 mm-diameter stainless steel shafts, which are not included in the numerical
model.

2.1. Equations

We solve the Navier—Stokes and magnetic induction equations that govern the
evolution of the velocity and magnetic fields of an incompressible fluid in a spherical
shell:

a 1 1
—u+(u-V)u=——Vp+vV2u+—(V X B) x B, 2.1)
ot P Hop
JoB
E:Vx(uxB)—Vx(n(r)VxB), 2.2)
V.u=0, V-.B=0, 2.3)

where u and p stand for the velocity and pressure fields respectively. Time is denoted
by ¢, while p and v are the density and kinematic viscosity of the fluid. The magnetic
diffusivity n(r) is given by n(r) = (ueo (r)~" where o(r) is the electric conductivity
of the medium (fluid or solid shells) and w, the magnetic permeability of vacuum. In
the fluid, the conductivity o (r) = oy, is constant. The last term of (2.1) is the Lorentz
force. B is the magnetic field. It contains the imposed dipolar magnetic field B, given
by:
3
B, = Bor—;’(Z cosfe, + sinfey), 24

where 6 is the colatitude, e, and e, are the unitary vectors in the radial and orthoradial
directions. By is the intensity of the field at the equator on the outer surface of the
fluid (r =r,).

2.2. Boundary conditions
We use no-slip boundary conditions for the velocity field on the inner and outer
surfaces:
u=Srsinfe, forr<r, wu=0 forr=r,. (2.5)

We model the copper shell that holds the magnet in DTS as a conductive shell
with electric conductivity o¢, = 4.20y,. The outer stainless steel shell is modelled
as a shell of conductivity ogs = on,/9. These values reproduce the experimental



450 A. Figueroa, N. Schaeffer, H.-C. Nataf and D. Schmitt

conductivity contrasts. The conductivity jumps are implemented by taking a continuous
radial conductivity profile with sharp localized variations at both interfaces (grid point
density increased by a factor 3-5). The internal magnet and the medium beyond the
outer stainless steel shell are modelled as electric insulators. The magnetic field thus
matches potential fields at the inner and outer surfaces.

2.3. Numerical scheme

Our three-dimensional spherical code (XSHELLS) uses second-order finite differences
in radius and a pseudo-spectral spherical harmonic expansion, for which it relies on
the very efficient spherical harmonic transform of the SHTns library (Schaeffer 2012).
It performs the time stepping of the momentum equation in the fluid spherical shell,
and the time stepping of the induction equation both in the conducting walls and
in the fluid. It uses a semi-implicit Crank—Nicholson scheme for the diffusive terms,
while the nonlinear terms are handled by an Adams—Bashforth scheme (second-order
in time). The simulations that we present typically have 600 radial grid points (with a
significant concentration near the interfaces) while the spherical harmonic expansion is
carried up to degree 120 and order 40.

2.4. Dimensionless parameters

We define in table 1 the dimensionless numbers that govern the solutions in our
problem. We pick the outer radius r, as a length scale, and By, the intensity of the
magnetic field at the equator of the outer surface, as a magnetic field scale. Note that,
due to the dipolar nature of the imposed magnetic field, its intensity is 23 times larger
at the equator of the inner sphere. The angular velocity of the inner sphere yields the
inverse of the time scale. We choose U = £2r;, the tangential velocity at the equator of
the inner sphere, as typical velocity.

The solutions are governed by three independent dimensionless numbers but several
combinations are possible and we try to pick the most relevant ones. The magnetic
Prandtl number Pm compares the diffusion of momentum to that of the magnetic field.
It is small in both the simulations and the experiment. The Reynolds number Re is
of course essential, as it determines the level of fluctuations. It is not feasible to run
numerical simulations with Reynolds numbers as large as in the DTS experiment.

However, one of the main findings of Brito er al. (2011) is that, because of the
imposed dipolar magnetic field, the time-averaged flow is mainly governed by the
balance between the Lorentz and the Coriolis forces, where the latter is due to the
global rotation of the fluid, which is very efficiently entrained by the inner sphere,
even when the outer sphere is at rest. That balance is measured by the Elsasser
number A. Brito et al. (2011) showed that one can recover the proper balance at
achievable values of Re by reducing the influence of the magnetic field, keeping the
effective Elsasser number A as in the experiment.

Nevertheless, Cardin et al. (2002) introduced another number A (named the Lehnert
number by Jault (2008)), which provides a better measure of this balance for fast
time-dependent phenomena. The Lehnert number A compares the period of Alfvén
waves to that of inertial waves. It is given by:

P (2.6)

-Q”i»,//)/io‘

In the Earth’s core, this number is of order 10~* and inertial waves dominate. They
force the flow to be quasi-geostrophic on short time scales (Jault 2008). However,
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FIGURE 3. (Colour online) Time-averaged meridional slice of the velocity field. (a) Angular
velocity isovalues. Note the zone of super-rotation near the inner sphere. (b) Meridional
streamlines. The maximum meridional velocity is 0.4. Pm = 1073, Re = 2611, A =
3.4 x 1072,

magnetic diffusion severely limits the propagation of Alfvén waves in the DTS
experiment. This is measured by the Lundquist number, which is the ratio of the
magnetic diffusion time to the typical transit time of an Alfvén wave across the sphere,
here given by:

roBO
Lu= ,
N/ P Mo

which is taken as Lu = 0.5 in the numerical simulations, in agreement with the
experimental value.

We therefore follow the same strategy as Brito et al. (2011), and try to keep the
Elsasser number of the numerical simulations similar to its experimental value. Our
reference case thus has: Pm = 1073, Re = 2611 and A = 3.4 x 1072, The Hartmann
number is Ha = 16, much smaller that its experimental counterpart (Ha = 200). It
follows that A = 6.8 x 1072 and Rm = RePm = 2.6 for the reference case. Most results
shown in this article relate to our reference case, but we also present some results
computed for other Reynolds and Hartmann numbers, as indicated in table 1.

2.7)

2.5. Mean flow

The time-averaged properties of the magnetized spherical Couette flow have been
investigated in detail by Brito et al. (2011), and we simply recall here a few key
observations. We plot in figure 3 the time-averaged velocity field in a meridional
plane, for our reference simulation (Pm = 1073, Re = 2611 and A = 3.4 x 1072). Two
distinct regions show up in the map of mean angular velocity (figure 3a): an outer
almost geostrophic region, where the angular velocity predominately varies with the
cylindrical radius s; and an inner region that tends to obey Ferraro’s law (Ferraro
1937) around the equator: namely, the angular velocity is nearly constant along field
lines of the imposed dipolar magnetic field. Note the presence of a thin boundary layer
at the outer surface. The poloidal streamlines (figure 3b) display a circulation from
the equator towards the poles beneath the outer surface, where the polewards velocity
reaches 0.42r;.
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FIGURE 4. (Colour online) Radial profiles of time-averaged angular velocity in the equatorial
plane for different simulations with the same parameters (Pm = 1073, Re = 2611 and
A =3.4 x 1072). Dotted line: axisymmetric equatorially symmetric solution of Brito et al.
(2011); solid line: axisymmetric solution computed with our XSHELLS code; dashed line: 3D
solution from XSHELLS. The curves at the bottom give the unsigned difference between
the three-dimensional solution and the axisymmetric one (upper), and between the two
axisymmetric solutions (lower), scaled up by a factor 5.

To check our numerical set-up, we compare the time-averaged velocity field of our
simulation with that obtained by Brito et al. (2011) using an independent axisymmetric
equatorially symmetric code. The parameters and boundary conditions are identical,
except that the magnetic boundary condition at r =r, is treated in the thin-shell
approximation in Brito et al. (2011).

Figure 4 compares the radial profile of the angular velocity in the equatorial plane
computed by Brito et al. (2011) to our axisymmetric solution, averaged over 50
rotation times, and to our three-dimensional spherical solution, averaged over 100
rotation times. The two axisymmetric solutions agree very well, while the three-
dimensional solution exhibits a slightly lower angular velocity near the outer surface.
Note that the angular velocity of the fluid reaches values as high as 20 % larger than
that of the inner sphere. This phenomenon of super-rotation was first predicted by
Dormy, Cardin & Jault (1998) in the same geometry (also see Starchenko 1997), but
in their linear study, the zone of super-rotation was enclosed in the magnetic field line
touching the equator of the outer sphere. There, the induced electric currents have to
cross the magnetic field lines in order to loop back to the inner sphere. This produces
a Lorentz force, which accelerates the fluid. Hollerbach et al. (2007) showed that
nonlinear terms shift the zone of super-rotation from the outer sphere to close to the
inner sphere, as observed here. The excess of 20% is in good agreement with the
super-rotation measured in the DTS experiment for f = 3 Hz (Re = 4.5 x 10°) (Brito
et al. 2011).

3. Spectra and modes
3.1. Frequency spectra

In order to compare the numerical results to the experimental measurements of the
fluctuations, we perform a simulation over a long time-window (600 rotation periods)
and record the magnetic field induced at the surface at selected latitudes. We then
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FIGURE 5. (Colour online) Spectral bumps in our reference numerical simulation (Pm =
1073, Re = 2611 and A = 3.4 x 1072). (a) Frequency spectra of the three components of
the magnetic field (b,, by, b, in this order, from bottom to top) recorded at two different
latitudes (0 and 41° as indicated). Same non-dimensionalization and plotting conventions as
in figure 1(a). The time window used lasts 540 turns. Note the spectral bumps and compare
with figure 1(a). (b) m versus frequency plot for the same run, obtained from the covariance
of two b,, time-series recorded at points 72° apart in longitude (same latitude = 41°). The red
positive patches (marked with a white ‘+’) for negative m indicate that the successive spectral
bumps have a well-defined mode number m, whose absolute value increases with frequency
(compare with figure 15 where the relevant m are positive because the inner sphere spins in
the negative direction).

compute the power spectra of these records as a function of frequency. Typical spectra
are shown in figure 5(a). A sequence of bumps is clearly visible for both the radial
and the azimuthal components of the magnetic field. The spectra do not display
power-law behaviour.

We note that long time series (longer than 300 rotation periods) are needed for the
spectral bumps to show up clearly. The bumps are not as pronounced as in figure 1(a),
but we note that 4000 turns were used for those experimental spectra. It is also
possible that the bumps are enhanced at higher Reynolds number.

3.2. Azimuthal mode number

Pursuing further the comparison with the experimental results, we examine whether
the various spectral bumps correspond to specific azimuthal mode numbers. As in
Schmitt et al. (2008), we correlate the signals computed at the same latitude (41°)
but 72° apart in longitude. The signals are first narrow-band filtered, and we plot in
figure 5(b) the amplitude of the covariance (colour scale) as a function of the peak
frequency of the filter, for time-delays between the two, converted into azimuthal mode
number m (y-axis). As in the experiments (see figure 1b), we find that each spectral
bump corresponds to a single dominant (here negative by convention) azimuthal mode
number m. The successive bumps have increasing azimuthal m (1, 2 and 3).
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FIGURE 6. (Colour online) Partial energy frequency spectra &,,(zw) of the equatorially
ymmetrlc magnetic field at r < 0.55. Frequencies are normalized by f, the rotation frequency
of the inner sphere. (a¢) Raw spectra for azimuthal mode numbers m = 0 to 4 (shifted
vertically for clarity). The vertical grey solid line indicates the frequency @ * at which we
retrieve the m = 2 mode structure in figure 8. (b) Same as (a) except that frequencies are
shifted according to: @yes = @ — Mfjuia (se€ text).

3.3. Full Fourier transform

In the numerical simulations, we can construct frequency spectra for each m. When
the stationary regime is reached, we record 900 snapshots of the full fields, regularly
spaced in time during 100 rotation periods: F(r, 0, ¢, 1), where F can be either u or
B. A two-dimensional Fourier transform in the azimuthal and temporal directions ¢
and ¢ gives us a collection of complex vectors F representing the field for azimuthal
number m and discrete frequency @, such that

F(r,0,0,0=>Y Y Fu(r,0)e™ " 3.1)

Note that the sign of the frequency has thus a precise meaning: positive (negative)
frequencies correspond to prograde (retrograde) waves or modes.
This allows us to compute partial energy spectra

15 )
En(w) = / / ||FZ (r, 9)||2 r sin6 do dr. 3.2)
rp Jo)

Magnetic partial energy spectra &,(w) for the inner region (0.35 < r < 0.55,
0 < 6 < m) are shown in figure 6(a) for m = 0—4. They are dominated by a single
peak, which moves towards positive (prograde) frequencies as m increases. This can
be interpreted as the advection of stationary or low-frequency structures by a prograde
fluid velocity. We therefore shift the frequency of the spectra in figure 6(b), according
to:

Wshifted = W — mfﬂm (3.3)

where fp.s = 0.5. We choose this value because it provides a good alignment of
the spectral peaks and is compatible with the bulk fluid velocity in the outer region
beneath the boundary layer (see figure 3a). This shift explains the linear evolution of
the frequencies of the spectral bumps with m observed both in the DTS experiment
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FIGURE 7. (Colour online) Partial energy frequency spectra &, (=) of the magnetic field
at the outer surface (1 < r < 1.024, 0.35 < sinf < 0.6) for different m. (a) Equatorially
symmetric part. (b) Equatorially antisymmetric part. Frequencies are normalized by f, the
rotation frequency of the inner sphere, and are shifted according to (3.3). Pm = 1073,
Re=2611and A =3.4x 1072

(figure 1) and in the simulation (figure 5b). It means that the peaks are caused by the
advection of periodic structures by the mean flow, or by a non-dispersive wave.

We now turn to the partial energy spectra of the magnetic field at high latitude
(0.35 <sinf < 0.6), at the surface of the sphere (1 < r < 1.024), displayed in figures
7(a) and 7(b) for the equatorially symmetric and antisymmetric parts, respectively.
The frequencies are again shifted according to (3.3). This time, three peaks dominate
the m = 0 spectra. The spectrum is symmetric with respect to @ = 0 since there
cannot be prograde or retrograde propagation for m = 0: only latitudinal propagation
or time-oscillations are permitted. The lateral peaks yield a frequency @' ~ 1.8. As
m increases, the lateral peak becomes dominant in the prograde direction, while it
vanishes in the retrograde direction. We note that the peaks are well aligned in these
shifted representations, meaning that these secondary fluctuations are also advected
at roughly the same angular velocity as the central peak. But both stationary and
propagating waves are required to explain that this peak is not at zero frequency, and
that it has both a prograde and a retrograde signature, and that the former dominates
for m # 0.

Note that these secondary peaks do not show up in the regular frequency spectra or
m-plots of point measurements (figure 5). This illustrates the interest and potential of
the full Fourier transform method that we have developed.

3.4. Mode structure

Picking the frequency that yields the maximum spectral energy density for a given
m, we derive the structure of the corresponding mode. One example for m = 2 is
shown in figure 8, where we plot, for both u, and B,, the structure of the mode in a
meridional plane and in map view at r = 0.95. We selected a mode for which B, is
symmetric with respect to the equator (and thus u, is antisymmetric).

The meridional map for u, reveals structures in the outer region, while B, shows
similar patterns that extend deeper down to the inner sphere. While the map view of
u, near the outer boundary displays short-wavelength structures, we find it remarkable
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FIGURE 8. (Colour online) m = 2 mode structure given by the full Fourier transform method,
for frequency @* = 0.9, which corresponds to the m = 2 peak in figure 6(a). Pm = 1073,
Re =2611 and A = 3.4 x 107%. Energy densities are normalized by E% = p£22r?/2. (a), (b)
Isovalues in the ¢ = 0° meridional plane of the radial velocity and radial magnetic field,
respectively. (c), (d) Map view of the isovalues at r = 0.95 of the radial velocity and radial
magnetic field, respectively. Positive (negative) extrema are marked with a white ‘+° (°-)
symbol, respectively.

that the structure of B, is very smooth and very similar to those retrieved in the DTS
experiment, and well-accounted for in the linear modal approach of Schmitt et al.
(2013).

4. Fluctuations and instabil