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Plate motions, faults and « elastic rebound »
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Brittle behavior:
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Il. 10 Years after the Kobe earthquake
Dense Seismic Array

Nation Wide Strong Motion Networky
K-NET, KiK-net, 1800 Stations, NIED




Seismic Wave Propagation for
Recent Earthquakes

2005/8 /16
M1yagi-,,q71<‘1" M2

Visualized Seismic Wavefield:
record from a Nation-Wide
Seismic
Network of over 1800 stations

2004/10723
Chuetstime,

Recent Large Earthquakes:

2005 Miyagi-ken Oki (M7.2)

2004 Kii-hanto Nanto Oki(M?7.6)
2005 Fukuoka-ken Seiho Oki(M?7.0)
2004 Niigata-ken Chuetsu (M6.8)




EQ = dislocation

Dislocation= non elastic process
Point dislocation has an elastic equivant system of body forces

EQ = Double couple of forces

Radiation of EQ 1s represented by radiation of a system of forces
Radiation of a single impulsive point source= Green’s function

Radiation of EQ 1s computed from a combination of Green’s function

Green’s function is the building block of earthquake simulation



Example of solutions

Laplace (scalar) equation
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Elasticity and elastic Green function
Strain:
1
eij = 5 (i + uj;)
Stress:
Tij = Cijpg€pq

with c¢;;p,, are the elastic constants.
It reduces for an isotropic body to:

Ti; = AOij€kk 1+ 21€;;

where A and pu are the Lamé coefficients.

Equation of motion:
PUs = Tij 5
In a homogeneous space:
&
o2

(A + 2p)grad(div(R)) — pourl (curl())



Potential decomposition:

If we can find Y satisfying the Laplace equation:
AY =7

we obtain

o = div(x) and P = curl(X)

A4 2u

(¢, Tp): compressional waves with velocity o

(4, u3): shear waves with velocity 3 =

<



Green function

Cin(T,0, €, 7)

gsplacement produced in (7, %) in direction ¢ by an impulse point force in
¢ in direction 7z at ¢ = 7:

5
"

i %, a
Gir = 5@735(? I g )5(t T T) =t %[@jk&%akn]

The GF contains all the informations about the
response of the Earth to an arbitrary source



Reciprocity theorem:

With homogeneous conditions (either @ or T equals 0 on S):

Gnm(ga 75 aa 0) = Gmn({?l)a 75 gv 0)

Uniqueness theorem

Elastic body of volume V limited by S

o (7 ,t) in V is uniquely defined after time ¢g by:
_the initial values of @ and @ in V

-the values of the body forces for ¢t > g,

-the tractions over any part S7 of S (¢ > o)

-the displacements over Ss , S = 57 + So.
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Representation theorem

_|_

/_O:o dr //L Fi(T 1) Cin(E,t — 7, 0)dV(T)
/_ O:o dr / fs (Cin(€,t —7;7,00T( (€, 7))
w4 (€, e (€)Crni( €.t — 7,7, 0))dS(T)



In & homogeneous space and an applied force

= (» + 2u)gved(div(B)) — pourijcuri(B)) + T

= PAY

Green function (Laplaocs equakion):

7Y —ePap +6E50

G(EH) = g 260t = )

Solving the elastodynamic
equation....

Fotential decompozition of the source term f(4{¢),0,0):

T = orad{w;) + curi(®,)

@, = div(W)

with

e dx =

T'wo equations for polentials:




The potential decomposition of a impulse force is extended in space:
-, —,—
0r(€),0s( &)= Near field terms

Green function for the homogeneous space
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P far field term: .Y —
A7 per® P a

-spherical wave expansion: 1/r
-causality
-waveshape = time dependance of the applied force

- longitudinal polarization



1 1

S far field term: - i — 04:)—0(T —
47Tp,62 (’7?;’}/) @J)x (
/‘// e
-spherical wave expansion : 1/r f
s
-causality \\

-waveshape = time dependance of the applied force

- transversal polarization



The potential decomposition of a impulse force is extended in space:
-, —,—
0r(€),0s( &)= Near field terms

Green function for the homogeneous space
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Near field term:

w8

1

1
R(B’W}/j — 9; >$/ 70(t — 7)dT

|8

(8

e P and S — polarization
o decay in 1/7?

e wave shape changing with distance



Earthquake in Samoens recorded at a distance of Skm

P-wave pulse

S-wave pulse
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Earthquake in Samoens recorded at a distance of Skm

P-wave pulse S-wave pulse
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Green’ s functions in the spectral domain

THE 2D SCALAR CASE

The Green function in the frequency domain is :

G (X, Y, w) =1/4iy [Jy(kr) = iYy(kn)],

Gy = —

1 HP(kr)
idp B2

where Y/, (kr) = Neumann function of zero order and y = shear modulus.

J,(kr) is proportional to the imaginary part of the Green function.

1 7 .
Go(xy,0) =~ [ Gu(x,y, @) expliar)dw =
2

1 H@-rlp)

2mu P —r* ] B




Applications:

Physical origins of the distance decay of motions:

1) Elastic space: form of the decay? Approximation? Depth
dependance?

2)Attenuation: loss per cycle?



Causality

__1 golor -
G 4in° [,B] Zﬂﬂ\/tz_%z
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THE 2D VECTORIAL (P-SV) GREEN FUNCTION

i o’u azui
ox dx, a ot’
4 P | HP()
1 ’ o B2
Gif = E [6ijA - (27i7j - 5:_;)B] l,J= 1’ 3» Héz)(qr) H2(2’(kr)
B = a2 - 52

THE 3D VECTORIAL GREEN FUNCTION

2 o*u . 2
» dy, + (@~ B u, _ d Z’Zli
ox ,0x ox,0x; ot

B

G(xy)=, [fé:, +(f - f)77,)

where f and f, are Stokes’ functions, and they are given by

£ =B 1eM)1-12(gr) - 2 /(qr)* exp(=igr) + [i2/(hr) + 2 /) Jexp(=ikr)

= (B2 12)|il(gr) +1/(gr)? lexp(=igr) + |1 - /() — 1/ Jexp(=ikr)



82
waE = Af x

Z 1
Useful solutions....
Plane waves
_)
72
Cartesian coordinates: \/

Plane wave propagating in the direction of unitary vector 7:

F = f(nir'— ot) + g(nir' + vt)

Equiphase surface is a plane defined by [rir — vt =constant]

With harmonic wave of angular frequency w = 27 f

F = foexp(i(k7 — wt) avec k = 1% wave vector.



Weyl integral:

Let us consider a scalar equation, as for a potential ¢, with velocity c:

82
g —

Harmonic plane waves:
P = ¢ exp(—iwt + ik2)

are solutions as far as: .
k= 2.
Note that the 3 components of k are not independant.
The Green function is the solution of the harmonic equation with an
impulse source :
5
Bzl

(Note that its solution is a spherical wave: + exp —iw(t — R/c).)

= AP + A5 (&) exp —iwt

For a plane wave of wavenumber k, we get:

- Amc?
o(k,t) = #exp —iwt
2|k|2 — w2

By use of the regular Fourier transform:

$(2, 1) — % / / / o5, ) e fE el e —dat

Y exp zwt expzk’:v -
G 1) = ///“€|2 G

we get



Integration over k..

We must evaluate:

' /expz (kyz + kyy) expi(k,z2)
k2+k2+k2—w2/62

dk,

There is a singularity for:
k, = (W) -kl - ki)‘l/2 =v

that is with k, e Rif c € R,

If we consider the presence of absorption, ¢ becomes complex and the
singularities are moved in the complex plane. (Another practical possibility
is to allow a small imaginary part for the frequency w).

We evaluate [ using the theorem of the residues. We choose an ad hoc
contour of integration C.

/odl—/odkﬁ% o dl = %R
C R Coo

with R the residue associated with the singularity in k, = v.

Note that by moving the half circle C' to infinity, we ensure that its
contribution is 0 and therefore:

[ =2%27R

‘\C

 Im(k)

Re(k,)

v



The residue theorem, sometimes called Cauchy's Residue Theorem”:, in complex analysis is a powerful tool to evaluate line integrals of analytic functions over closed curves and can

often be used to compute real integrals as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

The statement is as follows. Suppose U is a simply connected open subset of the complex plane, and a @ are finitely many points of U
and fis a function which is defined and holomorphic on U\{a 1.....an). If y is a rectifiable curve in U which bounds the a, but does not meet

any and whose start point equals its endpoint, then / u \
n
f{ f(2)dz =210y (v, ax)Res(f, a). ,’ \\
! k=1 l \
If y is a Jordan curve, I(y, a’) =1 and so ‘ \
n \ 3
f(z)dz=2mi ) Res(f, a) \ ¥ al
Y k=1 N e <
Here, Res(f, a‘) denotes the residue of fat a, and I(y, a‘) is the winding number of the curve y about the point a. This winding number is an T~ - \ a K
integer which intuitively measures how many times the curve y winds around the point a; it is positive if y moves in a counter clockwise
("‘mathematically positive") manner around a, and 0 if y doesn't move around a, at all. lllustration of the setting. &

In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and

its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane. The integral over this
curve can then be computed using the residue theorem. Often, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of
the integral, the one we were originally interested in.



In mathematics, the Laurent series of a complex function f{z) is a representation of that function as a power series which includes terms of
negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent
series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in 1841 but
did not publish it at the time.

The Laurent series for a complex function f{z) about a point ¢ is given by:
o0
— n
f(2)= ) an(z—c)
n=—o0

where the a are constants, defined by a line integral which is a generalization of Cauchy's integral formula:

1 f(z)dz
e

The path of integration y is counterclockwise around a closed, rectifiable path containing no self-intersections, enclosing ¢ and lying in an
annulus Ain which f{z) is holomorphic (analytic). The expansion for f{z) will be valid anywhere inside this annulus. The annulus is shown in
red in the diagram on the right, along with an example of a suitable path of integration labelled y. In practice, this formula is rarely used
because the integrals are difficult to evaluate; instead, one typically pieces together the Laurent series by combining known Taylor
expansions. The numbers a and c are most commonly taken to be complex numbers, although there are other possibilities, as described

a, = —
" 2m

below.

A Laurent series is defined with respect to a
particular point ¢ and a path of integration y. The
path of integration must lie in an annulus (shown
here in red) inside of which f{z) is holomorphic

(analytic).



I =2iTR

We have to make a choice for the sign of v.

b= :I:(\/w2/62 — k2 —k2) = (vg +ivy)

with expivz — 0 when |z] — o0
The two cases z > 0 and z < 0 reduce to the form:

expiv|z|, v = \/w2/62 — k2 — k2
The integrand is:

expi(kyx + kyy) expi(k,z)  expi(k,x + kyy)expi(k.z)
B2+ + k2 —wlfe? (k, +v)(k, —v)

f(kz) =

The singularity is of order 1. The residue is defined as the term of order
-1 of the Laurent expansion of the integrand around the singularity:

1 el
\ C

A =

(m _ 1)| dkm_l f(kz)(kz — V)]kzzy

with m = 1 in our case.

. Im(kz)

Re(kz)

v



exp i(kyx + kyy) expi(v|z|)
2v

R=A_1 = f(k)(ks —V)|k.=0 =

Inserting in I, we get the Green function in the form:

G(Et) — expz;iwti// exp i(kyz + kyy) expz’(v|z|)dkwdky

v

We end with the Weyl integral, which shows the expansion of the Green
function in terms of plane waves:

1 exp —iwt / / expi(kyz + kyy) expi(v|z|)
—
2w

7 &P —iw(t — R/c) = ” dkydk,

with

— \/w2/02 — k2 — kg




Propagation 1n flat layers:

Integration: reflectivity, discrete wavenumber, ......



PLANE WAVE SH 2D :

—

U = (uy,us,us) et uy = v -

Incident wave
v; = vg = exp i(wt — kyx — k,2)

Resulting waves?

reflected :  vp = vo R expi(wt — ik, a + k,2)

transmitted :  vp = vo T expi(wt — ik, z — k, 2)

Y



= remarque : valeur de k?
2

L kR
¢

= Conditions aux limites :
enz=0 ; Vz v v, = g
T +Tr = Tt

displacement

exp(—ikyz) + Rexp(—ik,z) = T exp(—ik,x)

Vo= k, = k, = k

@

Y

@

14

x

ka: — i sin #q ; k; = i sin 49
U1 V9
sin#q . sin ¢o
’Ul B ’U2
1+R =T
stress i (—ik, +iRk,) = pa(—ik.T)

" . w
o k‘z T _ M2 COS22 37

1 - R = - 2V~ T
p1 ks p1 cosiy gy
2 =T + a) I
N 14 a
1 —«
2R=T(01 — o) =2 = R =

I




CRITICAL REFLEXION

sinz’l Sinig
Vi Vo
Problem for : Vi < V, Critical angle 4. ; siné. = %
For iy < i, no geometrical interpretation ( siniy > 11)
1 %cosig
R 1 —«o o %cosil
88 = 1 + « o %cosig
14 (2222
Wcoszl
L -2 . \1/2
cosig = (1 — sin” i9)
% . = .
= (1 - —2281I12 i1)Y?
Vi
V2
; 2 .92 .
= 44/ —=sin“213 — 1
‘/12
VQ
P/ pasin® in -1
d 1
1 ¢ %cosil
Rss =
% VggsinQ i1—1
1+ ——
V—lcoszl
L — i tan (P (ir)) o
Rss = = exp (=27 P (i1))

1+ tan(CI) (Zl))

=|| Rss|=1 Phase shift

= 2®(i1)

M1 ¢ 1

1-&
an () — 22 (_
.

)1/2

I

with C', the apparent velocity:

C = V;[/Sillil

Y



exp(—ik,r 5,z) = exp(—k,r 5, )

This a complex number divided by its conjugate,
so the magnitude of the reflection coefficient
1s one, but there is a phase shift of 2¢:

R12 = e'

2¢

& =tan

_1 H2¥p,
H1T g,

Figure 2.6-5: Effect of phase shifts on a seismic waveform.
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exp(—ik,r 5,z) = exp(—k,r 5, )

This a complex number divided by its conjugate,
so the magnitude of the reflection coefficient
1s one, but there is a phase shift of 2¢:

_1 H2¥p,
H1T g,

2¢

R12=e' & =tan

At critical incidence,

c, = f, S0 rzz =0and £ =0°

As the angle of incidence increases beyond
critical, £ increases.

Figure 2.6-5: Effect of phase shifts on a seismic waveform.
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exp(—ik,r 5,z) = exp(—k,r 5, )

This a complex number divided by its conjugate,
so the magnitude of the reflection coefficient
1s one, but there is a phase shift of 2¢:

*
2¢ -1 'uzrﬁz

H1T g,

R12=e' & =tan

At critical incidence,

c, = f, S0 rzz =0and £ =0°

As the angle of incidence increases beyond
critical, £ increases.

At grazing incidence, j; = 90°, we have

¢y =B, rp =0and & =90°

Figure 2.6-5: Effect of phase shifts on a seismic waveform.
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TABLE 3.1 Displacement Reflection and Transmission Coefficients

Coefficient

Formula

Solid-free surface (P-SV)
Rpp
P wave

aw ﬁwpt

oy, By, P, Rss(SH)

Solid—solid (P-SV)

Rss(SH)

medium 1: ¢, =A,explio(px, +nx;—1)]
Tss(SH)

+A,explio(px; —myx;3—1)]
a=p(1-2B3p») ~p(1 - 2B7p?)

medium 2: ¢, =Asexplin(px; +m,x3—1)]. b=p,(1-283p») - 2p,61p°
c=p(1-2B}p*) +2p,85p°
d=2p,B5—p1B})

{(-1/B») = 2p*F + 4p*nmp) /A
{#(a/ B)pn,[(1/ B*) ~ 2p*]} /A
4B/ )pmgl(1/ B*) — 2p*1} /4

{(-[(1/B» —2p*F + 4p>nmg) /A

1

(bn,, — cn,,)F — (a +dn,mg,)Hp*) /D
—[Z'qal(ab + Cd"]aznﬁ2)p(al/ﬂl)] /D
[mealF(al/az)]/D
[Zplnaal(al/BZ)}/D
—W(bng, — cng )E —(a + bnaznﬁl)GpZ]/D
—[2ngab + cdn,mg)p(B1/a )] /D
HiMg, — K27,

HiMg, T HoMg,
2pmg,

Ming, T 1ang,

E= b'fla, +cn,,

F=bng +cng,
G=a-dn,mg,

H=a —d'naz'r;ﬂl

D = EF + GHp?
p ~ kx . 77 ~ kZ A=[(1/8%-2p*F +4p’n,mg,

Lay and Wallace (1995)



i1
Plane waves in layered structures 'B i Hi- ]—It
"Physical propagator’: Thomson Haskell method 4
A stack of N layers (1: upper layer; n: half space)
Consider a plane SH-wave incident from below with amplitude V..
In each layer we separate up-going and down-going waves:
Py iy Hy

Vi=V, +V
V' = B exp(—iwt + ikyx + ik,y — ik.2) V-
ot o . L \V&s
V" = B, exp(—iwt + ikzx + ikyy + ik 2)

K= (/w?/ 0 — k2 = )

Let us define two vectors, S the displacement-stress vector, and ® the up-
going-down going displacement vector:

with:




By

Si = (Vjta T’L)T
(I)z _ (V;+, V;— T
H,
1 1
5= ( ikl —ipgkl )q)i =L
We can write the propagation accross the layer: / HN

Bi(z) = ( exp(igiiHi) Sxp(—ikin') ) ( KLE;B ) — F,®;(z1)

() = B;®i(21) = BT, ' Si(21)
Si(zi) — Tiq)i(zi) — TiEz'Tz-_lsi (%‘—1) = G;S; (%‘—1)

where G 1s the propagator.

S is continuous across the interface:S;(z;) = S;11(2;)

Zi]



Si(zi) = GiSi(zi—1)

S is continuous across the interface:S;(z;) = Siy1(2;) Pt H,

SN(zN—l) :SN—l(zN—l):GN_1SN_1<ZN_2): ﬂ Iu H
GN_1SN_2(2n—2) = GN_1GN_2SN_2(2N_3) = .... i M

GN_1GN_2GN_5.....G15:(0) = GS;(0)

Displacement at the free surface V; in function of the incident field V..

On(zy_1) = TGS, (0) = RS, (0) Py iy Hy

Free surface condition:

S1(0) = (Vo,0)"

Vine \ _ [ Ri1 R Vo (1)
Vieri Ro1 Ry 0

Therefore:
V;nc — RllvO
and =
21
V;’e — _‘/z'nc
/i Ri1

These coeflicients are easily computed when no vanishing waves are involved.

Zi]



Computer simulation of slab guided waves

X , __HSS IF — KMU X’
Upper Crust l
. — rad 5.4 pp SUL
e : 3 ,//~
L 79 - oho 62 L(::Ner Crust /;,//
>op Upper s .
Mantle 7747 Oceanic Lay er_
» MantleWedge S ]
// = - A8 %'A 5 =
r—*l 00 B Y. ///’ ////' \9 / b L
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N150 3 77 Q‘Zp
| // ~ 85 / |
" f
B 8 7 "/8.2
Y e iy
2001 ? i
[ 7.9 % 8.3
: 8.4 |
250/ &87 Vp [km/s] -
y LA : R —
400 300 x [km] 200 100 0

Model:

1. Trapped Signal in Low-V Oceanic Crust

Abers[2003], Martin et al.[2003], Furumura [1998]

2. Scattering Waveguide Effect in Heterogeneous Plate

Furumura and Kennett [200§TEW

2D Simulation

Model

Model Size

Source

Max Freq.

Scheme
Memory

CPU Time

400*280 km (Dx=60m)

Point Source
* Nakamura & Miyatake (2000)

20 Hz (vs<3.2km/s)

Parallel FDM
4 GByte

60 h (Intel Xeon 16CPU)




Computer Simulation (1): Homogeneous Plate (iasp81)

(a) Homogeneous Plate

T - Distance / 14.0

[uy] Z

80.
70.
60.
50.
40.
30.

20.

100 [

200 [

Observation
(KMU)

(b) Extended Oceanic Crust

-ﬁm—»a—»»—__
(«m-«in,‘__hw../\g._,._w

v\//\

J
e
| ] _

R i %
rFx 11711
Psi £ ¥ 1V
3 4 __._;i— __:;_-——jb’ =-
B i ;j"“‘:f_‘j_ =
1111 11 P
: | P Iy N O AP | N U | o | B VN P
100. 200. 300. 400.
Distance [km]
m g

Oceanic Crust
(Middle-Q,Low-V)

el

Oceanic Mantle

(High-Q,High-V)
= 6s

Mantle Wedge
(Low-Q)

.F[[ b

L
gwjj%%lf RS ;f :
: o
RINSRREERS:

400,

100 200.
Distance [km]
0 VF
- ;—~7//’
T e
5 Oceanic Crust
- (Middle-Q,Low-V)




-

Representation theorem

_|_

/_O:o dr //L Fi(T 1) Cin(E,t — 7, 0)dV(T)
/_ O:o dr / fs (Cin(€,t —7;7,00T( (€, 7))
w4 (€, e (€)Crni( €.t — 7,7, 0))dS(T)



