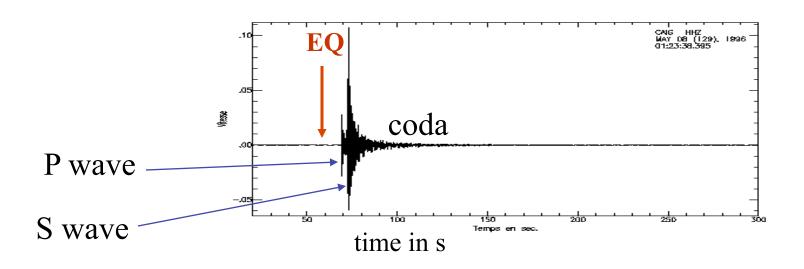
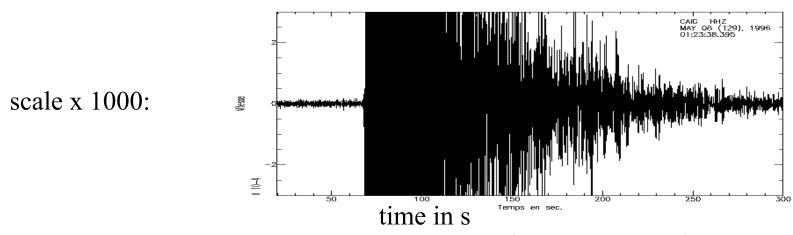
MEEES and M2R STU(TUE552)

Seismology 7 (Michel Campillo)

http://www-lgit.obs.ujf-grenoble.fr/users/campillo/Master-TUE552

Example of a record of a local earthquake in the band .5-20Hz



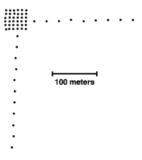


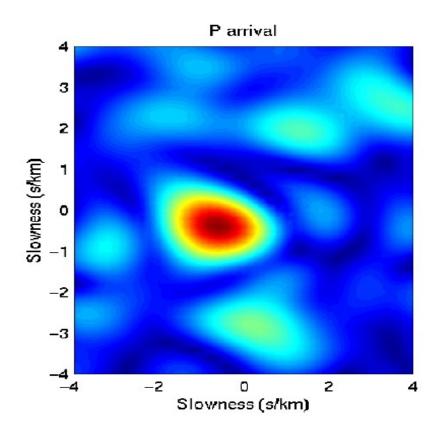
Coda: tail, end of a piece of music....

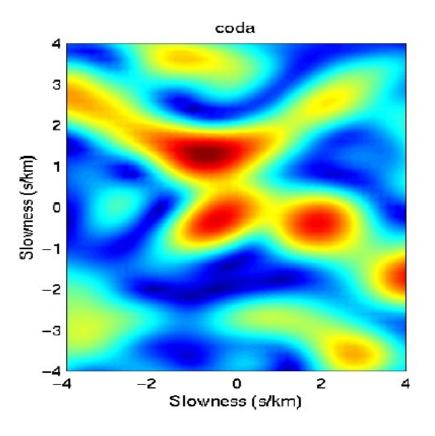
Frequency-wavenumber analysis

(Pinon Flat Seismometer Array)

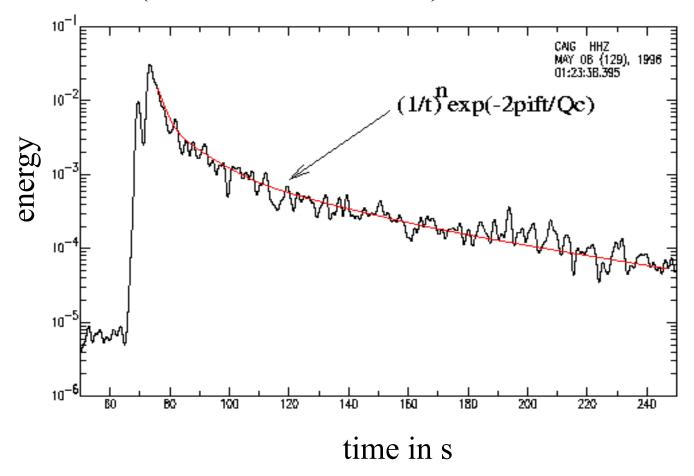
$$u(x,y) \rightarrow u(k_x,k_y)$$





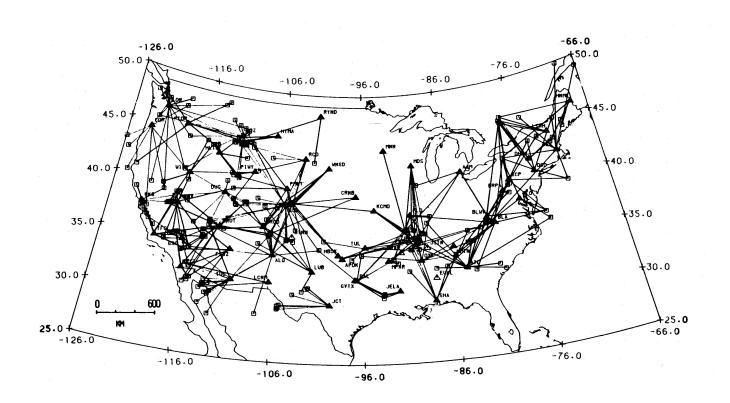


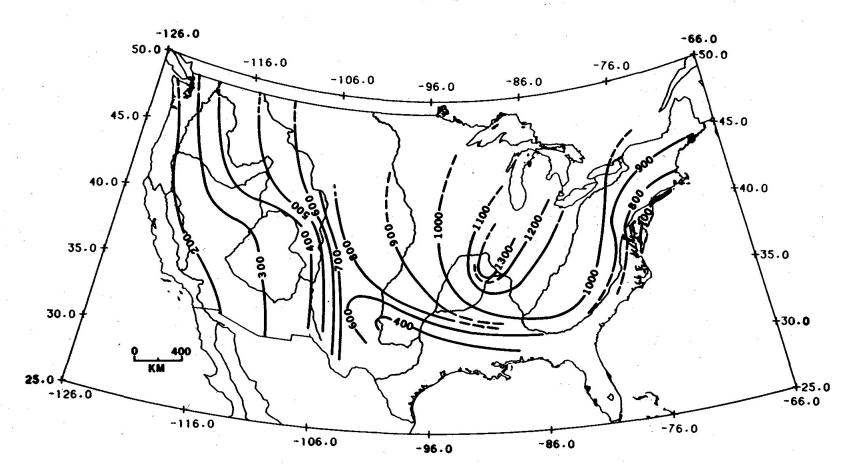
Energy decay in the coda (Aki and Chouet, 1975)



The decay is constant in a region, independently of source and receiver: Qcoda

Coda Q in US (Singh and Herrmann, 1983)





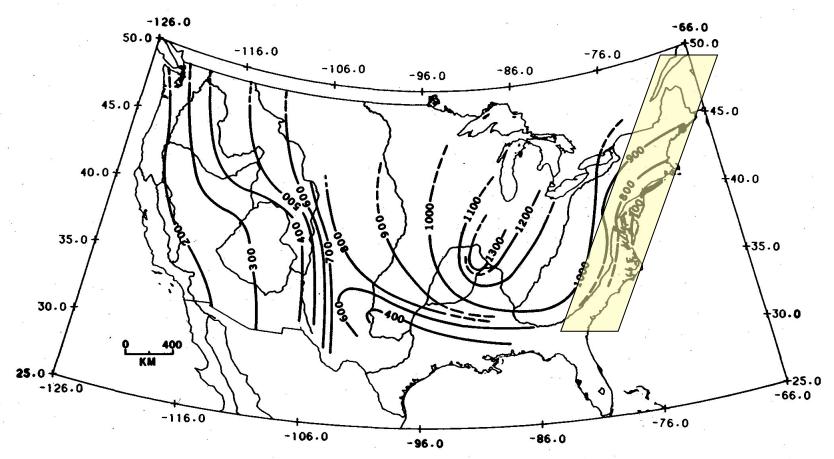


Fig. 15. Contour map of coda Q_0 for the entire continental United States.

Appalachian (Hercynian) belt : $Qc \sim 600$

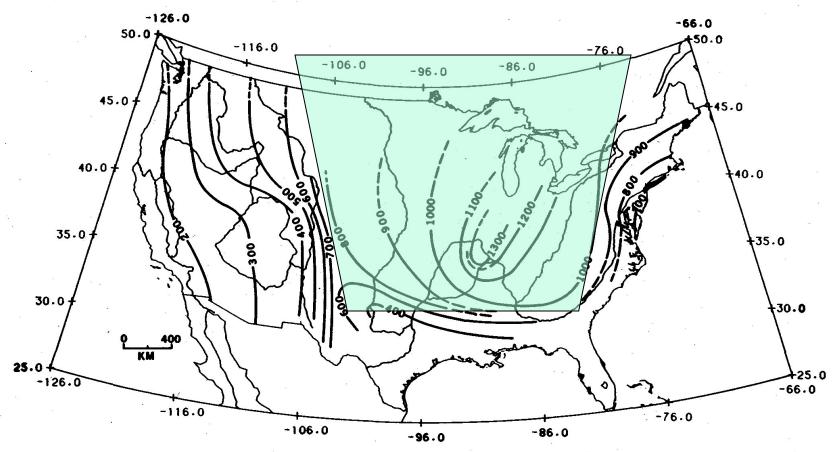


Fig. 15. Contour map of coda Q_0 for the entire continental United States.

Central shield : $Qc \sim 1000$

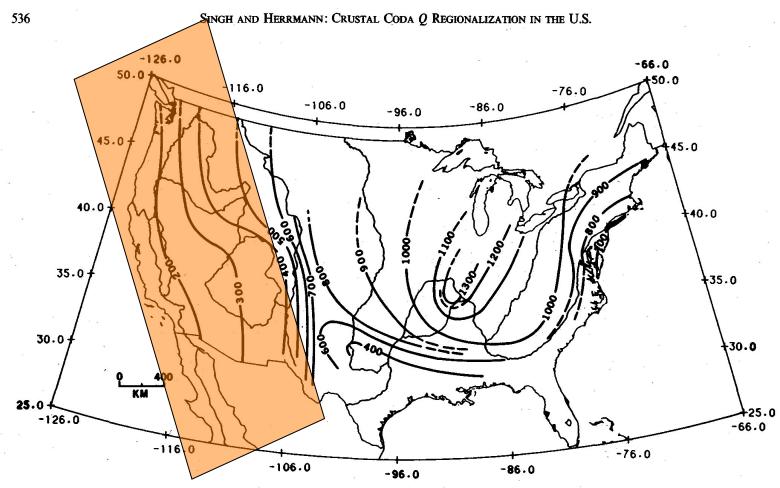
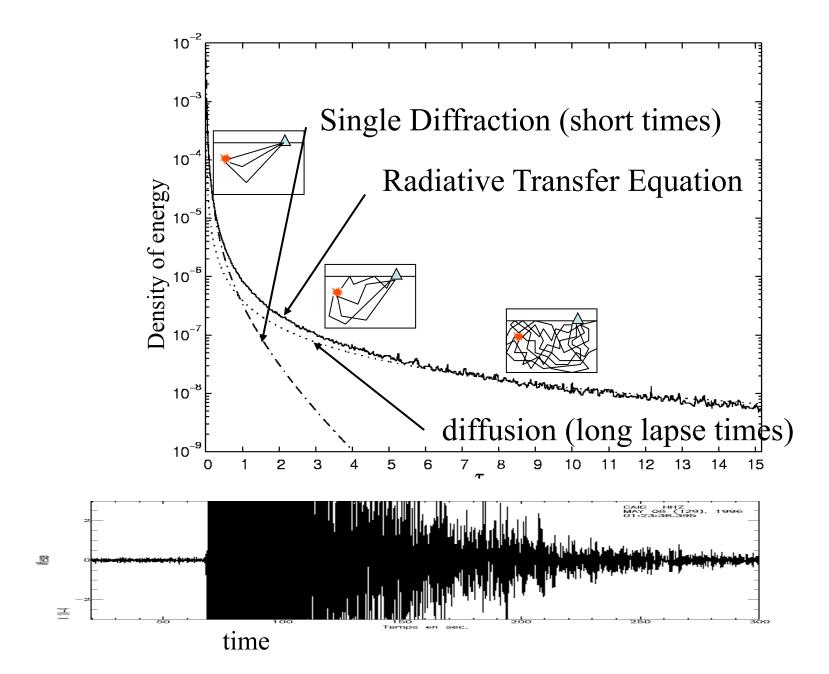


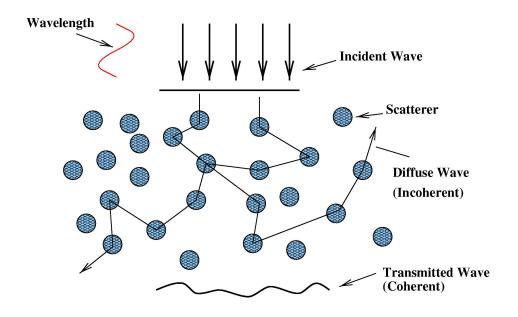
Fig. 15. Contour map of coda Q_0 for the entire continental United States.

Tectonically active western US: Qc=100-300

Propagation regimes and description of energy



Wave Propagation through Random Media



Length Scales: λ , Correlation Length, Propagation Distance

Question: Ensemble Average Response?

Precise Definition of Coherent and Incoherent Waves

The Concept of Mean Free Path

First Moment of the Green Function:

• Dyson Equation

$$\langle G \rangle = G_0 + G_0 M \langle G \rangle$$

M, Mass Operator Describes all Possible Scattering Situations

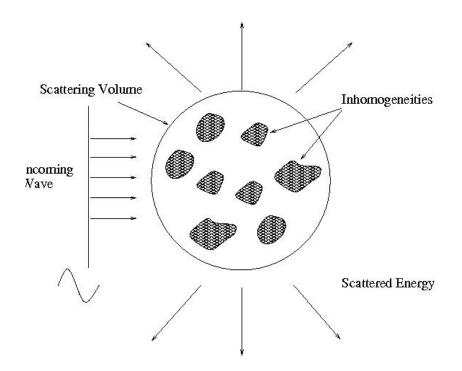
• Approximate Solution

$$\langle G(\vec{r}; \vec{r_0}) \rangle = -\frac{1}{4\pi |\vec{r} - \vec{r_0}|} e^{ik|\vec{r} - \vec{r_0}|}$$

$$k = k_0 + \frac{i}{2l}$$

 $\langle G \rangle$: Coherent Field

New Length Scale: Mean Free Path of Waves $l = f(\epsilon, a, \lambda)$

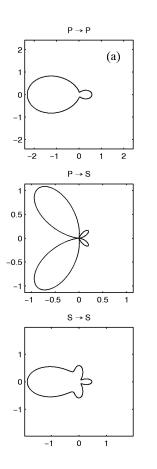


$$\frac{1}{l} = \frac{\text{Total Scattering Cross-Section}}{\text{Scattering Volume}}$$

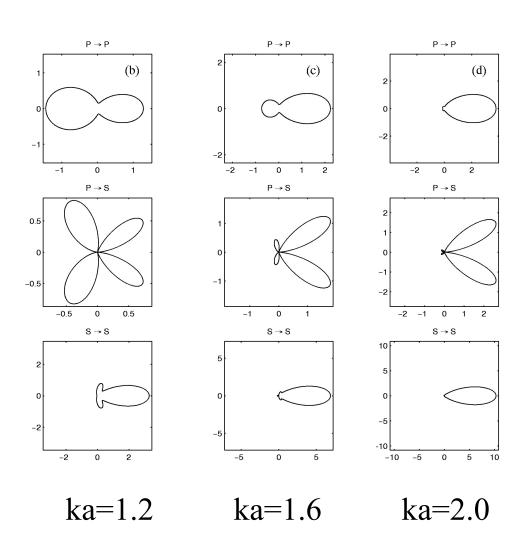
Frequency Dependence:

- Rayleigh $(ka \ll 1)$: $l \sim \omega^{-4}$
- High-Frequency (ka > 1): $l \sim \omega^{-2}$

Differential cross sections of scattering and conversion for a sphere of radius a

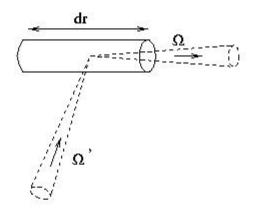


ka→0: Rayleigh approximation



(averaged in φ for S polarisation)

Energy balance of a beam of energy propagating a distance dr in the scattering medium



Variation of Intensity

_

Loss due to scattering into all space directions

+

Gain due to scattering from direction $\vec{\Omega}'$ to direction $\vec{\Omega}$

The Equation of Radiative Transfer

Second moment of the Green's function is governed by the Bethe-Salpeter equation:

$$\langle GG^{\star}\rangle = \langle G\rangle\langle G^{\star}\rangle + \langle G\rangle\langle G^{\star}\rangle K\langle GG^{\star}\rangle$$

K, Intensity Operator describes all scattering situations.

Neglecting recurrent scattering leads to:

$$\partial_t I(t,\vec{\Omega},\vec{r}) + \vec{\Omega} \cdot \vec{\nabla_r} I(t,\vec{r},\vec{\Omega}) = -\frac{1}{l} + \frac{1}{4\pi l} \int d\vec{\Omega}' I(t,\vec{\Omega}',\vec{r}) P(\vec{\Omega},\vec{\Omega}')$$

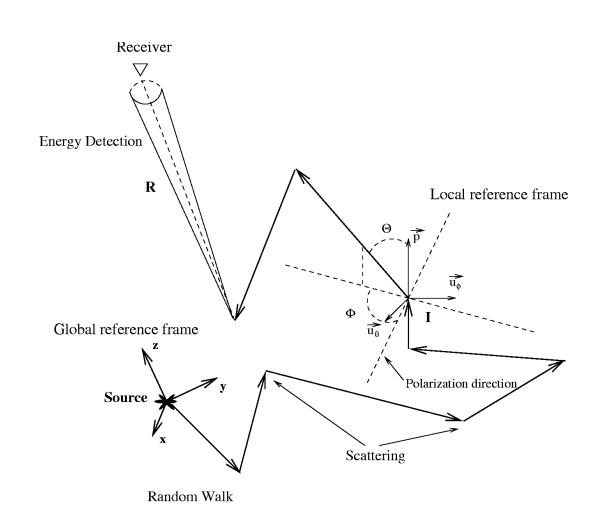
Describes the transport of the incoherent part of the intensity. I, Specific Intensity function of space direction, time and position

 $P(\vec{\Omega}, \vec{\Omega}')$, phase function (matrix) related to the power spectrum of the inhomogeneities

The radiative transfer equation

« particle analogy »

propagation under the ray theory assumptions



parameters: $l_{\rm P}, l_{\rm S}$..., differential cross-sections

Single Scattering Approximation

The waves interact only once with the medium inhomogeneities

First term of an expansion of the intensity in a multiple scattering series:

$$I = I^0 + I^1 + \dots + I^n + \dots$$

 I^0 : Coherent Intensity

 I^n : Mean intensity of waves that have been scattered n times

$$I^1 \sim \frac{l}{t^2} e^{-vt/l}$$

When $vt \ll l$ reduces to the Born Approximation

The Diffusion Approximation

General Idea:

- Each scattering distributes energy over all space directions
- After several scatterings the intensity becomes almost isotropic

$$I(t, \vec{r}, \vec{\Omega}) =$$
 Angularly Averaged Intensity + constant $\times \vec{J}(t, \vec{r}) \cdot \vec{\Omega}$

The current density $\vec{J}(\vec{r},t)$, points in the direction of maximum energy flow. Integrating the RT Eq over all space directions leads to:

$$\partial_t
ho(t, \vec{r}) - D
abla^2
ho(t, \vec{r}) = \mathbf{S}(t, \vec{r})$$

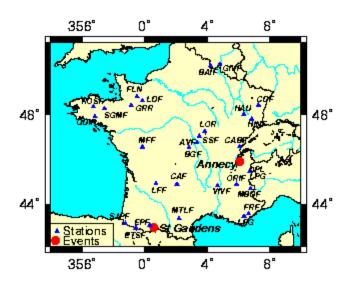
where rho is the local energy density.

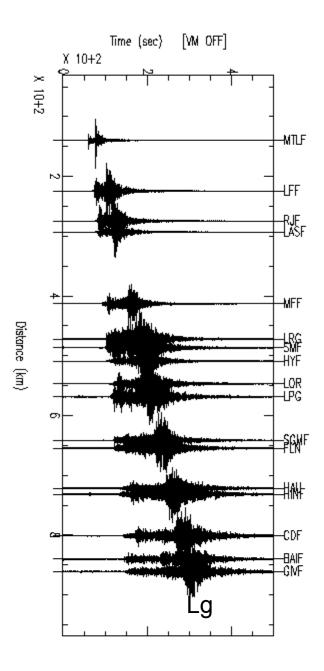
$$\rho(t, \vec{r}) \sim \frac{1}{(Dt)^{3/2}}$$
 for large t .

$$\mathbf{p}(\mathbf{r},\mathbf{r}',t) = \frac{1}{(4\pi Dt)^{d/2}} e^{-|\mathbf{r}-\mathbf{r}'|^2/4Dt}$$

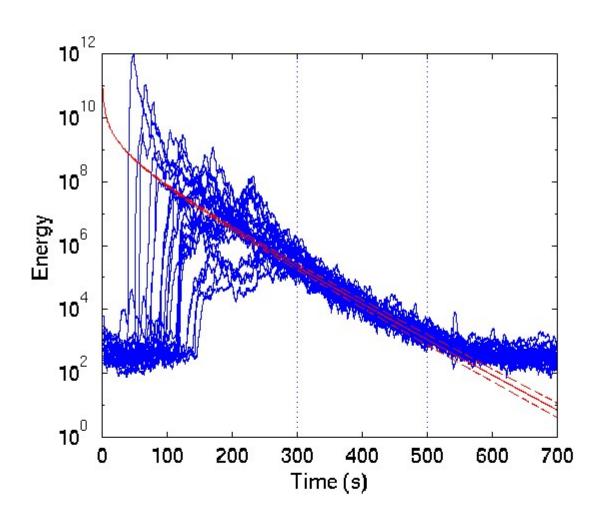
D = vl/3 is the diffusion constant of the waves.

Regional seismograms

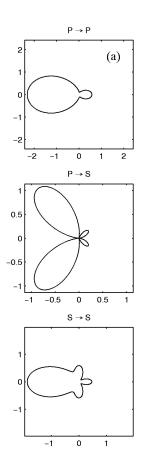




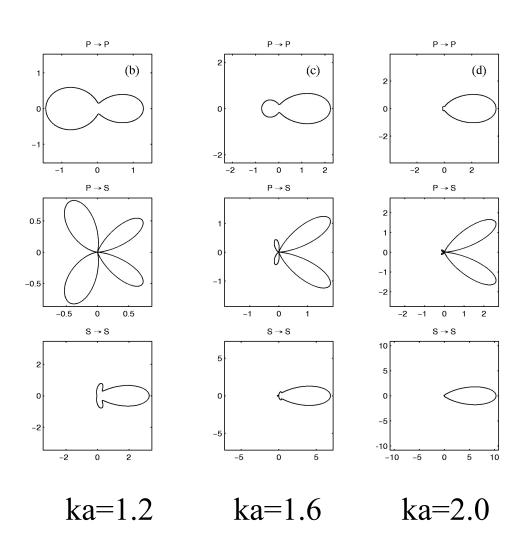
Observations at distances between 150 and 800 km!!



Differential cross sections of scattering and conversion for a sphere of radius a



ka→0: Rayleigh approximation

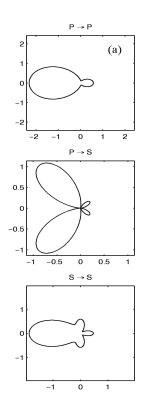


(averaged in φ for S polarisation)

Because of the Reciprocity theorem, the scattering tends naturally to favour S waves

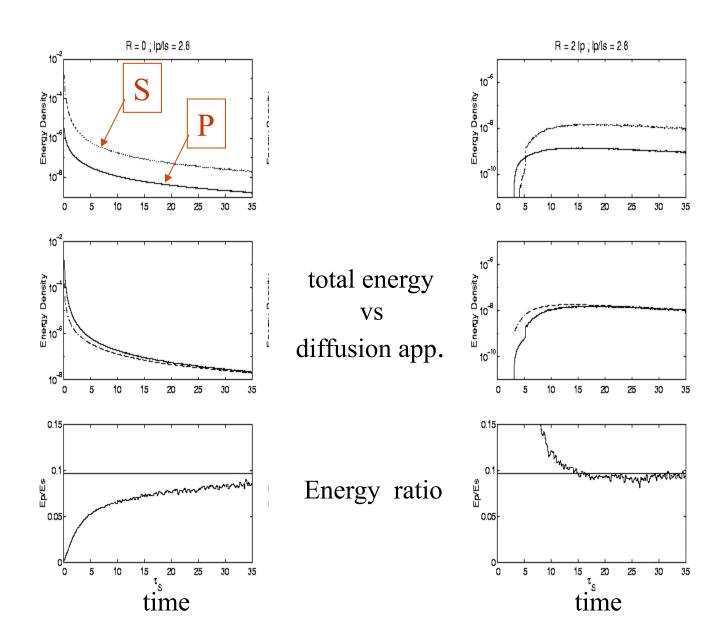
$$\frac{g_{PS}}{g_{SP}} = 2\frac{\alpha^4}{\beta^4}$$

Cross sections

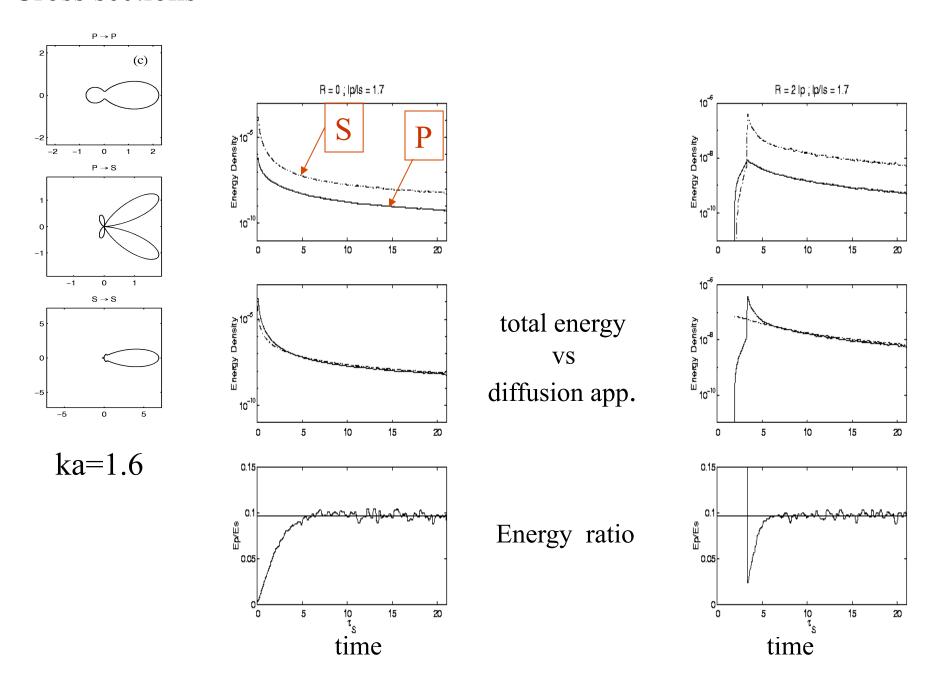


ka→0: Rayleigh approximation

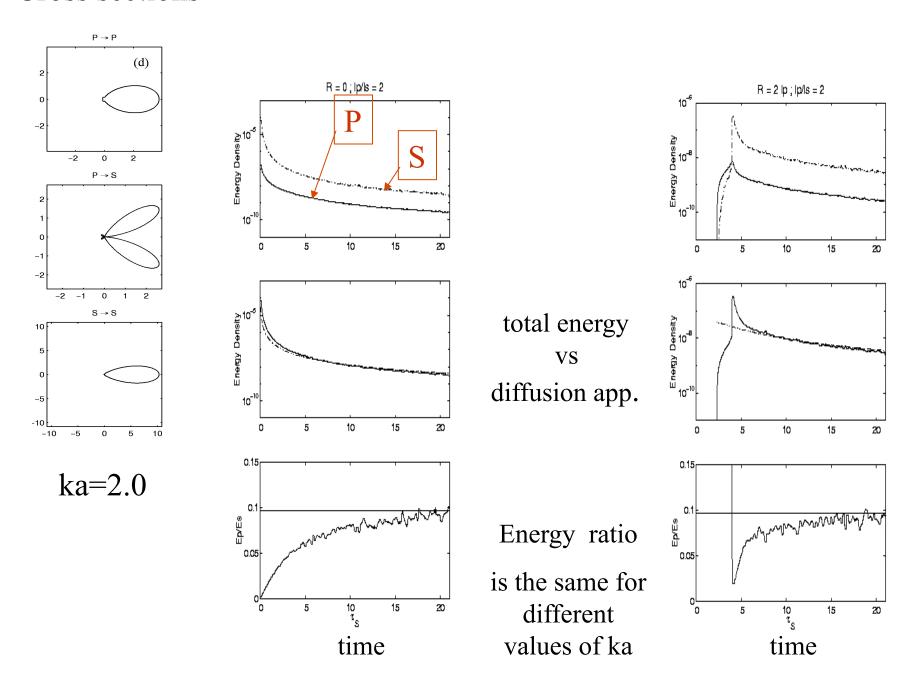
Numerical solutions of the RTE



Cross sections



Cross sections



S to P Energy ratio as a marker of the regime of scattering...

Equipartition Principle for Waves

Weaver, 1982: In a diffuse field, all the modes are excited to equal energy

$$G_{i,j}(\vec{R},\vec{S},t) = \sum_{n} \varepsilon_n \Phi^n(\vec{R}) \exp(-i\Omega_n t)$$

where ε_n are random independent variables (finite body)

Consequence for an infinite inhomogeneous solid:

$$\frac{E_s}{E_p} = 2\left(\frac{v_p}{v_s}\right)^3$$

Independent of the Details of the Scattering!

Independent of the position in a full space with homogeneous reference

Partition of energy (Full dastic space) Multiple scattering, large t -> "equipartition" [reference medium + disorder] Phase space of the full space dastic problem -> all propagating place waves existed at same level of energy Energy in a band w + bw -> Volume for Pwaves 8k = 8w Vp = 4π (ω) δω = 4π δω ω 1 Volume for each 5 polarisation: Vinter 4TISWW 133 => Vs = 2 x 4TSW w 1 Equal excitation => Es = Vs = 2 d3 [Note 2 = p => Es ~ 10.4 => see numerical simulation

Energy in an Elastic Solid

$$E = K + P + S + I$$

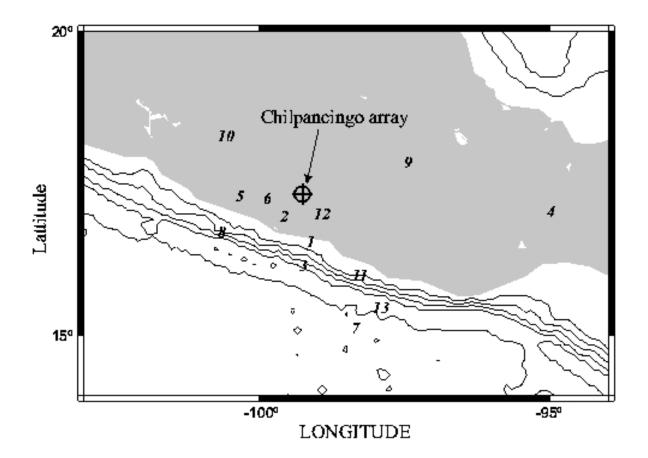
$$E = \frac{1}{2}\rho(\partial_t \mathbf{u})^2 + (\frac{\lambda}{2} + \mu)(\operatorname{div}\mathbf{u})^2 + \frac{\mu}{2}(\operatorname{curl}\mathbf{u})^2 + I$$

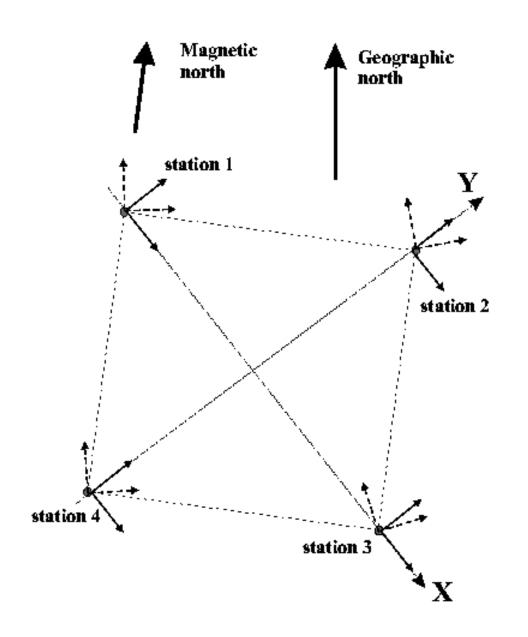
I contains mixed partial derivatives $K = H^2 + V^2$

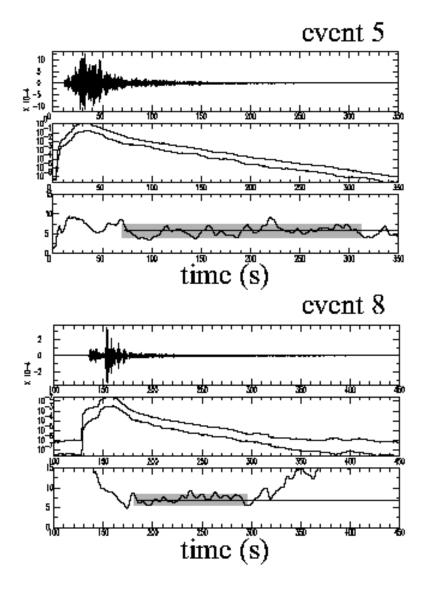
Focus on the ratios:
$$P/S$$
, $K/(P+S)$, $I/(S+P)$, H^2/V^2

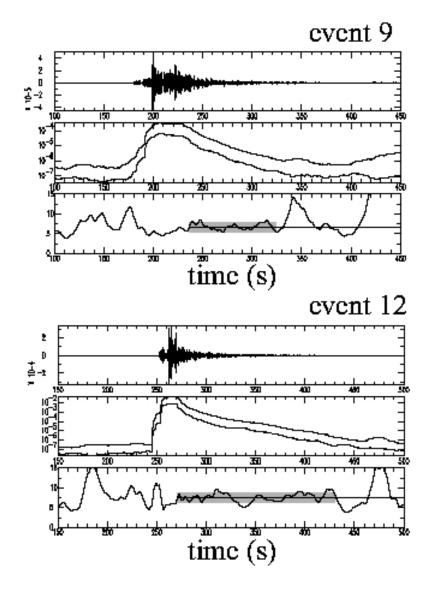
Equipartition predicts: Any Ratio of Energies Becomes Independent of Time

Measurement of the deformation energy requires evaluation of partial derivatives of the wavefield

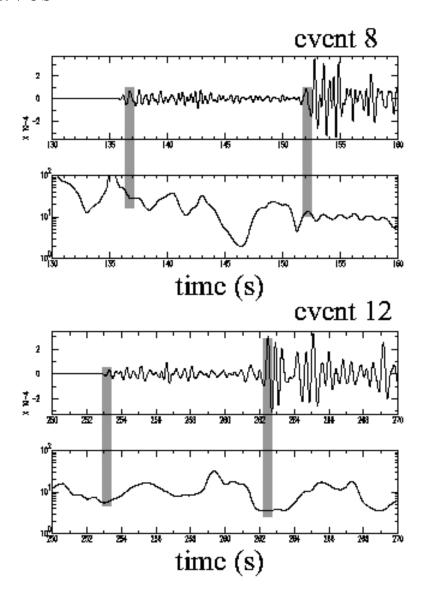


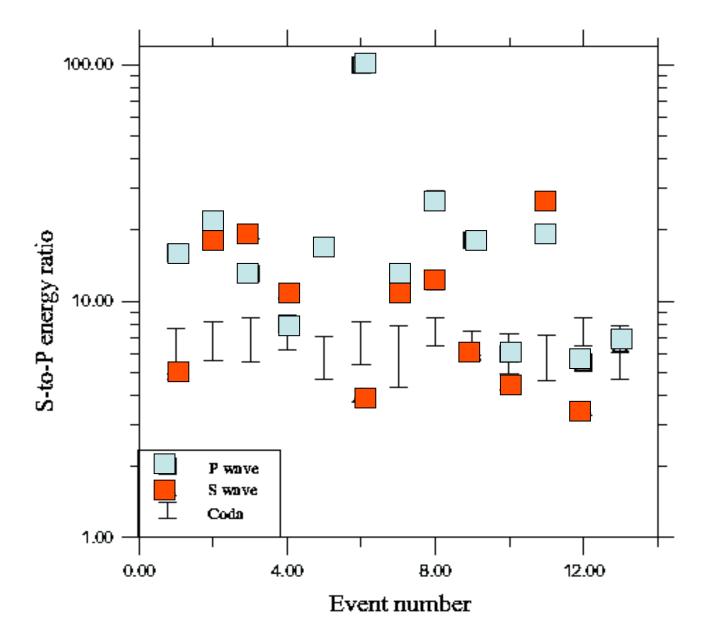






Direct waves





ENERGY RATIO	DATA	THEORY FULL SPACE	THEORY HALF SPACE BULK WAVES	THEORY HALF SPACE with RAYLEIGH WAVES
S/P	7.3	10.39	9.76	7.19
K/(S+P)	0.65	1	1.19	0.534
V(S+P)	-0.62	0	-0.336	-0.617

The Diffusion Approximation

General Idea:

- Each scattering distributes energy over all space directions
- After several scatterings the intensity becomes almost isotropic

$$I(t, \vec{r}, \vec{\Omega}) =$$
 Angularly Averaged Intensity + constant $\times \vec{J}(t, \vec{r}) \cdot \vec{\Omega}$

The current density $\vec{J}(\vec{r},t)$, points in the direction of maximum energy flow. Integrating the RT Eq over all space directions leads to:

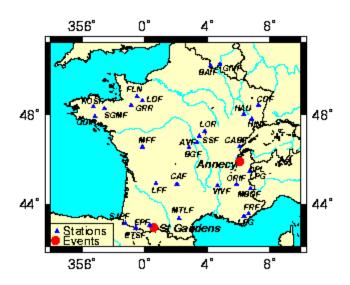
$$\partial_t \rho(t, \vec{r}) - D\nabla^2 \rho(t, \vec{r}) = S(t, \vec{r})$$

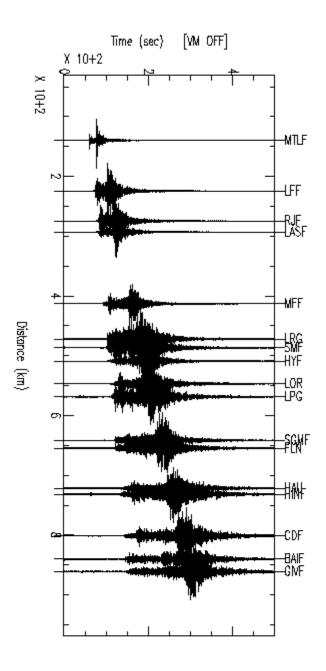
where rho is the local energy density.

$$\rho(t, \vec{r}) \sim \frac{1}{(Dt)^{3/2}}$$
 for large t .

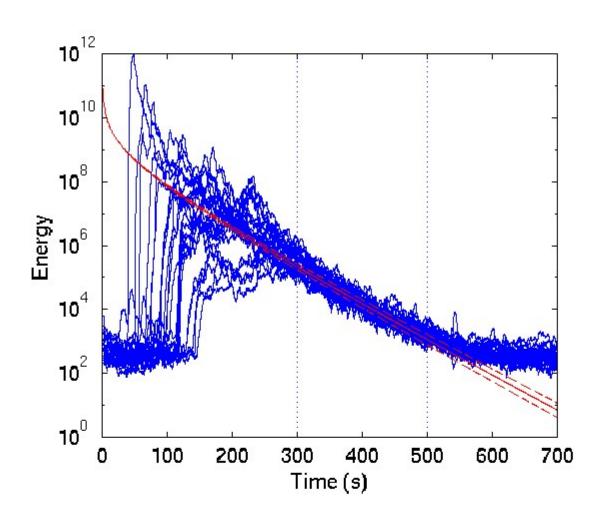
D = vl/3 is the diffusion constant of the waves.

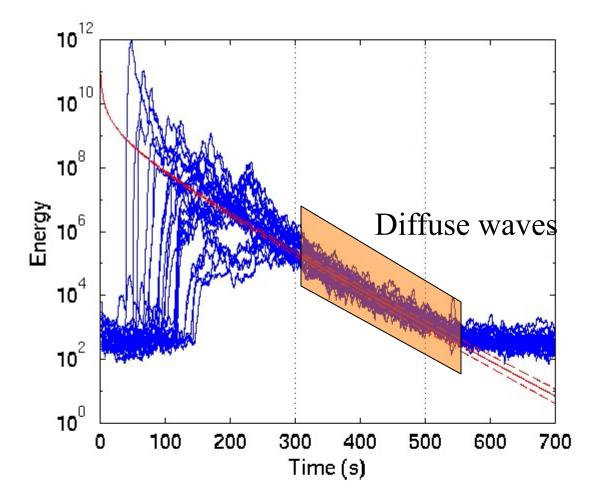
Coda of regional seismograms

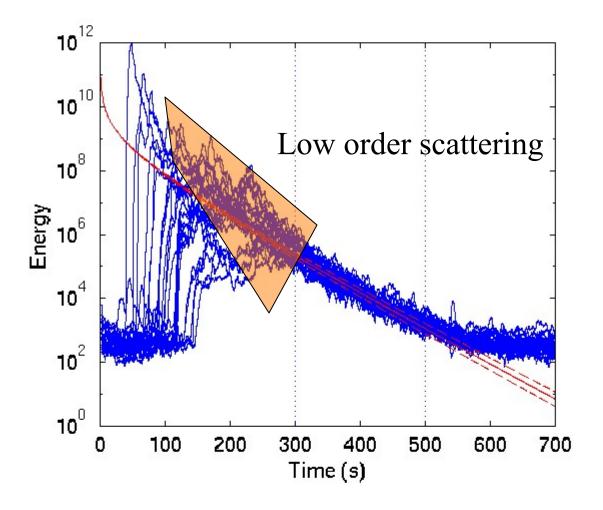




Observations at distances between 150 and 800 km!!

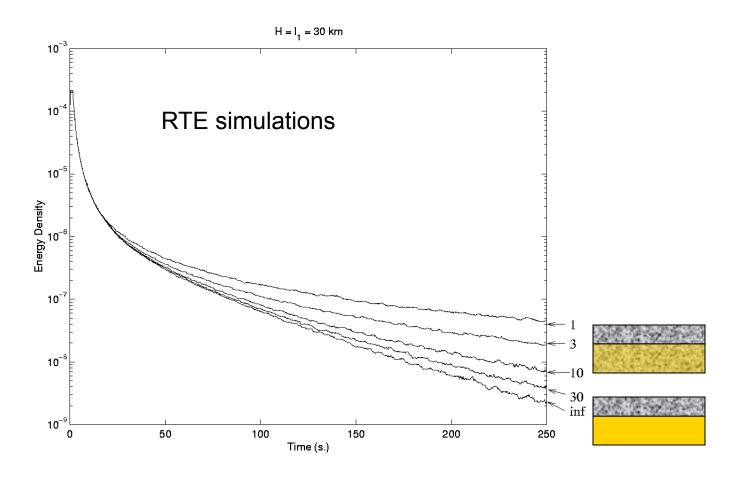




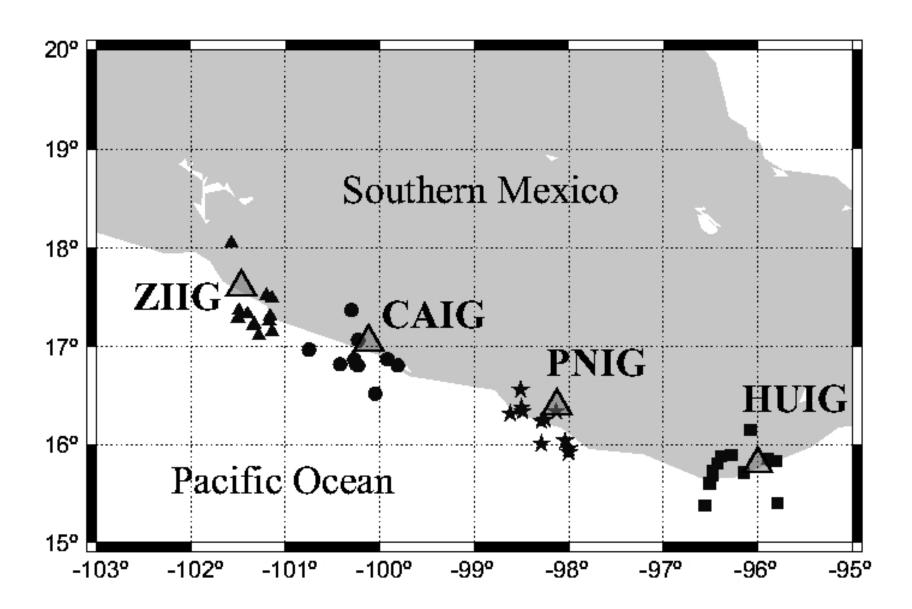


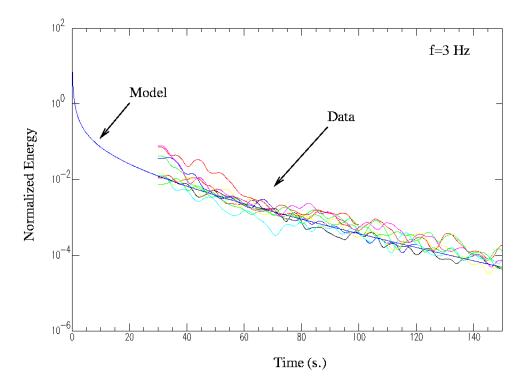
requires radiative transfer equation

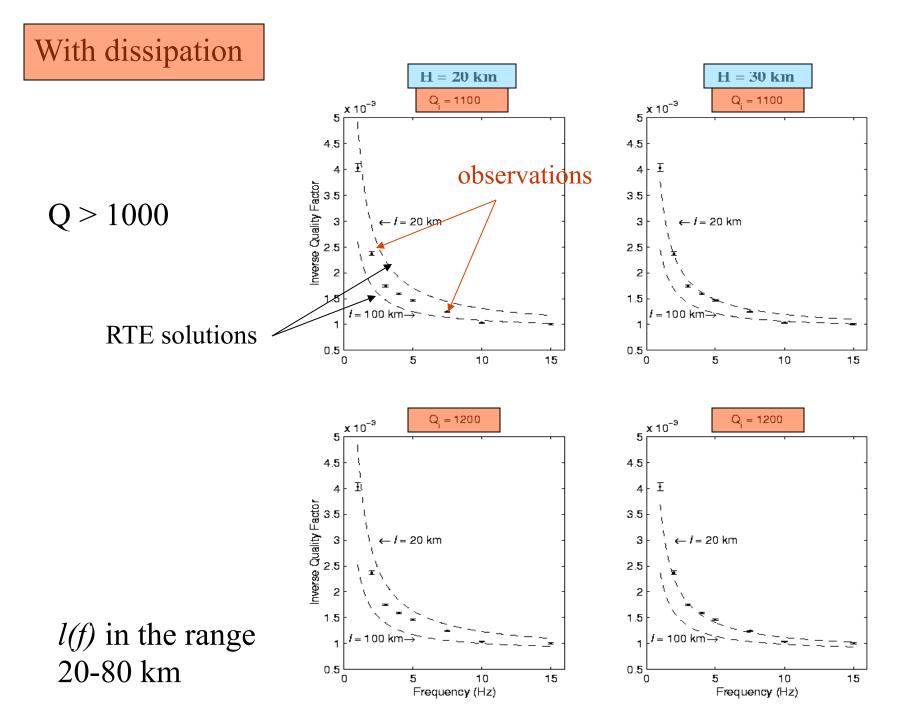
Influence of the value of mantle mean free path



Leakage of energy in the mantle







Energy decay in the coda (Aki and Chouet, 1975)

