Spatial autocorrelation coefficient:
Average spatial coefficient (2D circular array)
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Evaluating k at different frequencies makes it possible to obtain the disper-
sion curve C'(w).

The method relies on the hypothesis of the stationnarity of the noise and
requires specific array design to perform the azimuthal average.

Another approach consists of using only two points and to rely on long term
average to produce the azimuthal average.

Let us consider a plane wave in 2D:

u(r,0,w) = F(w)exp(—ikr cos(6—-6,))
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Causality
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Green function in 2D

P-SV case
l 9>
Gy = 4par {_ é:jszéz)(kV)+W[Héz)(qr)_HéZ)(kr)]@j}
—1 x. —¢&.
Gy(P.0O)= 148, ~Blyy, -8} 7=" "

L HOg) HPGe) P () HO )
0(2 ,62 0(2 ﬂZ

A+2
P P

P,Q



d’u, )
awae T TP e T o

2
2 a Mj azui
THE 2D VECTOR CASE IB =

Summation of P and S plane waves:

u,(x,w,t) = P(w,p)n, exp(—iw xn;)+S(@,y)m, exp(—iw X,m;)
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Correlation: P = m ;
u, (y)u, (x) = '

(P’nn, SP*m;nS )exp(ikr cos[@—8))
(S*mm:. + PS nm:) exp(ikr cos[y — 60])




Azimuthal average:

P2a2 — 852,82
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And finally if e=1 u,(y, 0 (x, ) =—8Egk ™ Im|G, (x,y, w)]

Formally, same result in 3D (Sanchez-Sesma and Campillo, BSSA 2006)



Arbitrary medium: an integral representation written in the frequency domain
(see e.g. Weaver et al. 2004, or Snieder, 2007)
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Helmholtz equation G, =G (5, % a))

AG, +V ()G, +(k+ik)’ G, =6(3—F)

where the potential 7 (X) describes the scattering contribution
does not extend to infinity.

As for the classical representation theorem, we consider a combination of the
fields from source at 1 and 2 and compute the flux:
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With the divergence theorem:
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I = J;\?[GIXV(G;,)—v(Glx)G;x}dV reduces to
I=| (G.AG,, —AG,G,, )dV

Using the definition of the GF:
2

we obtain:
[ =G =Gy — j‘( G, Gy dV
and finally:
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Surface term:

x =0 (no attenuation)

No source in the bulk



Surface term:

If the surface 1s taken in the far field of the medium heterogeneities
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and we obtain another widely used integral relation:
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Talk by A. Curtis on integral representations and applications
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Volume term: G12 — G12 = J G1sz_\- daVv
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k is finite (attenuation)

S is assumed to be sufficiently far away, for its contribution to
be neglected (spreading and attenuation)



An homogeneous infinite body with an even random distribution of sources
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Location of the sources that contribute to the correlation: the end fire lobes

Difference of travel time between A and B
wrt the position of the source
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Stationary phase and end fire lobes
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End fire lobes

Contributions to direct waves
in the GF

scatterer

7

Contributions to scattered waves
In the GF

Extension to scattered waves



A numerical experiment with an open medium (absorbing boundaries):

scatterer
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sources Green function (A-B)
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Physical interpretations
Time reversal



C source Correlatiqn gnd Time 1.‘eversa1 @C TR device
{ﬂ? Focusing/virtual source in A
e 4 B
A A A B Equivalence in a reciprocal medium A A
A source
* Csource * Creceiver (Syc= Scp)

A et B receivers .
 (Correlation : .
Sca(t) X Scp(t) =

C emits the time reversed signal
B recetver

Convolution :

Sca) ®Scp(-t)

Derode et al., 2003++++



Numerical 2D FD simulation
200 « sources » C (randomly placed)

scatterer

Point A (emitting first)



A pulse 1s emited in A
and recorded at point randomly
distributed

time

A 4




Re-emission from the points ‘C’
of the time-reversed signals
(map of cross-correlations)

Constructive
interferences of time-
reversed field

Converging field
. G(-t)




Nearly perfect refocalisation

Re-emission from A :
G ()




A more realistic configuration of sources

40 « sources » C (lined-up along a fault...)

scatterer

v

Point A (emitting first)



Time reversal experiment

A send a pulse

Scattering effects

Diffuse field is
also recorded




Re-emission

time

v




Partial focalisation

Diverging field : h,x(t)

The symmetry of the Green function 1s lost!



