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We solve the Navier-Stokes equations with two simultaneous forcings. One forcing is applied at a given large
scale and it injects energy. The other forcing is applied at all scales belonging to the inertial range and it injects
helicity. In this way we can vary the degree of turbulence helicity from nonhelical to maximally helical. We find
that increasing the rate of helicity injection does not change the energy flux. On the other hand, the level of total
energy is strongly increased and the energy spectrum gets steeper. The energy spectrum spans from a Kolmogorov
scaling law k−5/3 for a nonhelical turbulence, to a non-Kolmogorov scaling law k−7/3 for a maximally helical
turbulence. In the latter case we find that the characteristic time of the turbulence is not the turnover time but a
time based on the helicity injection rate. We also analyze the results in terms of helical modes decomposition. For
a maximally helical turbulence one type of helical mode is found to be much more energetic than the other one,
by several orders of magnitude. The energy cascade of the most energetic type of helical mode results from the
sum of two fluxes. One flux is negative and can be understood in terms of a decimated model. This negative flux,
however, is not sufficient to lead an inverse energy cascade. Indeed, the other flux involving the least energetic
type of helical mode is positive and the largest. The least energetic type of helical mode is then essential and
cannot be neglected.
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Considering the case of three-dimensional homogeneous
and isotropic turbulence, Kolmogorov [1] assumed the ex-
istence of a range of scales, the so-called inertial range, in
which the viscous dissipation can be neglected. In absence
of dissipation the kinetic energy is a conserved quantity. In
spectral space the flux of kinetic energy is constant, leading to
an energy cascade from large to small scales, provided energy
is injected at large scale. From a straightforward dimensional
analysis the spectral density of kinetic energy E(k) can be
expressed in terms of the energy injection rate ε and wave
number k,

E(k) ∝ ε2/3k−5/3. (1)

In absence of viscosity not only energy is a conserved
quantity but also helicity [2,3], which is defined as

H (t) =
∫

V

u(x,t) · ∇ × u(x,t)dV, (2)

where u(x,t) is the velocity field at position x and time t , and
integration is made over the volume V . Similarly to energy, the
helicity conservation is equivalent having a constant helicity
flux. Provided energy and helicity are both injected at large
scale, helicity is expected to cascade jointly with energy in the
inertial range, obeying the following scaling law [4–6]:

H (k) ∝ ηε−1/3k−5/3, (3)

where H (k) is the spectral density of helicity and η the injection
rate of helicity. Contrary to enstrophy in two-dimensional
turbulence, helicity is not sign defined and therefore not
reputed for having any influence on the energy spectrum,
letting the scaling law (1) remain unchanged [7].
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Though the simultaneous scaling laws (1) and (3) are
characteristic of the so-called helical turbulence [6], they
cannot be justified from dimensional grounds like Kolmogorov
did for the nonhelical turbulence. Indeed, the problem now
consists in five variables E(k), H (k), k, ε, and η and only two
dimensions, length and time. Applying the � theorem [8] and
assuming that E(k) and H (k) obey some scaling laws, we find
[9,10]

E(k) ∝ ε7/3−aηa−5/3k−a, H (k) ∝ ε4/3−bηb−2/3k−b, (4)

where a and b are two free parameters. Therefore we need
additional constraints to derive the power laws for E(k) and
H (k).

One way to argue for the simultaneous k−5/3 scaling laws
(1) and (3) is to assume that the fluxes of energy and helicity
�E(k) and �H (k) are constant in the inertial range, such that
�E(k) = ε and �H (k) = η. In addition, we have to set that
the characteristic times τE and τH for the energy and helicity
transfers are given by the turbulence turnover time τE = τH ∝
(εk2)−1/3. Then estimating both energy and helicity fluxes as
[5,11]

�E(k) = kE(k)/τE(k), �H (k) = kH (k)/τH (k), (5)

leads to (1) and (3). In the notations of (4) this would
correspond to a = b ≡ 5/3.

Instead we could think of spectral laws independent of ε,
leading to [5]

E(k) ∝ η2/3k−7/3, H (k) ∝ η2/3k−4/3. (6)

In the notations of (4) this would correspond to a = b + 1 ≡
7/3. Providing evidence of such scaling laws (6), is still a
challenging issue and has never been observed so far in direct
numerical simulations. Recently, a step forward has been
made by solving the so-called decimated Navier-Stokes (NS)
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equations [12,13]. It consists in splitting each Fourier mode
of the velocity field in positive and negative helical modes,
and in solving the NS equations keeping only one type of
mode. By construction the resulting turbulence is then exactly
maximally helical, i.e., |H (k)| = kE(k). In such a decimated
model helicity is still a conserved quantity, but now it gets
the property to be sign definite. It then plays a role similar
to enstrophy in 2D turbulence, leading to a k−5/3 inverse
cascade of energy at scales larger than the forcing scale [12].
In the inertial range the helicity cascade is direct, with an
energy scaling law E(k) ∝ k−7/3 [13]. In a recent experimental
study [14] two scaling laws have also been found, the authors
arguing for the existence of two such opposite cascades, but
with dominant nonlocal transfers leading to E(k) ∝ k−1 and
E(k) ∝ k−2.

Here we present another strategy that does not assume any
simplification of the NS equations and which is based on the
fact that the scaling laws (6) do not depend on ε. Such a ε

independence is expected as soon as τH � τE , then speaking of
a helicity-driven turbulence. From (5) and applying the exact
constraint |H (k)| � kE(k), a sufficient condition for having
τH � τE is given by

�H (k) � k�E(k). (7)

One way to satisfy such a flux condition (7) is to inject energy
at large scale such that �E(k) = ε and helicity at all scales
such that �H (k) � kε. This is the strategy that is followed
in the present Rapid Communication using direct numerical
simulation of the NS equations. A similar strategy has been
used in [15,16] using a helical shell model.

Using a pseudospectral code we solve the NS equations

∂tu = −(u · ∇ )u − ∇p + ν∇2u + f, (8)

where ν, p, and f are, respectively, the viscosity, the pressure,
and the flow forcing. The forcing is divided into two parts
f = fE + fH , where fE is the energy forcing applied at some
given large scale k−1

F , and fH is the helicity forcing applied at
all scales within the inertial range.

Both parts of the forcing fE and fH are delta correlated in
time and divergence-free. Following [17] they are defined such
that the power input comes from the force-force correlation
only and not from the velocity-force correlation. In spectral
space this corresponds to

u∗
k · fE

k + c.c. = 0, (9)

u∗
k · fH

k + c.c. = 0, (10)

where fE
k and fH

k are the Fourier coefficients of fE and fH .
For fE we use the exact same forcing as in [17] with a

force-force correlation given by∣∣fE
k

∣∣2 = F (k)/2πk2, (11)

where F (k) obeys to a Gaussian distribution around k = kF .
As in [17] F (k) is defined as inversely proportional to the time
step of the computation, in order to guarantee an injection rate
of energy which is independent from the value of the time step.
The level of helicity injected by fE is not controlled a priori,
but the results show that it is statistically insignificant.

In order to inject helicity the forcing fH has to satisfy, in
spectral space,

(∇ × u)∗k · fH
k + u∗

k · (∇ × fH )k + c.c. = η(k), (12)

where η(k) is a helicity injection rate per unit volume. We take

η(k) = 0 for |k| < kF , (13)

η(k) = η0(|k|/kF )−α for |k| � kF (14)

with α = 2.2 in order to have a spectral density of helicity
injection rate |k|2η(k) almost flat. Of course, such a forcing
extending on the whole inertial range might change the
intermittency properties of the turbulence [18]. However, we
find that the level of dissipation with and without fH is
statistically unchanged. Finally, two issues have to be clarified,
both related to the fact that the energy power coming from the
force-force correlation of fH is not controlled a priori and that
we need to keep it at a level sufficiently lower than the one
injected by fE . These rather technical issues are detailed in the
Appendix.

Applying a classic criterion [19] in order to ensure the
resolution of a sufficiently large range of dissipation scales,
taking a grid of 2563 points and setting ν = 2 10−3 and Rλ =
100, where Rλ is the Reynolds number based on the Taylor
microscale, leads to an energy injection rate ε ≈ 0.2 and a
forcing wave number kF ≈ 2.2. Finally, all subsequent results
correspond to statistically steady states.

In Fig. 1 top and bottom, the spectral density of energy
E(k) and relative helicity H (k)/[kE(k)] are represented for
five values of helicity injection η0, ranging from nonhelical
turbulence (η0 = 0) to maximally helical turbulence (η0 = 5).
Clearly, increasing η0 steepens the energy spectral density
at large scales, with a scaling law varying from k−5/3 for
nonhelical, to k−7/3 for maximally helical turbulence (top of
Fig. 1). For η0 �= 0 a well defined spectrum of relative helicity
is obtained with a rather flat part. For η0 = 1 and η0 = 5 the
relative helicity is about unity over an extended range of scales,
showing that the turbulence is close to a maximally helical state
(bottom of Fig. 1).

The fluxes of energy and helicity, �E(k) and �H (k), are
plotted in the top and bottom of Fig. 2, for again the same
five values of η0. In the top figure we see that �E(k) is
almost independent of η0, showing that the spurious energy
injection produced by the helical forcing fH is small compared
to the energy injected by fE . On the other hand, in the bottom
figure we see that �H (k) is getting higher when increasing
the value of η0. Therefore we conclude a posteriori that the
injections of energy and helicity are well prescribed by fE and
fH , respectively.

Relying on (5) and knowing the flux and spectral density
of energy and helicity, we can calculate the two characteristic
times, τE(k) and τH (k), in order to determine which one is the
smallest and therefore which one controls the turbulence. In
Fig. 3 the ratio τH (k)/τE(k) is plotted for η0 = 0.05, 0.3, 1,
and 5. For sufficiently large values of η0, typically η0 = 1
and η0 = 5, we see that for k ∈ [3,12] τH (k)/τE(k) < 1,
suggesting a turbulence governed by the helicity injection
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FIG. 1. (Color online) Spectral density of energy (top) and rel-
ative helicity (bottom), for five values of the helicity injection rate:
η0 = 0, 0.05, 0.3, 1, and 5. In the top figure the energy is normalized
by k−5/3 and the red dashed curve corresponds to k−7/3.

rate. On the other hand, for low values of η0, typically
η0 = 0.05 and η0 = 0.3, and in the same range of scales we
find τH (k)/τE(k) > 1, suggesting a turbulence governed by
the energy injection.

Up to now it has been demonstrated that injecting a
sufficiently high rate of helicity over the whole inertial range
of a turbulent flow leads to a k−7/3 scaling law for the
energy spectral density and that the characteristic time of such
maximally helical turbulence is the one based on the helicity
injection rate.

Now the question arises how our results fit in with the
scenario described by the decimated model [12,13]. As the
injection of positive helicity is made at all scales and at
each time step, we expect a strong dominance of the positive
helical modes compared to the negative helical modes. Then
according to [12,13] we could expect an inverse cascade of
energy. However, the energy fluxes plotted in Fig. 2 are always
positive, demonstrating a direct cascade of energy. To clarify
this paradox we now analyze our results in terms of helical
modes decomposition.

In Fourier space the velocity field is split into two helical
modes per wave vector

u(k) = u+(k) + u−(k) (15)

= u+(k)h+(k) + u−(k)h−(k), (16)

η0=0η0=5

k

ΠE

η0=0

η0=5

η0=0.05

k

ΠH

FIG. 2. (Color online) Flux of energy �E (top) and helicity �H

(bottom) for the same five values of η0 as in Fig. 1 and same color
code.

where u± are complex scalars and h± are the eigenvectors
of the curl operator satisfying ik × h± = ±|k|h± [20,21].
The energy spectral density of each helical mode, defined by
E±(k) = |u±(k)|2, is plotted in Fig. 4, for again the same
five values of η0 as in Fig. 1. For each value of η0 we
observe that both spectra E±(k) obey to the same scaling
laws, again varying from k−5/3 for η0 = 0 to k−7/3 for η0 = 5.
This is consistent with the results of Fig. 1 and the relation
E(k) = E+(k) + E−(k). For η0 = 0 both spectra E±(k) are
identical as expected for a nonhelical turbulence. Increasing η0

η0=5

η0=0.05

k

τH /τE

FIG. 3. (Color online) Ratio τH (k)/τE(k) versus k for η0 =
0.05, 0.3, 1, and 5 and same color code as in Fig. 1.
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E±

k

FIG. 4. (Color online) Energy spectra E+(k) (solid line) and
E−(k) (dashed line) for the same five values of η0 as in Fig. 1 and
the same color code. Increasing η0 the curves spread from the center
towards the two (red) dashed and solid straight lines corresponding
to k−7/3.

both spectra separate apart from each other, E+(k) prevailing
over E−(k) by two orders of magnitude for η0 = 5.

Following [22,23] we now analyze the fluxes between the
helical modes. We denote by �a<

b (k) the energy flux from the
inside region of a ua sphere of radius k to all wave numbers of
ub, where a,b ≡ ±. It is defined as

�a<
b (k) =

∫
|k′|�k

ua(k′) · F{(u · ∇)ub}(k′)dk′, (17)

where F{(u · ∇)ub} denotes the Fourier transform of the non
linear term (u · ∇)ub. The four fluxes �±<

± (k) are represented
schematically in Fig. 5 (top). They are plotted in Fig. 5
(bottom) for η0 = 0 (light curves) and η0 = 5 (dark curves).
The sum of these four fluxes corresponds to the energy flux
plotted in Fig. 2 (top). For η0 = 5 the fluxes (c) �+<

− (k) and (d)
�−<

+ (k) are much larger than for η0 = 0. In addition, they are
of opposite sign corresponding to a net flux of energy from the
positive to the negative helical modes, balancing each other at
small scales (large k).

Let us now focus on the flux (a) �+<
+ (k). By definition the

energy flux from the inside region of a u+ sphere of radius k

to itself is zero. This implies that �+<
+ (k) = �+<

+>(k), which
is the energy flux from the inside region of the u+ sphere of
radius k to the outside of that same u+ sphere. Now the fact
that in Fig. 5 (bottom) �+<

+>(k) is always positive means that
there is a direct cascade of energy. This is in contrast with the
inverse cascade found with the decimated model of [12,13].

Finally, we push one step further by splitting the flux
�+<

+>(k) into two parts �+<
+>(k) = +�+<

+>(k) + −�+<
+>(k) with

±�+<
+>(k) =

∫
|k′|�k

u+(k′) · F{(u± · ∇)u+}(k′)dk′. (18)

In (18) ±�+<
+>(k) denotes the energy flux from the inside region

of a u+ sphere of radius k to the outside of the u+ sphere,
with u± acting as a mediator on the nonlinear interactions.
Both fluxes ±�+<

+>(k) are plotted in Fig. 6 for again the same
five values of η0 as in Fig. 1. The flux +�+<

+>(k) is always
negative in agreement with the arguments given in [12,13] for

(b) (a)
(c)

(d)

Π

k

FIG. 5. (Color online) Top: Various energy fluxes in helical
turbulence. �a<

b (k) denotes the energy flux from the inside region
of a ua sphere of radius k to all wave numbers of ub, where a,b ≡ ±.
Bottom: The dark (light) curves correspond to η0 = 5 (η0 = 0). The
solid curves correspond to �+<

+ (k) and �−<
− (k), and the dashed curves

to �+<
− (k) and �−<

+ (k). For η0 = 5, (a) corresponds to �+<
+ (k), (b)

to �−<
− (k), (c) to �+<

− (k), and (d) to �−<
+ (k).

the decimated model. However, the flux −�+<
+>(k) is positive

and always the largest in absolute value. This shows that even
if the turbulence is strongly positively helical, the presence
of negative helical modes is nevertheless essential to give

η0=5

η0=5

η0=0Π

k

FIG. 6. (Color online) Energy fluxes +�+<
+>(k) (solid) and

−�+<
+>(k) (dashed) for the same five values of η0 as in Fig. 1 and

same color code. Increasing η0 from 0 to 5 the solid curves at k = 3
decrease and the dashed curves increase.
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the right sign of the energy fluxes. Though the decimated
model is mathematically appealing because it reproduces an
exact maximally helical flow, it is eventually singular as in
practice the existence of both types of helical modes cannot be
avoided. This result also supports the choice made in helical
shell models [23] in which two helical modes can interact only
if they have opposite helicities.
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Rhône-Alpes through the CIBLE program, IDRIS and CI-
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of Russian Academy of Science, Ural Branch.

APPENDIX: THE HELICITY FORCING

The helicity forcing is defined in its spectral form as

fH
k = k × p(k,t) (A1)

with

p(k,t) = a(k,t)e1(k,t) + ib(k,t)e2(k,t), (A2)

e1(k,t) and e2(k,t) being two unit vectors with directions
changing randomly at each time step. The resolution of
Eqs. (10) and (12) leads to

a(k,t) = − η(k)

4D|k|2 ( Im(uk),k,e2), (A3)

b(k,t) = η(k)

4D|k|2 ( Re(uk),k,e1), (A4)

with

D(k,t) = ( Re(uk),k,e1)[Re(uk) · e2]

+( Im(uk),k,e2)[Im(uk) · e1]. (A5)

As stated above, the energy forcing fE is inversely proportional
to the time step [17]. Conversely fH does not depend on the
time step, implying that the level of energy rate which comes
from the force-force correlation of fH is proportional to the
time step. Therefore, provided the time step is sufficiently
small, the energy rate coming from the force-force correlation
of fH can be maintained at a sufficiently low level compared
to the energy rate coming from the force-force correlation of
fE . In other words, to maintain a spurious power injected by
fH at a low level it is necessary to decrease the time step when
increasing η0.

Finally, we apply a clipping condition in order to prevent
any spurious energy injection coming from singular solutions
of Eqs. (10) and (12). Indeed, as the forcing fH is random in
time we cannot prevent the value of D given in (A5) to be zero
and lead to singular solutions a(k,t) and b(k,t). In addition,
we do not want to force energy or helicity in the dissipative
range (corresponding to scales k � kν where kν ≈ ε1/4ν−3/4).
Therefore, at each time step the helical forcing fH is applied
provided the following condition is satisfied:

D(k,t) � |k||uk|2
[
A + B

(
k

kν

)β
]
, (A6)

where A, B, and β are positive constants whose values depend
on η0.
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