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1. Introduction

In this chapter, we have the difficult task to describe
the invisible part of the core: turbulent structures that we
can’t detect but have to be there... Indeed, non-linear
interactions in the liquid core lead to the formation of
velocity, temperature and magnetic structures on a large
range of scales. Their role is important: they transfer
energy between large and small length-scales, and in
the end they control the dissipation of the geodynamo.
Turbulence is at work everywhere and has been stud-
ied for decades. Our first step is to define turbulence
and show why one should care about turbulence in the
core. Then we review a few fundamental features of hy-
drodynamic turbulence. Many tools are needed to deci-
pher turbulence: we present key results obtained from
numerical simulations, laboratory experiments, and ob-
servations of natural systems. Unfortunately, no obser-
vations of the internal geomagnetic field are possible
at small scales, mostly because of the crustal field that
overprints the small-scale core field. Observations of
turbulence in other systems are thus welcome, to gain
insight in what could happen in the Earth’s core. We
also devote one section to the parametrization of turbu-
lence in numerical simulations.

The last two sections focus on the core. Turbulence
implies a range of time- and length-scales. We define
dimensionless numbers depending on the length scale
`, that measure the relative weight of the various terms
in the governing equations. Using the known properties
of the core, and its large-scale velocity and magnetic
field, we evaluate these various numbers. We introduce
τ − `-diagrams that help us identify the scales at which
turbulent regimes change. Step by step, we explore the
suite of plausible turbulent regimes for the core, intro-
ducing successively the effects of rotation and magnetic
field. Our analysis emphasizes the crucial role of rota-
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tion in limiting the dissipation of the geodynamo, and
points out the need for dedicated studies.

2. What is turbulence?

2.1. An attempt to define turbulence

Turbulence is difficult to define precisely, but we can
list a few elements that characterize turbulent motion.
The most prominent feature of turbulence is that the
motion of the fluid involves a wide range of spatial and
temporal scales. These scales cannot be treated inde-
pendently and there is no scale separation between small
and large scales, although different regimes can be iden-
tified.

In order for the various scales to interact, the non-
linear terms of the evolution equation must be impor-
tant. In the case of pure hydrodynamic turbulence, this
is ensured by a large Reynolds number Re = UL/ν � 1,
ratio of the diffusive time L2/ν to the advection time
L/U (L is a characteristic length, U a typical velocity,
and ν the kinematic viscosity of the fluid). However,
in a self-magnetized conducting fluid driven by thermo-
chemical convection, there are other non-linear terms
that allow interaction of different scales.

A flow executing turbulent motion often exhibits ed-
dies of various scales, but this may not be the case
when a strong magnetic field and background rotation
are present, as it is the case for the Earth’s core. Turbu-
lence is not chaos, but all turbulent flows exhibit fluctu-
ations that call for a statistical description, rather than a
deterministic one. If the precise details of the flow are
controlled by initial conditions or small perturbations
that we cannot measure, global quantities such as the
energy dissipation rate, the average velocity field, the
amplitude of fluctuations are of great interest, and are
expected to be well defined and measurable.

As opposed to laminar motion, where the fluid par-
ticles follow a pattern controlled by the viscosity, with
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little change from one fluid particle to its neighbor, a tur-
bulent motion involves complex time-dependence and
spatial dependence.

2.2. Is the Earth’s core turbulent ?
Due to the low viscosity of molten iron, the Reynolds

number is certainly very large: Re ∼ 108, meaning that
the viscous term (which is the only isotropic dissipation
term), acts mainly at small scale. Furthermore, the non-
linear terms associated with the Lorentz force are in fact
much larger than the inertial term at large scale, leading
to a ratio of non-linear to viscous force of about 1012.

However, the importance of the magnetic field and
the global rotation rate make the turbulence rather pe-
culiar. It is sometimes advocated that the flow varia-
tions along the rotation axis or magnetic field lines are
inhibited, leading to sheet-like (laminar) motion which
cannot be turbulent anymore (because velocity is now
mostly perpendicular to its gradient). These are a lot of
constraints for an incompressible vector field that has
only two degrees of freedom.

We shall see in the following sections that not all
these constraints have the same strength. In an attempt
to describe the dynamics of the system, we will discuss
how it can organize itself on a broad range of time and
length-scales in several different regimes.

3. Why care?

Turbulent small-scale fields within the core will not
be observed. So, why care? They can have a collec-
tive or average effect that has a direct measurable con-
sequence on the large-scale flow and magnetic field,
which we investigate. They also control the dissipation,
which we need to assess in order to know how much
power is needed to drive the dynamo.

3.1. Small-scales contribute to secular variation
Much of what we know about flow and magnetic

field within the core is deduced from the analysis of
the secular variation of the magnetic field observed at
the surface of the Earth (see Chapter by Holme (2015)).
The magnetic field at the core-mantle boundary is deter-
mined only up to degree 13 of the spherical harmonics
(corresponding to a wavelength of about 2π×3500/13 =

1700km at the top of the core). Its time derivative is
known up to degree 10 for the most recent epoch. One
aims at reconstructing the large-scale velocity U by in-
verting the frozen flux induction equation of the radial
component of the magnetic field Br at the core-mantle
boundary:

∂tBr + ∇H · (uBr) = 0. (1)

The problem is that unresolved small-scale motions can
interact with unresolved small-scale magnetic field to
contribute to the large-scale induction term of this equa-
tion. Eymin and Hulot (2005) show that realistic am-
plitudes of these two unresolved fields produce repre-
sentation errors that largely exceed the observational er-
rors. Better models are obtained when these representa-
tion errors are taken into account in core flow inversions
(Pais and Jault, 2008). It is therefore of interest to get
some constraints on the evolution of the velocity and
magnetic field with harmonic degree beyond what can
be inferred from the observations.

3.2. Small-scales and dynamo action

Mean-field dynamo theories developed in the sixties
(Moffatt, 1961; Steenbeck et al., 1966) have demon-
strated that the interaction of the small-scales of a turbu-
lent flow in a conducting fluid with the small-scales of
the magnetic field they induce can produce a large-scale
magnetic field (see Moffatt (1978) for a review). This
mechanism is nicely illustrated by the success of the
two-scale dynamo experiment in Karlsruhe (Stieglitz
and Müller, 2001). Liquid sodium was forced to flow
up and down in helicoidal motions in an array of pipes
set up to mimic the two-dimensional periodic paving of
the G.O. Roberts dynamo (Roberts, 1972). Induction
was clearly taking place at the scale of each of the 52
individual 0.21m-diameter pipes. Nevertheless, a large-
scale magnetic field was produced at the scale of the
complete 1.7m-diameter assembly.

The simplest forms of mean-field dynamo theory pre-
dict that isotropic homogeneous turbulent motions in
a conducting fluid produce a large-scale electromotive
force E = α : 〈B〉 + β : ∇ × 〈B〉, where 〈B〉 is the large-
scale magnetic field, α and β are two tensors, which
depend upon the turbulent characteristics of the flow,
and : is the tensorial dot product. In this view, the α-
effect is crucial for enabling the large-scale magnetic
field to grow, while the β-effect can increase or decrease
the magnetic diffusivity. Parameterized numerical dy-
namo models relying on these ideas have had a crucial
role in explaining the solar cycle, and they are still very
useful (see Charbonneau (2005) for a review). However,
the lack of scale separation and the expected deviations
from isotropy and homogeneity can strongly impact the
relevance of this theory for the geodynamo.

3.3. Dissipation and efficiency

In the so-called inertial range of classical turbulence,
energy is transferred from the large scales to the small
scales, with almost no energy loss. The dissipation of
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energy occurs at the smallest scales, where velocity gra-
dients become large enough for viscous forces to bal-
ance non-linear inertial terms. The smaller this scale,
the higher the dissipation. We examine several alterna-
tive scenarios for turbulence in section 8 and show that
they yield extremely diverse dissipation rates. The ef-
ficiency of convective motions for producing a dynamo
therefore strongly depends on the organization of the
turbulent velocity and magnetic fields.

3.4. Mixing

Turbulence affects the mixing of fluid parcels and of
what they transport. It has therefore received consid-
erable attention in atmospheric and oceanic sciences,
where the transport of pollutants or nutrients have an
important socio-economical impact. This question has
not yet been tackled in studies of core dynamics. How-
ever, seismology reveals that layers at the bottom and at
the top of the liquid core may have a slightly different
composition. How much mixing takes place between
these layers and the rest of the core has important geo-
dynamical implications (Alboussière et al., 2010). The
observation of the atmospheres of Jupiter and Saturn re-
veals that zonal bands with alternating wind directions
are able to maintain a strikingly different chemical sig-
nature, yielding contrasting colors, despite a very active
turbulence. We should keep this in mind when consid-
ering the fluid inside the cylinder tangent to the inner
core.

4. Fundamentals of turbulence

Identified by Feynman as ’the most important un-
solved problem of classical physics’, turbulence has
been the subject of numerous studies over a large part
of the XXth century. Unsolved fundamental issues re-
main, but an impressive corpus of results and models
has been acquired (see Frisch (1995) for a review and
more). We give here a simple overview of some funda-
mental aspects of hydrodynamic turbulence (i.e., in the
absence of global rotation and magnetic field).

4.1. Energy density spectra and energy cascade

While all turbulent fields undergo large fluctuations
in time and space, it has been found that energy density
spectra of the flows are robust and universal in hydro-
dynamic turbulence. In addition, these spectra nicely
summarize the scaling properties of the flow and the en-
ergy transfer that takes place. Defining k as the (scalar)
wavenumber of the flow in the Fourier space, the energy
density E(k) is defined by:

Ẽ =
1
2
〈u2〉 =

∫ ∞

0
E(k) dk, (2)

where Ẽ is the energy of the fluctuations per unit mass.
The theory of ‘universal turbulence’ was established
by Kolmogorov (1941b). The basic idea is that there
should be a wavenumber k0 above which turbulence
does not depend upon how energy is fed to the flow.
The only thing that counts is the mean power per unit
mass ε it provides, and which is also dissipated in the
stationary regime. In this idealized view, universal tur-
bulence should thus be isotropic and homogeneous, and
it should have a self-similar character.

The smaller length scale at which dissipation operates
is called the Kolmogorov scale, with wavenumber kD.
It depends upon ε and the kinematic viscosity ν. Vis-
cous dissipation per unit mass can be written as ν(∇u)2,
which we express as νk2

D (u(kD))2 at the kD wavenum-
ber. The typical velocity u(kD) is obtained by stating
that the Reynolds number at this scale should be about
1 for dissipation to occur, yielding u(kD) ∼ νkD. We
thus obtain:

kD =

(
ε

ν3

)1/4
. (3)

The main assumption of Kolmogorov is then that, in
the wavenumber range between the injection scale and
the dissipation scale (k0 � k � kD), all statistically
averaged quantities at wavenumber k are a function of k
and ε only. Dimensional analysis then commands:

E(k) = CKε
2/3k−5/3, (4)

which is the famous k−5/3 law derived by Obukhov
(1941), and where CK is a dimensionless constant called
the ‘Kolmogorov constant’. It has been found that a
wide class of actual turbulent flows follow this law,
sometimes over many decades in wavenumber, and CK

has been measured to lie between 1.5 and 2.
The k-power-law dependence of E(k) is a signature

of self-similarity in this wavenumber range, called the
inertial range, along which energy cascades from the in-
jection length scale down to the dissipation scale. Self-
similarity extends to higher order ‘structure functions’
S p(`), which are defined as S p(`) = 〈δup(`)〉, where 〈〉
denotes a statistical average, and δu(`) is the velocity
difference measured between two points separated by a
distance `. Longitudinal velocity differences are usually
considered (i.e., difference in the projection of velocity
on the line that links the two points). Measurements
yield:

S p(`) ∼ `ζp , (5)
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where the exponents ζp appear to be universal. E(k)
is directly related to S 2(`), so that ζ2 = 2/3 for Kol-
mogorov E(k) spectra. In fact, under Kolmogorov’s hy-
potheses, one gets ζp = p/3 for all p. Measurements in-
dicate that the actual ζp exponents clearly deviate from
this prediction as p increases (Anselmet et al., 1984).
The high-order structure functions are related to the tails
of the probability distribution function (PDF) of veloc-
ity differences. For small separation distances ` these
distributions strongly deviate from normal distributions,
showing a larger influence of intermittent ‘rare’ events.

4.2. Structures
The apparition of flow structures is an unavoidable

consequence of the break of symmetry that character-
izes the instabilities at the origin of turbulence. Anyone
who has looked at turbulent flows in a river or in the air
will retrieve the image - nicely illustrated by Leonardo
da Vinci - that vortices or eddies are the building bricks
of hydrodynamic turbulence. Eddies come in a large
range of sizes. They are usually longer than wide, and
can even stretch into vorticity filaments. The core of
an eddy has a strong but relatively homogeneous vortic-
ity ω = ∇ × u, while the opposite holds on its edges.
There, the shear between eddies nucleates smaller ed-
dies. Long filaments can also break into shorter fil-
aments. In this way, energy cascades down to small
scales, where dissipation occurs.

With this in mind, it does not seem obvious that, even
if vortices can take all sizes and orientations, the em-
bedding of essentially one-dimensional structures (vor-
ticity filaments) into three-dimensional space, will have
no influence on the statistically averaged quantities at
wavenumber k, as originally assumed by Kolmogorov.
This idea is the starting point of She and Leveque
(1994). They show that vorticity filaments dissipate the
available surrounding energy very efficiently by forcing
the lower intensity eddies into an essentially bidimen-
sional flow around them. Vorticity filaments are rela-
tively rare, as they correspond to eddies that have had
the opportunity to stretch and get stronger. To illustrate
this phenomenon, Kaneda and Morishita (2013) report
that 33% of the energy dissipation occurs in 5% of the
volume in one of the highest Reynolds number Direct
Numerical Simulation performed to date. One conse-
quence is that the average moments of the energy dissi-
pation 〈ε p(`)〉 within a sphere of radius ` depends upon
the scale `. Self-similarity implies:

〈ε p(`)〉 ∼ `τp , (6)

where the exponents τp should again be universal.
Kolmogorov’s hypothesis that all statistically averaged

quantities only depend upon scale and mean dissipa-
tion ε, implies 〈ε p(`)〉 = ε p, independent of ` (i.e.,
τp = 0,∀p). If this hypothesis is relaxed to take into
account intermittency, the ‘refined similarity hypothe-
sis’ derived by Kolmogorov (1962) yields a relation be-
tween the ζp and τp exponents:

ζp = p/3 + τp/3. (7)

She and Leveque (1994) derived expressions for τp and
hence for ζp that are in excellent agreement with the
measurements:

ζp = p/9 + 2

1 − (
2
3

)p/3 . (8)

Note that the −5/3 exponent of k in the expression for
E(k) is hardly modified by this extension, and that the
ζ3 exponent is always 1, as it can be derived with no
adjustable parameter from the Navier-Stokes equation
in some conditions (see Kolmogorov (1941a); Frisch
(1995); Kaneda and Morishita (2013)), yielding Kol-
mogorov’s equation (also called the four fifth law):

S 3(`) = −
4
5
ε`. (9)

Turbulence can be strongly modified by the presence
of global rotation or/and magnetic field. Although we
are still lacking a thorough description of turbulence un-
der such conditions, we will unravel and discuss some
of its known or inferred properties in section 8, and try
to get closer to a description that applies to the Earth’s
core.

5. Tools for turbulence

5.1. Direct Numerical Simulations
Direct Numerical Simulations (DNS) consists in fully

solving the equations of the problem, namely the
Navier-Stokes equation together with the induction and
the codensity equations (see §7.1). Best Navier-Stokes
simulations reach an impressive resolution of 40963

(Kaneda and Morishita, 2013). The size of the result-
ing discrete problem for the Earth’s core is such that
we cannot hope a DNS at the real parameters anytime
soon: from the core size to the Ekman layer thickness,
6 orders of magnitude in length and time scales must be
resolved.

The problem is made even worse by the need to
take into account the spherical geometry and the cou-
pling with the induction equation. Nevertheless, DNS
of the geodynamo have proven very useful, as exposed
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in the Chapter by Christensen and Wicht (2015). They
clearly demonstrate the role of rotation in the generation
of a large-scale magnetic field, dominated by a dipole
aligned with the axis of rotation. Furthermore, scal-
ing relationships derived from these simulations seem
to indicate that their output is independent of the pre-
cise values of the diffusion coefficients (Christensen
and Aubert, 2006), giving hope that relevant asymp-
totic regimes are attained even though diffusivities are
far larger than the values expected for the core.

Some DNS have tackled the question of small-scale
turbulence in core situations. Following the theoret-
ical work of Braginsky and Meytlis (1990), StPierre
(1996) performed DNS of turbulence in the presence of
both rotation and magnetic field. He found that buoyant
patches rapidly break up into plate-like structures elon-
gated in the directions of the rotation axis and of the
prevailing magnetic field. Giesecke (2007) found simi-
lar results. However, it is not clear how a turbulent cas-
cade of energy can build upon such structures. Besides,
these simulations do not take into account the fact that
rotation and magnetic field characteristic times are sev-
eral orders of magnitude apart in the core (see section
8).

MHD turbulence is very difficult to model. The mag-
netic field imposes a strong anisotropy, which can be
used to reduce the full MHD equations. Energy spec-
tra for ‘weak’ and ‘strong’ MHD turbulence have been
obtained this way (see Tobias et al. (2013) for a review).

Even though DNS are not able to simulate the core,
they can offer some insight in the dynamics, and in par-
ticular they give hints to support the scenarios that we
elaborate based on various studies in different dynam-
ical regimes. Figures 1 and 2 display a snapshot of a
full geodynamo DNS computed for fairly extreme pa-
rameters that get closer to core values. It shows thinner
elongated coherent structures in the velocity field than
in simulations at milder Ekman numbers. It strongly
supports the large-scale, high magnetic Reynolds num-
ber (Rm, see table 2) picture, where the Coriolis force
dominates.

5.2. Laboratory experiments
The exploration of highly turbulent flows is possible

in laboratory experiments. Very long time series are eas-
ily obtained. The main problem is often to access the
quantities that best document turbulent behaviour. Lab-
oratory experiments have played and are still playing
an important role in the exploration of the dynamics of
geophysical and astrophysical fluids. A review of the
experimental results that shed light on core dynamics is
given in Chapter by Cardin and Olson (2015).

Figure 1: Cylindrical radial velocity component us in the equatorial
plane (top) and a meridional plane (bottom). Snapshots from a dy-
namo DNS at E = 10−7, Pm = 0.1, Pr = 1, Ra = 2.4× 1013 (see table
2 for definition of these numbers using ` the radial distance between
inner shell and outer shell), using spherical harmonic expansion up to
degree 893 and 1024 radial shells.
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Figure 2: Cylindrical radial magnetic field component Bs in the equa-
torial plane (top) and a meridional plane (bottom). Snapshots from a
dynamo DNS at E = 10−7, Pm = 0.1, Pr = 1, Ra = 2.4 × 1013 (see
table 2 for definition of these numbers using ` the radial distance be-
tween inner shell and outer shell), using spherical harmonic expansion
up to degree 893 and 1024 radial shells.

Early experiments used local intrusive probes and
provided key measurements on several features of tur-
bulence. For example, Anselmet et al. (1984) deter-
mined the structure exponents ζp in a turbulent jet up
to p = 10, providing a strong motivation for theoreti-
cal improvements (Frisch, 1995). The first experimen-
tal wavenumber energy density spectra for MHD tur-
bulence in an applied magnetic field were measured by
Alemany et al. (1979) using velocity probes attached to
a grid moving in a column of mercury placed within a
solenoid. They found a kinetic energy spectrum Eu(k) ∼
k−3 demonstrating the strong damping of fluctuations by
the applied magnetic field in the low magnetic Reynolds
number regime.

Recent experiments rely on optical methods based on
Particle Image Velocimetry (PIV), which have evolved
into very efficient tools (see Westerweel et al. (2013) for
a recent review) and brought new constraints on turbu-
lence in transparent fluids, such as air and water. Let us
cite, as an example, the determination of the structure
coefficients of Lagrangian velocity increments in a von
Kármán flow (Xu et al., 2006), and the structure coef-
ficients of velocity increments in shallow layer rotating
turbulence (Baroud et al., 2003). These methods have
also been very useful for establishing the idea that the
mixing of potential vorticity plays a major role in shap-
ing zonal flows in rotating fluids (Aubert et al., 2002).
Recently, using a transparent electrolyte and a super-
conducting magnet, Andreev et al. (2013) demonstrated
that PIV methods can be used in MHD experiments.

Advances in handling Helium gas at low tempera-
tures has opened a new way for exploring thermal con-
vection at very high Rayleigh numbers. As we will see
in section 8.2, the Rayleigh number measures the vigor
of convection. Niemela et al. (2000) report heat transfer
measurements for an incredible range of 11 decades in
Rayleigh number from 106 to 1017, displaying a very
simple power-law dependence of the Nusselt number
Nu = 0.124 Ra0.309 over the full range (the Nusselt num-
ber measures the convective heat transfer efficiency).
They also provide nice evidence for a Kolmogorov f −5/3

frequency power spectrum of temperature fluctuations
at Ra = 6 × 1011.

For experiments with liquid metals, which are essen-
tial for investigating magnetohydrodynamic turbulence,
acoustic Doppler velocimetry has proven very useful
(Brito et al., 2001; Stefani et al., 2009; Brito et al.,
2011). Interestingly, in such experiments, induced mag-
netic fields resulting from the interaction of the flow
with a weak imposed magnetic field, which can be mea-
sured outside the experiment, provide an information on
the hydrodynamic flow that would be difficult to retrieve
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otherwise. For example, Kelley et al. (2007) discovered
that specific inertial modes were excited in a rotating
spherical Couette flow experiment using liquid sodium
as a working fluid. These modes appear to be excited by
critical layers attached to the Stewartson layer that ac-
commodates the angular velocity jump between the in-
ner sphere and the outer sphere when both rotate (Rieu-
tord et al., 2012).

When a strong dipolar magnetic field is applied in the
same Couette geometry, as in the DTS experiment (see
Brito et al. (2011)), modes are also observed (Schmitt
et al., 2008, 2013), but the modes are strongly affected
by the Lorentz force. The DTS experiment also demon-
strates that turbulence is strongly hampered under the
action of both global rotation and a strong magnetic
field (Nataf et al., 2008; Nataf and Gagnière, 2008).

The pioneer dynamo experiments of Riga (Gailitis
et al., 2001) and Karlsruhe (Stieglitz and Müller, 2001)
have not only demonstrated the self-sustained dynamo
process in the Lab, they also have opened the way to
using liquid sodium as a working fluid in MHD and dy-
namo experiments. Several teams across the world have
followed their example, and set up sodium experiments
in which the mean flow is accompanied by fluctuations
of a similar amplitude (see Verhille et al. (2010); Lath-
rop and Forest (2011) for recent reviews). Spontaneous
generation of a magnetic field has thus been observed
in the VKS experiment in Cadarache (Monchaux et al.,
2007), but only when the impellers are ferromagnetic.
A variety of different dynamical regimes has been ob-
served in this device, including spectacular chaotic re-
versals of the magnetic field (Berhanu et al., 2007). One
of the main lessons from these studies is that turbulent
fluctuations appear to hinder the dynamo action that the
mean flow should produce if it were alone, Besides,
ohmic dissipation remains high in these experiments,
and Alfvén waves are too damped to play a dynamic
role, except when the device is placed in a very strong
magnetic field (Alboussiere et al., 2011). Using plasma
as a working fluid opens new possibilities, which are
under investigation (Spence et al., 2009).

5.3. Observations

Unfortunately, no observations of the internal geo-
magnetic field are possible at small scales, mostly be-
cause of the crustal field that overprints the small-scale
core field. Observations of turbulence in other systems
is thus required, to gain insight in what happens in the
Earth’s core.

Characterization of turbulence in the Earth’s atmo-
spheric boundary layer was probably the first target

of detailed analyses of turbulence. The first measure-
ments of turbulent fluxes were performed in Australia
by the eddy correlation technique (Swinbank (1951),
see Hogstrom (1996) for a review). All these observa-
tions shed light on the universal behavior of turbulence
in natural environments, showing for example that the
von Kármán constant K = u∗/(z ∂zuH), relating the am-
plitude of turbulent fluctuations u∗ to the vertical gra-
dient of mean horizontal velocity ∂zuH in the inertial
sublayer, is constant and equal to its laboratory value of
0.4, irrespective of the roughness of the ground, as ex-
pected from the scale-invariant properties of universal
turbulence (Lo et al., 2005).

Later on, compilations of data from commercial air-
craft flights demonstrated that winds and temperature
follow Kolmogorov’s k−5/3 law for wavelengths from a
few kilometers up to 400km, steepening to a k−3 law at
larger scales (Nastrom and Gage, 1985). Coupling these
observations with simulations from General Circulation
Models opens the way to determining the actual energy
fluxes responsible for this behaviour (Augier and Lind-
borg, 2013).

Space exploration of the solar system has revealed
the fantastic dynamics of the atmospheres of Jupiter and
Saturn, and opened the way for detailed analyses of their
turbulent behavior. The long-term stability of the strong
and numerous zonal jets they display remains a strong
driver for modeling turbulence on a rotating sphere (see
Vasavada and Showman (2005) for a review).

Combining observations and high-performance nu-
merical modeling, the re-analysis of ocean circulation
nicely illustrates the role of quasi-geostrophic meso-
scale eddies in the dynamics of the ocean. In particular,
zonal motions resulting from the interaction of turbulent
eddies have recently been detected (Maximenko et al.,
2005).

The solar wind is a great laboratory for MHD turbu-
lence, as reviewed by Bruno and Carbone (2005). Even
though it is a collisionless plasma, MHD turbulence is
expected for frequencies below 0.1 Hz. Two types of
solar winds must be distinguished. The fast wind origi-
nates from polar regions of the Sun and has mean veloc-
ities about twice as fast as the slow wind coming from
equatorial regions. The temporal fluctuations in the so-
lar wind have been measured by several probes starting
in the sixties. The measurements show three regimes
in the temporal energy spectrum E( f ) ∼ f α: the low-
est frequencies have α ' −1 for period about a day or
longer, while higher frequencies follow α ' −3/2 for
the fast wind and α ' −5/3 for the slow wind. Finally
at periods around a few seconds α ' −2 is found. The
transition between the first two regimes is rather sharp
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and is located around 10 − 16 hours, depending on the
distance from the Sun. The fluctuations are found to
be anisotropic, with much weaker fluctuations along the
local magnetic field. A strong correlation exists be-
tween the velocity and the magnetic fluctuations, es-
pecially for the fast wind, showing the predominance
of (incompressible) Alfvén waves in solar wind turbu-
lence. At large distance from the Sun, magnetic field
fluctuations are twice more energetic than velocity fluc-
tuations. This observation remains puzzling, although it
is also observed in some dynamo simulations.

5.4. Shell models

Shell models of turbulence originated in the seven-
ties, as a tool to assess the statistical properties of uni-
versal turbulence. In these models structures are ig-
nored, as all fields are projected on a suite of shells of
wavenumber kn in the spectral domain. The sequence
of wave numbers kn is chosen to be geometric, thus en-
abling a wide range of length-scales to be covered with
a limited number of grid points. One takes into ac-
count the symmetries and conservation laws that pertain
to the type of turbulence under study (2D or 3D hydro-
dynamic turbulence, magnetohydrodynamic turbulence,
etc). The game is then to choose the rules that gov-
ern the transfer between shells, which mimic the non-
linear interactions between the various fields of the var-
ious shells. The phenomenon of intermittency described
above can be recovered in shell models.

Shell models have received a lot of attention in the
past decade, and extensions to MHD and rotating tur-
bulence have been worked out (see Plunian et al. (2013)
for a thorough review). Shell models are particularly ap-
pealing for exploring MHD turbulence in fluids with a
very small (or very large) magnetic Prandtl number, for
which Direct Numerical Simulations are hopeless be-
cause of the large range of scales to be resolved. The
magnetic Prandtl number Pm = ν/η is the ratio of kine-
matic viscosity over magnetic diffusivity. It is of or-
der 10−5 for liquid iron in the core. As an example,
Plunian and Stepanov (2010) explored how the ratio of
magnetic to viscous dissipation varies with the magnetic
Prandtl number. They found that, under model assump-
tions, magnetic dissipation is at least ten times larger
than viscous dissipation for core values.

5.5. Plume model

In contrast with the approach we just described,
David Loper and others focused on buoyant plumes en-
visioned as the elementary structure at the origin of tur-
bulent motions in the core. The analysis of the dynamics

of such plumes in core conditions led David Loper to
infer that rising plumes would have dimensions in the
range 10 − 1000m, typical relative density anomalies
between 10−10 and 10−8, and upwelling velocities from
10−3 to 10−1m/s, depending on actual core properties.
At the base of the convecting outer core, plumes would
occupy a fraction of the surface between 10−5 and 10−1.
The reader is referred to David Loper’s Chapter (Loper,
2007) in the first edition of the Treatise on Geophysics
for a complete description of the plume model.

6. Parametrization of turbulence

Numerical simulations are limited by the available
memory of the computer and its computing power. The
more turbulent the flow, the larger the scale range.
Therefore, direct numerical simulations that resolve
all the spatial scales down to the viscous dissipation
scale (the limit of turbulent small scales) cannot reach
strongly turbulent regimes. If one could capture the
(statistical) effect of turbulent small scales on the larger
scales, and properly predict the turbulent small scale
state corresponding to the large scales that produce it,
we could in principle parametrize the effect of small
scale turbulence.

If several parameterizations for purely hydrody-
namic, homogeneous, isotropic turbulence are available
and used in hydrodynamic simulations, or in the MHD
regime at low Rm and low interaction parameter (e.g.
Ponty et al., 2005), we should at least question their use
for modeling the Earth’s core.

On one hand, if we target the dynamics to the small
scales inside the Earth’s core, we will see that the
turbulence inside the Earth’s core may never reach
the parameter-space region where simple hydrodynamic
turbulence takes place (see §8). Thus we are left with
a challenging task: finding a necessarily anisotropic
parametrization that depends on the local magnetic field
as well as on the global rotation.

On the other hand, the current numerical geodynamo
models do not seem to operate in such a regime, and hy-
drodynamic turbulence may indeed be important for the
small scales in these models. Indeed, even with a mag-
netic field and a large magnetic diffusivity, part of the
flow which is aligned with the magnetic field will not
produce electric current and dissipation. Viscosity is the
only isotropic dissipation in such systems. Furthermore,
the smaller the scale, the smaller the influence of the
magnetic field (interaction parameter), hence the small-
est scales may only rely on hydrodynamic turbulence
for the energy to reach the viscous dissipation scale.
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Here, we wish not to provide a detailed theoretical
framework for sub-grid scale modeling, but rather list
a few approaches that have been used to perform nu-
merical simulation of the Earth’s core. With the above
limitations in mind, we describe two approaches.

6.1. Hyper-diffusivities or eddy-diffusivities
Hyper-diffusivity is the simplest form of parametriza-

tion of small-scale turbulence, where the effect of unre-
solved small scales are expressed as an enhanced dif-
fusivity on the resolved scales. In hydrodynamical tur-
bulence, where the interactions are mostly local (which
means that a given scale is mostly influenced by its
neighboring scales), such enhanced diffusivity can ar-
guably be restricted to the smallest resolved scales. Al-
though there is no physical justification for the use of
hyper-diffusivity, there is a practical one: with increased
viscosity at small scales, a numerical simulation is able
to dissipate more energy, which would have been the
main effect of smaller unresolved scales.

The first geodynamo simulation by Glatzmaier and
Roberts (1995) made use of hyper-diffusivity at all
scales, which is arguably both a concern and not re-
ally a small-scale parametrization, but it allowed to
run a full geodynamo model on the computers of the
early nineties. A more reasonable approach is to re-
strict the use of hyper-diffusivity only at the smaller
scales. Following the pioneers, many authors use a
hyper-diffusivity of the type ν(l) = ν0(1 + a(l − l0)n) for
l > l0 and ν(l) = ν0 for l ≤ l0, where l is the spherical
harmonic degree (angular wave number) and a, l0 and
n are adjustable parameters. It must be emphasized that
this is still an isotropic viscosity but its value depends
only on l and not on the radial spatial size (for practi-
cal reasons). This (historical) formula may seem overly
complicated, with three adjustable parameters. A sim-
pler, more elegant form for hyper-diffusivity with self-
similarity properties would be:

ν(l) =

{
ν0 for l ≤ l0
ν0 ql−l0 for l > l0

(10)

which has only two independent parameters l0 and q.
Finally, we want to emphasize that such an approach

(anisotropic hyper-diffusivity) must be used with care,
as it has been shown to have significant effect on the
dynamics (Grote et al., 2000).

6.2. Large Eddy Simulations
Attempts have been made to apply models of hydro-

dynamic turbulence to model the subgrid-scales of the
peculiar turbulence occurring inside the Earth’s core.

A rather successful model is the Large Eddy Simula-
tions (LES) using a similarity model, where the energy
transfer due to the interaction with smaller, unresolved
scales are estimated by the transfer that actually occurs
between the small but resolved scales of the simulation.
This has the huge advantage over the eddy-diffusivity
technique that it can capture the anisotropic nature of
transfer between scales. Although the idea seems in-
teresting, these LES models are still in an early devel-
opment stage. Indeed, they are constantly compared
to higher resolution DNS, and there are many impor-
tant tunable parameters (e.g. Buffett, 2003; Chen and
Jones, 2008; Matsui and Buffett, 2012). Furthermore,
the DNS they compare with are far from the dynamical
regime expected in the Earth. The presence of bound-
aries, where turbulence is no more homogeneous, is also
a difficulty for LES models.

Currently LES can be useful to run simulations over a
long time period, where the corresponding DNS is fea-
sible but slower. By comparing with a short term DNS
and tuning the subgrid-scale model to reproduce it, we
can then trust the LES model for the long term simula-
tion.

A greater challenge for these models is to actually
predict rather than reproduce, which would be a major
breakthrough, but it is not clear whether or not they will
ever succeed. A key to success might be to ensure that
the smallest resolved scales are actually in the low Rm
regime, where the self-similar hypothesis is more likely
to hold.

7. Equations, time and length-scales

7.1. Equations

The velocity field u describing the flow of the Earth’s
liquid core of density ρ is governed by the Navier-
Stokes equation including the Coriolis force (due to the
rotation rate Ω of the planet), the Lorentz force and
the buoyancy force. It is supplemented with the mass-
conservation equation, simplified in the anelastic frame-
work (Gilman and Glatzmaier, 1981):

∂tu + (u · ∇)u + 2Ω × u =

−∇Π + C g + (B · ∇)B/ρµ0 + ν∇2u
(11)

∇ · (ρu) = 0 (12)

where Π is a reduced pressure including other poten-
tial forces (including the centrifugal force and magnetic
pressure).
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The evolution of the divergence-free magnetic field B
in this liquid metal is governed by the induction equa-
tion.

∂t B + (u · ∇)B = (B · ∇)u + η∇2B (13)
∇ · B = 0 (14)

The evolution of the buoyancy is less well-known,
as it originates from both chemical and thermal varia-
tions, which have different diffusivities. As we are not
focusing on the energy injection mechanism details, we
can use a single codensity C, with a specified volumic
source term S .

∂tC + (u · ∇)C = κ∇2C − S (15)

There are assumptions behind these equations that we
would like to make excplicit. For simplicity, the dif-
fusive terms are written as a simple Laplace operator,
which implies an homogeneous diffusivity. As the dif-
fusivities are very small, these terms are important only
at small scales, while we expect the variations of the
diffusivity coefficient to be moderate over the depth of
the core. The codensity formulation hides the difference
between thermal and chemical diffusivities.

These equations must be completed by boundary con-
ditions. Boundary conditions are important and can
control the dynamical state of the system (see e.g.
Sakuraba and Roberts, 2009), but they are thought to
have only an indirect effect on the small scale turbu-
lence.

7.2. Ordering of forces in the Earth’s core

For the Earth’s core, the order of magnitude of the
different terms can be evaluated. We will focus on
the scale-dependence of this ordering, that may help
to understand the dynamics of the small scales. From
the inversion of the geomagnetic secular variations (see
Chapter by Holme (2015)), we have an estimate of
the large-scale velocity field at the core surface: U ∼
15 km/yr ∼ 5 × 10−4 m/s. More recently, the observa-
tion of torsional oscillations by Gillet et al. (2010) has
given us an estimate of the magnetic field strength deep
inside the core (B0 ∼ 3 × 10−3 T). The buoyancy force
drives the system, but it is hard to assess its strength and
compare it to other forces. Indeed, convection tends to
smooth the codensity through mixing. We will rather fo-
cus on the velocity and magnetic fields as a result from
this buoyancy, and try to understand how they organize
at various scales.

For doing so, we build `-scale dimensionless num-
bers, which compare the weight of the various terms of

the equations at a typical length-scale `. This length-
scale can be related to the wave-number k in a Fourier
decomposition by ` = 2π/k. We find it convenient to
express these numbers as ratios of characteristic times,
which are functions of `. For example, diffusive phe-
nomena will have time-scale τ and length-scale ` related
by:

τν(`) = `2/ν, (16)

where we have picked here the diffusion of momentum,
governed by the kinematic viscosity ν. We can thus de-
fine an `-scale Reynolds number

Re(`) =
u(`)`
ν

=
τν(`)
τu(`)

,

which compares advection to diffusion of momentum at
the `-scale. Other relevant times are listed in Table 1 and
will be introduced in the coming sections, while `-scale
dimensionless numbers are listed in Table 2.

7.2.1. Coriolis force
The `-scale Ekman number

E(`) =
ν

`2 Ω
=

tΩ
τν(`)

compares viscous forces to the Coriolis force. It is
the ratio of the rotation time tΩ over the viscous dif-
fusion time τν(`). This number is tiny at large scales
and reaches unity for scales comparable to the lami-
nar Ekman layer thickness, estimated to be less than a
meter in the Earth’s core. It is unlikely that turbulence
reaches such small scales, because dissipation would be
too large (see section 8). This means that the Coriolis
force is important at every scale, including the dissipa-
tive scales.

The `-scale Rossby number

Ro(`) =
u(`)
`Ω

=
tΩ
τu(`)

compares eddy entrainment force to the Coriolis force.
It is also the ratio of the rotation time over the eddy
turnover time at length-scale `. For the scale of the
whole core, we have Ro0 ∼ 10−6, a small value showing
the predominance of the Coriolis force at large scales,
which will eventually decrease toward smaller scales (if
we assume that u(`)/` increases as ` decreases). De-
pending upon the evolution of the typical velocity u(`)
with scale `, it may or may not reach values of order
one or more, which would mark a transition from rota-
tion dominated turbulence to 3D turbulence.
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notation expression description
τν(`) `2/ν viscous time
τη(`) `2/η magnetic diffusion time
τκ(`) `2/κ thermal diffusion time
τD(`) `2/D compositional diffusion time

τρ(`)
√

`
g

ρ
|∆ρ|

buoyancy time
tΩ 1/Ω rotation time (independent of `)

τRossby(`) ro/Ω` Rossby wave propagation time / bidimensionalization time
τAl f ven(`) `

√
ρµ0/B0 Alfvén wave propagation time (large-scale magnetic field)

τu(`) `/u(`) eddy turnover time, regime-dependent
τb(`) `

√
ρµ0/b(`) Alfvén wave collision time, regime-dependent

Table 1: Characteristic times at length scale `. Symbols and properties as defined in the Overview Chapter (Olson, 2015): ρ, ν, κ, D and η (noted
λ in the Overview) are respectively the density, kinematic viscosity, thermal diffusivity, compositional diffusivity and magnetic diffusivity of liquid
iron at core conditions. ro is the radius of the outer core, g is gravity, Ω the angular velocity of the Earth, and B0 the intensity of the large-scale
magnetic field inside the core. u(`) and b(`) are the eddy turnover time and magnetic field intensity at length-scale `, respectively, which we try to
determine for various turbulence scenarios.

notation expression time ratio description

Re(`)
u(`)`
ν

τν(`)
τu(`) Reynolds number

E(`) ν
`2Ω

tΩ
τν(`)

Ekman number

Ro(`)
u(`)
Ω`

tΩ
τu(`) Rossby number

Rm(`)
u(`)`
η

τη(`)
τu(`) magnetic Reynolds number

n(`)
b2(`)

ρµ0u2(`)
τ2

u(`)
τ2

b(`) interaction parameter (small-scale magnetic field)

N(`)
B0b(`)
ρµ0u2(`)

τ2
u(`)

τAl f ven(`) τb(`) Interaction parameter (large-scale magnetic field)

Λ(`)
b(`)B0

ρµ0u(`)Ω`
τu(`) tΩ

τb(`) τAl f ven(`) Elsasser number

Lu(`)
`B0

η
√
ρµ0

τη(`)
τAl f ven(`) Lundquist number

λ(`)
B0√
ρµ0Ω`

tΩ
τAl f ven(`) Lehnert (or magnetic Rossby) number

Ra(`)
(−∆ρ/ρ)g`3

κν
τκ(`) τν(`)
τ2
ρ(`)

Rayleigh number

Pr ν/κ Prandtl number (independent of `)
Pm ν/η magnetic Prandtl number (independent of `)

Table 2: `-scale dimensionless numbers. One recovers the classical expression of these numbers at the integral scale ro by setting ` = ro. These
numbers are also expressed as ratios of characteristic `-scale times, which are defined in Table 1.
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7.2.2. Magnetic induction
The `-scale magnetic Reynolds number

Rm(`) =
u(`) `
η

=
τη(`)
τu(`)

compares magnetic induction to magnetic diffusion in
the induction equation. Evaluated at the largest scale,
we have Rm0 ∼ 103 meaning that a dynamo could take
place in the Earth’s core. At such scales the magnetic
field has a dynamics of its own and is not a slave of the
velocity field. Rm(`) decreases with decreasing scale
and when it drops below unity, the magnetic field evo-
lution will be mostly dissipative.

The `-scale interaction parameter

n(`) =
b2(`)

ρµ0 u2(`)
=
τ2

u(`)
τ2

b(`)

is the ratio of the Lorentz force to the inertial force.
When there is a dominant large-scale magnetic field B0,
one can define another interaction parameter:

N(`) =
B0 b(`)
ρµ0 u2(`)

=
τ2

u(`)
τAl f ven(`) τb(`)

At the largest scale, the ratio of magnetic energy to ki-
netic energy N0 = n0 ∼ 104, which means that the iner-
tial forces are negligible compared to the Lorentz force
at large scales.

In small Rm MHD turbulence, the magnetic field is a
slave of the velocity field, and the Lorentz force is a lin-
ear term. When the magnetic Reynolds number is large,
the magnetic field is not just a slave of the velocity field
and has its own dynamics. Then the Lorentz force is
truly a non-linear term of the system, and the non-linear
transfer of energy between scales can happen through
the Lorentz force. When both the interaction parameter
N(`) and Rm(`) are large, we argue that the non-linear
transfer of energy between scales is dominated by the
Lorentz force, while the inertial force plays a negligible
role.

At length-scales ` where Rm(`) is small, the induc-
tion equation provides an estimate of b(`) ∼ u(`)B0`/η,
where B0 is the large scale magnetic field. One can thus
build a small-scale interaction parameter N(` → 0) ∼
`B2

0/ηρµ0u(`). If Rm(`) < 1, we also have u(`) < η/`,
so that N(` → 0) > `2B2

0/η
2ρµ0 ∼ τ

2
η(`)/τ

2
Al f ven(`). Ap-

plying these relations to the Earth’s core, we find that
N > 1 for ` > 30 m. The transition from non-linear
energy transfer dominated by the Lorentz force to an
energy transfer dominated by advection may occur at a
larger scale than this conservative estimate, but we can
safely advocate that most of the non-linearity of the core
dynamics is due to the Lorentz force.

7.2.3. Lorentz vs Coriolis
We can also compare the Coriolis and Lorentz forces,

forming the Elsasser number

Λ(`) =
b(`) B0

ρµ0 u(`) Ω `
=

τu(`) tΩ
τb(`) τAl f ven(`)

.

The large scale estimate of this ratio gives Λ0 ∼ 0.01. At
scales sufficiently small where Rm(`) < 1, the low Rm
estimate of b(`) gives an Elsasser number independent
of the length scale: Λ(` → 0) = B2

0/ρµ0ηΩ ∼ 10. This
means that the Coriolis force clearly dominates at large
scales but progressively yields to the Lorentz force at
small scales.

Using the small Rm expression of Λ(`) in a dynamo
regime is inappropriate and results in wrong estimates
of the importance of Lorentz and Coriolis forces (Soder-
lund et al., 2012).

7.3. Waves and transients
A thorough description of waves that can propagate

in the Earth’s core is given in the Chapter by Jault
and Finlay (2015). If we leave aside sound waves (or
seismic waves), there are several other waves that can
propagate in our system. First of all, the strong influ-
ence of global rotation Ω allows inertial waves to exist.
They are anisotropic and dispersive, their group veloc-
ity VΩ ∼ Ω` depends on the length-scale ` measured in
a plane perpendicular to the rotation axis. The propaga-
tion of energy by inertial waves occurs mainly along the
rotation axis (Davidson et al., 2006), leading to the for-
mation of structures elongated along the rotation axis.
The Rossby number, which we have already introduced,
also measures the ratio of fluid velocity to inertial wave
group velocity.

The presence of the magnetic field allows Alfvén
waves. Discovered theoretically by Alfvén (1942),
these waves couple the velocity field and the magnetic
field (see Chapter by Jault and Finlay (2015)). Follow-
ing the analysis of Tobias et al. (2013), we consider a
region at rest with a uniform and constant magnetic field
B0. Introducing the Elsasser variables z± = u±b/√ρµ0,
where u and b are the velocity and magnetic fluctua-
tions, the Navier-Stokes and induction equations can be
combined to yield:

(∂t ∓ VA · ∇) z± +
(
z∓ · ∇

)
z± =

−∇P +
1
2

(ν + η)∇2 z± +
1
2

(ν − η)∇2 z∓.
(17)

In the absence of dissipation (ν = η = 0), equation 17
describes wave-type motions, which propagate in either
directions along the B0 field lines, with the Alfvén wave
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velocity VA = B0/
√
ρµ0. In a uniform magnetic field,

these waves are non-dispersive so that wave-packets of
any shape propagate without distortion.

These waves are damped by diffusive phenomena,
whose importance is measured by the Lundquist num-
ber:

Lu(`) =
B0`

√
ρµ0(η + ν)

=
τη+ν

τAl f ven
,

which compares the diffusive time to the Alfvén propa-
gation time. In liquid metals, where η � ν, it reduces
to Lu(`) = VA`/η = τη(`)/τAl f ven(`). When Lu(`) < 1,
Alfvén waves are damped and do not exist anymore. In
the Earth’s core we have Lu0 ∼ 105.

The Alfvén number

A(`) =
u(`)
√
ρµ0

B0
=
τAl f ven(`)
τu(`)

measures the ratio of fluid velocity to Alfvén wave
speed. It is always small in the core (A(`) < 0.01) mean-
ing that these waves are dynamically important, at least
in the directions perpendicular to the rotation axis.

The ratio of Alfvén to inertial wave speed has been
called the Lehnert number by Jault (2008) and is
also called the magnetic Rossby number in Chapter by
Roberts (2015):

λ(`) =
B0

√
ρµ0 Ω `

=
tΩ

τAl f ven(`)
.

At large scale, λ0 ∼ 10−4 means that Taylor columns
can form very rapidly (an effect of inertial wave prop-
agation) before the magnetic field can act on the flow
(Jault, 2008; Gillet et al., 2011). Once a Taylor col-
umn is formed, it can slowly evolve, driven by buoyancy
and/or the Lorentz force. At smaller scale, the time to
build the Taylor column increases and the columns start
to wither. Stationary flow can also escape this Taylor
constraint, forming thermal or magnetic winds.

7.4. What should be considered a small scale?
In view of the previous evaluations, there seems to

be two main regimes in the core: the high Rm at large
scales, and the low Rm at small scales. Based on Rm(`),
the transition happens at a length scale ` ∼ 10 km or
larger, depending on how u(`) evolves with `.

In the high Rm regime, the Coriolis force dominates
and balances buoyancy, leading to strongly anisotropic
dynamics, with predominance of tall coherent structures
elongated along the direction of the rotation axis. The
kinetic energy is efficiently converted to magnetic en-
ergy, and the transfer between scales is ensured by both
the Lorentz force and the induction equation.

In the low Rm regime, the Lorentz force dominates
the Coriolis force, which still remains important. The
dynamical structures are anisotropic, strongly influ-
enced by the direction of the local magnetic field. A sig-
nificant part of the kinetic energy is dissipated through
Joule heating, but motion along the magnetic field re-
mains almost dissipationless. The interaction parameter
is still large so the inertial terms are unlikely to be im-
portant for the energy transfer between scales, which
happens mainly through the Lorentz force. This regime
is probably well described by low Rm rotating MHD
turbulence at high interaction parameter.

In this picture the buoyancy is merely a shadow that
provides the driving force. However, the injection of ki-
netic energy by buoyancy, which happens presumably at
small scales is of particular interest for this problem. In
particular it means that the large scale is possibly the re-
sult of a non-linear cascade of energy due to the Lorentz
force, from small scales to large scale.

The next section will detail the mechanisms and try
to paint a broad picture of turbulence in the core from
large to small scales.

8. Turbulent regimes for the core

The previous section has shown that the relative im-
portance of the various forces depends upon the length-
scale considered. In this section, we try to infer the
actual turbulent regimes that should take place in the
Earth’s core. We consider as given the various diffusiv-
ities and the size and rotation rate of the core. We fur-
ther assume that the large-scale flow velocity is known,
from secular variation inversions (see Chapter by Holme
(2015)), and that the magnetic field has a dominant
large-scale component, whose typical intensity in the
core is also known, from the observed velocity of tor-
sional oscillations (Gillet et al., 2010). The actual val-
ues we use are listed in Table 3. The questions we ad-
dress are the following: at what length- and time-scales
is the turbulence regime dominated by rotation, by the
magnetic field? Can we infer the evolution of flow ve-
locity and small-scale magnetic field in these different
regimes? How much energy is dissipated? What is the
balance between viscous and ohmic dissipation? Which
waves can propagate?

We perform this exercise step by step, introducing the
various ingredients that affect turbulence.

8.1. NS-regime diagrams

We introduce a NS-regime diagram or τ − `-diagram
that helps retrieve important properties of turbulence,
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and that we will use as a guide when we investigate the
effects of rotation and magnetic field on turbulence. It
consists in plotting the time-scale τ of the relevant phys-
ical phenomena as a function of their length-scale `.

Figure 3 shows τ(`) versus ` for classical hydrody-
namic Kolmogorov turbulence, in a log-log plot. For
the sake of illustration, we have assumed that energy is
injected at the integral scale (` = ro) at a typical time-
scale tS V = 300 years for flow in the core at this length
scale. Let us draw the relevant τu(`) turnover time of an
eddy of radius `. In Kolmogorov’s universal turbulence
with its E(k) ' ε2/3k−5/3 energy density spectrum, the
typical eddy turnover time is given by:

τu(`) ' `2/3ε−1/3, (18)

since E(k)k ' u2(`) and1 k ∼ 1/`.
When eddy turnover times are shorter than viscous

diffusion time at the same `, fluid motions follow Kol-
mogorov’s cascade downscale until the τu(`) line in-
tersects the viscous time line. Intersection points in
NS-regime diagrams correspond to scales at which
the regime changes. This intersection corresponds to
Re(`) = u(`)`/ν ∼ 1, where Re(`) is the `-scale
Reynolds number, hence the scale at which the regime
changes from the inertial range to the diffusive range.

The energy dissipation per unit mass ε is simply de-
duced from the ratio of the kinetic energy (per unit
mass) at this scale divided by the corresponding time-
scale, yielding ε = `2/τ3

ν(`) = ν/τ2
ν(`). Multiplying by

the mass of the liquid outer core Mo = 1.835 × 1024 kg,
we obtain the total viscous dissipation, which we have
indicated by squares along the τν(`) viscous line. The
squares are a factor 103 apart, and the TW square (1
TW = 1012 W) is filled for reference.

8.2. Turbulent convection and the Rayleigh number
Convective motions appear in a fluid layer heated at

the bottom and cooled at the top when the temperature
gradient is large enough.

8.2.1. The Rayleigh number
Lord Rayleigh established that the onset of convec-

tion is attained when the Rayleigh number Ra0 reaches
a critical value Rac, where the Rayleigh number (at the
integral scale) is defined as:

Ra0 =
(−∆ρ/ρ)gr3

o

κν
, (19)

1note that in this Chapter we will occasionally drop 2π factors and
other pre-factors for simplicity, since we are mainly dealing with or-
ders of magnitude
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Figure 3: NS-regime diagram (or τ−` diagram) for Kolmogorov’s uni-
versal hydrodynamic turbulence. Energy cascades from the injection
scale (taken here as the integral scale ` = ro with time-scale tS V = 300
years) following Kolmogorov’s universal law τu(`) = `2/3ε−1/3 down
to the dissipation scale when it intersects the viscous line τν(`), yield-
ing Re(`) ∼ 1. Viscous dissipation can be read at this intersection
point, using values graduated along the τν(`) line.

with ro the thickness of the fluid layer, g the acceleration
due to gravity, κ the thermal diffusivity of the fluid and
ν its kinematic viscosity. The −∆ρ/ρ term determines
the relative density ratio across the layer. It is equal to
α∆T when the density variations are due to temperature
alone, where α is thermal expansivity and ∆T the tem-
perature variation.

It is not so easy to estimate the Rayleigh number in
the liquid core, because most of the temperature con-
trast between the top of the core and its base is due to
compression via the equation of state (see the Overview
Chapter by Olson (2015)). This part defines the adia-
batic (or isentropic) temperature profile, and only the
density variations in excess of it should be included in
the ∆ρ term in the expression of the Rayleigh number.
Since heat conducted along the adiabat is large, it is pos-
sible that the Rayleigh number is sub-critical in part of
the core. However, as soon as the density profile de-
parts from the adiabat, the Rayleigh number can get
very large.

We will use the NS-regime diagram of figure 4 to il-
lustrate this point. One can define a `-scale Rayleigh
number Ra(`) as a thermal diffusion time τκ(`) times a
viscous diffusion time τν(`) divided by the square of a
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property value unit description
κ 5 10−6 m2s−1 thermal diffusivity
D 10−9 m2s−1 chemical diffusivity
ν 10−6 m2s−1 kinematic viscosity
η 1 m2s−1 magnetic diffusivity
ro 3.48 106 m radius of the core
Mo 1.835 1024 kg mass of the outer core
tΩ 1.38 104 s rotation time of the Earth (i.e. 1/2π day)
tS V 9 109 s ro-scale core flow time from secular variation inversion (i.e. ' 300 years)

tAl f ven 1.4 108 s ro-scale torsional Alfvén wave time (i.e. ' 4 years)
P < 1013 W power dissipated in the core

Table 3: Properties of the core with their numerical values used to draw the figures, as gathered by Olson (2015) in the Overview Chapter). Note
that some properties have large uncertainties (see Overview Chapter). We also define the spin-up time tspin−up = ro/

√
νΩ ' 13 000 years.
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Figure 4: NS-regime diagram for turbulent thermal convection. The
intersection of the ’buoyancy’ line τρ(`) with a line at mid-distance
between the viscous line τν(`) and the thermal diffusion line τκ(`)
defines Ra(`) ∼ 1, where the regime changes from convective at larger
scales to diffusive at smaller scales. The τu(`) line gives the evolution
of the eddy turnover time as a function of `, and is here assumed to
follow Kolmogorov’s law from the integral scale (τu(ro) = tS V ) down
to the diffusion scale, where the τu(`) line intersects the τν(`) line,
yielding Re(`) ∼ 1.

‘buoyancy time’ τρ(`) (which is analogous to the inverse
of the buoyancy frequency used in stratified fluids):

Ra(`) =
τκ(`) τν(`)
τ2
ρ(`)

, (20)

where τρ(`) =
√

`
g

ρ
|∆ρ|

, τκ(`) = `2/κ and τν(`) = `2/ν.
Using the diffusivities listed in the Overview Chapter by
(Olson, 2015) and given again in Table 3, we trace the
lines defined by τκ(`) and τν(`) in figure 4.

8.2.2. Density perturbation
All we know from observations about density pertur-

bations ∆ρ/ρ is that they are too small to be detected.
We pick here a value ∆ρ/ρ ' 10−15, which we will jus-
tify below, to trace τρ(`). Where τρ(`) is half-way be-
tween τκ(`) and τν(`) defines the length-scale ` and cor-
responding timescale at which Ra(`) ∼ 1. Buoyant fluid
parcels with dimensions larger than a few meters will
rise with typical rise time of several months. We have
also drawn the line τD(`) that corresponds to chemical
diffusion. We see that chemical (or compositional) con-
vection would start for smaller fluid parcels.

We will see later, when we introduce the role of ro-
tation, that a better value for ∆ρ/ρ is probably about
10−9. The present value was chosen to be consistent
with the hypothesis that large-scale core motions were
due to thermal convection, in the absence of rotation and
magnetic field. One may then relate the large-scale time
tS V to the integral Rayleigh number Ra0 and thus deduce
∆ρ/ρ. The scaling law for convective large scale veloc-
ity U is not that well known. An ad hoc scaling such as
U ' Ra1/2

0

√
κν/ro is not unreasonable in our range of

Prandtl and Rayleigh numbers (see Ahlers et al. (2009)
for a review) and simply yields ∆ρ/ρ ' ro/gt2

S V ∼ 10−15

and Ra0 ' τκ(ro) τν(ro)/t2
S V ∼ 1017.
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8.2.3. Injection and dissipation scales
One could think that the scale ` at which Ra(`) ∼ 1

should be the injection scale, in the language of hy-
drodynamic turbulence. This is not the case in non-
rotating convection. Instead, the size of the container
appears to be the relevant injection scale, from which
energy cascades down to the dissipation scale. More
precisely, the classical k−5/3 law is retrieved below what
is called the Bolgiano scale (after Bolgiano (1959)).
The Bolgiano scale appears to be the height of the con-
tainer in incompressible fluids (Boffetta et al., 2012;
Niemela et al., 2000), and the so-called ‘scale-height’
in compressible fluids when the Rayleigh number Ra0 is
larger than 1011 (Rieutord and Rincon, 2010). The scale
height H = Cp/αg is the height over which density has
changed by a factor e under the effect of pressure. In the
core, H ' 8 900 km, which is larger than the radius of
the core. Therefore the Bolgiano scale should simply be
the radius of the core.

We can then estimate what would be the energy spec-
trum in the core, if the Earth was not rotating and non-
magnetic. In the NS-regime diagram of figure 4 we start
from the observed large-scale flow tS V at ` = ro and
cascade following Kolmogorov’s law down to the dis-
sipation scale when the τu(`) line intersects the viscous
line τν(`). This happens at a Kolmogorov length-scale
of about 1 m. We deduce the dissipation per unit mass
ε = `2/τ3

ν(`) = ν/τ2
ν(`) ∼ 10−17 W/kg, which yields a

total viscous dissipation of about 30 MW only.
The idea that buoyancy, which is the driving force of

the geodynamo, is available to produce turbulent mo-
tions within the core without impeding a specific scale
is important to keep in mind.

8.3. Turbulence in a rotating sphere

We have seen in previous Chapters that global ro-
tation imposes strong constraints upon flow structures.
The Taylor-Proudman theorem implies that the axes of
the turbulent eddies are essentially aligned with the axis
of rotation of the rotating container. This has lead to
the idea that turbulence in rotating fluids is essentially
two-dimensional. Enabling high-resolution numerical
simulations (e.g. Legras et al., 1988) and powerful sta-
tistical mechanics approaches (Robert and Sommeria,
1991), 2D-turbulence has been intensively studied early
on (Kraichnan and Montgomery, 1980). In the absence
of dissipation and forcing, two-dimensionality results in
the conservation of the total enstrophy (the integral of
the squared vorticity

∫
ω2), thereby modifying the clas-

sical Kolmogorov cascade into a double cascade: an in-
verse cascade of energy from the injection scale up to

larger length-scales with a spectral energy density spec-
trum E(k) ∼ k−5/3, and a direct cascade of enstrophy
from the injection scale down to smaller length-scales
with E(k) ∼ k−3 .

However, in a layer at the surface of a rotating sphere,
such as the atmosphere, there is an essential difference:
strong zonal motions can appear, which are fed by the
eddies. Indeed, vortices that move away from the axis
of rotation experience a reduction of the Coriolis force,
which vanishes at the equator. This limits the extent
of eddies in a latitudinal direction and leads to quasi-
geostrophic vortices. On the contrary, azimuthal ve-
locities, which follow geostrophic contours, encounter
no resistance, except for viscous friction in the Ekman
layers that form at the boundary. These phenomena
are nicely displayed in the atmosphere of giant planets,
such as Jupiter and Saturn, where strong alternating az-
imuthal jets circle the planet, entraining and shearing
quasi-geostrophic vortices.

Similarly, in a thick layer such as the liquid outer
core, columnar vortices that move away from the axis of
rotation impinge on the bounding spherical shell. There,
the non-penetration condition implies that the velocity
component aligned with the cylindrical radius coordi-
nate must convert into a velocity component aligned
with the rotation axis, plunging toward the equator from
both sides. Such a flow violates the Taylor-Proudman
theorem, and is therefore inhibited, while azimuthal
(zonal) flows are not affected.

Let us examine the NS-regime diagram of figure 5 to
get a sense of the modifications brought up by rotation
in the context of core turbulence. One new time-scale
stands out: the rotation time of the Earth tΩ (i.e., 1/2π
day). The intersection of the τν(`) viscous line with tΩ
defines the thickness of the Ekman layer δE =

√
ν/Ω,

where Ω is the angular velocity of the Earth. The Ekman
layer is about 0.1 m thick. We also introduce the spin-
up time tspin−up = ro/

√
νΩ ' 13 000 years and draw it

in figure 5. The spin-up time is the time it takes for the
core to adjust to a change in the angular velocity of the
mantle through viscous coupling, i.e. the time it takes
for the whole fluid to circulate through the Ekman layer.

8.3.1. Bidimensionalization and Rossby waves
Inertial waves have periods longer than half-a-day.

They are responsible for implementing the Taylor-
Proudman constraint on the flows. Flows at timescales
shorter than half-a-day will not be bidimensionalized.
In fact, a blob of vorticity of size ` grows into a bidi-
mensional column at a speed equal to Ω` (Davidson,
2013). This means that it takes only a few days for such
a blob to convert into an elongated vorticity column, say
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Figure 5: NS-regime diagram for rotating turbulence in a spherical
shell. Rotation yields a specific time scale: tΩ (dash-dot horizontal
line). Its intersection with the viscous line (magenta) yields the Ek-
man boundary layer thickness δE . We also draw a horizontal line for
the spin-up time tspin−up = ro/

√
νΩ. The dotted line labeled ‘Rossby’

represents the time τRossby(`) it takes for a Rossby wave to propagate
one wavelength `. Its intersection with the viscous line occurs for
` = roE1/3, which is the width of convective columns at the onset of
convection. The brown dotted line labeled ρ represents the buoyancy
line τρ(`). The uϕ star on the Rossby line marks the width (Rhines
scale) and velocity of the zonal jets that would make a turn round
the Earth in time tS V . The black solid line is the eddy turnover time
τu(`) line of non-zonal eddies that we infer, starting from the Rhines
scale in the quasi-geostrophic (QG) regime. It becomes semi-quasi-
geostrophic (SQG) and follows Kolmogorov’s slope after crossing the
Rossby line, and might enter critical balance (CB) at scales smaller
than the injection scale (here taken as roE1/3). The intersection with
tΩ defines Ro(`) ∼ 1. Turbulence becomes three-dimensional (3D)
below the tΩ line. The intersection with the viscous line defines
Re(`) ∼ 1 and provides the amount of viscous dissipation. Viscous
dissipation of the zonal and quasi-geostrophic flows occurs in the Ek-
man layers and is read on the Rossby line, where diamonds are a factor
103 apart, and the TeraWatt diamond is filled for reference.

ten times longer than wide, whatever the value of `. In
a thin layer such as the atmosphere or the ocean, the
columns rapidly extend across the entire layer.

However, it is important to realize that in a thick layer
such as the liquid outer core, the time required for such
a column to reach the core-mantle boundary is given by
τRossby(`) = ro/Ω`. The corresponding line is drawn if
figure 5. We have labelled it as the Rossby line, be-
cause it also roughly corresponds to the time it takes for
a Rossby wave of azimuthal wavelength ` to propagate
one wavelength. Indeed, the expression of the pulsation
of a Rossby wave, as recalled in Chapter by Jault and
Finlay (2015) reads:

ωRossby = −2Ω
βkϕ
k2 ,

with β = α/Hc, where α is the slope of the spherical
shell and Hc the height of the quasi-geostrophic column,
and k is the wavenumber of the Rossby wave. Approxi-
mating α ∼ 1 and Hc ∼ ro at mid-latitudes, and k ∼ kϕ,
we retrieve τRossby(`) ∼ ro/Ω`.

Above the Rossby line, columns extend across the
entire core: motions are quasi-gesostrophic (QG). As-
suming that ` now defines the diameter of the columnar
eddies in the equatorial plane, the viscous line τν(`) is
unchanged. However, viscous friction is also present at
the ends of the column. There, the velocity drops to zero
at the rigid core-mantle boundary. The velocity drop
takes place across an Ekman layer of thickness δE thin
enough for viscous forces to balance the Coriolis force.
The dissipation per unit mass due to viscous friction at
the ends of the columns can be written:

εQG =
`2

τ2
u(`) tspin−up

. (21)

The intersection of the viscous line τν(`) with the spin-
up time marks the length scale at which friction on the
walls of a column equal friction at its ends. It occurs for
a length ` = roE1/4

0 , where E0 = ν/Ωro is the Ekman
number at the integral scale.

We expect that turbulent motions whose time- and
length-scales fall in the triangle bounded by the three
lines tΩ-τν-τRossby will be strongly influenced by rota-
tion with elongated eddies aligned with the rotation axis
(z-axis). Those above the τRossby(`) line will be quasi-
gesotrophic (QG) columnar vortices extending all the
way across the liquid core. We find it logical to evaluate
on the Rossby line the viscous dissipation due to quasi-
geostrophic and zonal motions since below this line,
columns will not necessarily reach the surface Ekman
layers. QG and zonal flow viscous dissipation MoεQG is
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thus graduated with diamonds on the Rossby line. The
diamonds are a factor 103 apart, and the TW diamond
(1 TW = 1012 W) is filled for reference.

8.3.2. Zonal flows and potential vorticity
We have seen that truly geostrophic motions (i.e.

zonal (or azimuthal) motions in a sphere or a spheroid)
behave in a specific way. In contrast to non-
axisymmetric motions, they get organized in winds or
jets of a given width. Their lifetime can be extremely
long, and they often carry the largest part of the ki-
netic energy of the flow. Clearly, these bands will limit
the maximum size that QG-columns can achieve, since
they are separated by what appears to be strong barriers.
There has been much debate on the origin and charac-
teristics of these bands. One idea has become quite suc-
cessful, which assess that bands are the expression of
the mixing of potential vorticity (PV) in a staircase fash-
ion (Dritschel and McIntyre, 2008). Potential vorticity q
defined by q = (ωz + 2Ω)/Hc is an important quantity in
rotating fluids because it is conserved when advected by
a columnar flow (ωz being the z-component of the vor-
ticity in the rotating frame, and Hc the height of the col-
umn), when viscous effects are ignored. In a stratified
medium with linear density profile, mixing produces a
stack of layers in which the density is fairly homoge-
neous, and which remain isolated from each other be-
cause the sharp density jump across their borders acts as
a barrier for small density fluctuations (Phillips, 1972).
It is believed that something very similar happens for
potential vorticity in a rotating fluid in a sphere.

The conservation of potential vorticity is also at the
origin of Rossby waves. As a column of fluid at rest
(outside the cylinder tangent to the inner core) moves
away toward the mantle, its height decreases. In or-
der to conserve potential vorticity, the column acquires
a negative vorticity (in the rotating frame). The oppo-
site holds for a column moving towards high latitude.
Both contribute to a prograde, i.e., eastward, motion.
This wave motion is called a Rossby wave. Note that in
shallow layers such as ocean or atmosphere at the sur-
face of a rotating planet, Rossby waves propagate west-
wards because the planetary vorticity gradient has the
opposite sign. The velocity of Rossby waves increases
when their wave number decreases. We have drawn the
line τRossby = ro/Ω` as representing the time scale ver-
sus length scale signature of Rossby waves in the NS-
regime diagram of figure 5.

The intersection of the Rossby line τRossby(`) with
the eddy turnover time τu(`) defines a Rhines length
scale `Rhines while its intersection with the viscous line
τν(`) provides the length scale of thermal Rossby waves

roE1/3
0 , which appear at the threshold of convection

(Busse, 1970; Jones et al., 2000). The Rhines scale de-
scribes how the sphericity of the core stops the inverse
cascade of energy from small scale vortices.

8.3.3. Possible turbulent regimes
Let us now try to infer what would be the different

turbulent regimes encountered in the core if it was non-
magnetic but rotating. Starting from the ’observed’ time
scale tS V at the largest length scale ro, we run into a
problem: there should be no motion at this scale, since
the maximum diameter of columnar eddies is set by the
width of zonal bands. We should therefore re-interpret
tS V as the typical time a zonal jet takes to circle once
around the core. This sets its velocity uϕ = 2πro/tS V ,
which enters the definition of the Rhines scale: `Rhines ∼√

uϕro/Ω (Dritschel and McIntyre, 2008). We assume
that this defines the width of the zonal jets. The corre-
sponding viscous dissipation can be read on the Rossby
line. Guided by observations of the atmosphere of
Jupiter, we further assume that the velocity of the eddies
at the same scale (their maximum size) will be five times
smaller, thus defining the starting point of the turbulent
regime diagram we want to construct. Note that actual
large-scale zonal velocities are similar to non-zonal ve-
locities in the Earth’s core (Hulot et al., 2002; Pais and
Jault, 2008) (see Chapter by Holme (2015)).

Above the Rossby line, these eddies are columns ex-
tending all the way across the core. The dissipation of
these QG-vortices can be read at the intersection of the
τu(`) line with the Rossby line. It is always smaller than
that of the zonal jets (because we have assumed eddies
have smaller velocities than jets). The inverse energy
cascade yields a Kolmogorov-like law for τu(`) in that
regime. Below the Rossby line, vortices are still very
much elongated in the z-direction, but they do not nec-
essarily extend all the way across the core. We label
this regime SQG for semi-quasi-geostrophic. In 2D-
turbulence, the conservation of enstrophy modifies the
turbulent cascade: energy cascades from the injection
scale upscale to the largest possible scale (the inverse
energy cascade), while enstrophy cascades downscale.

8.3.4. Below the injection scale
What is the injection scale in our case? Near the on-

set of convection, it would be the length scale of thermal
Rossby waves roE1/3

0 (Busse, 1970). However, when
strong zonal winds are present, they certainly inject en-
ergy and enstrophy at their (larger) scale. 2D-turbulence
scenarios as well as quasi-geostrophic numerical mod-
els predict a strong decrease of energy for scales be-
low the injection scale. The thick dashed line in fig-
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ure 5 displays what would be the τu line in the case
of an energy spectrum E(k) ∼ k−5. However, we have
seen that rotating turbulence was not strictly 2D in this
regime (below the Rossby line). It has been recently
proposed by Nazarenko and Schekochihin (2011) that
the flow reaches a ’critical balance’ (CB) in this regime
that sees the columns progressively shrink in length un-
til 3D-turbulence is reached at Ro(`) ∼ 1 (at the inter-
section of the τu(`) and tΩ lines). This is what we have
drawn in figure 5, keeping the Kolmogorov slope all the
way down to the dissipation scale (Re(`) ∼ 1), where
the remaining viscous dissipation can be read.

Note that in our scenario, the τu(`) line barely gets
below tΩ, meaning that turbulence remains influenced
by rotation almost down to the dissipation scale. Also
note that the total viscous dissipation (zonal and QG
plus SQG) is now of the order of 100 GW, compared to
30 MW in the absence of rotation. As rotation inhibits
convection, a larger energy input and larger buoyancy
forces are needed to provide the velocities we observe.
The ∆ρ/ρ term can be estimated here by assuming a
balance between the buoyancy and the Coriolis forces
yielding: ∆ρ/ρ ' 2Ωro/g tS V ∼ 10−9, some six orders
of magnitude larger than in the non-rotating case. Hence
the position of the τρ(`) line in figure 5.

8.4. MHD turbulence
Let us pursue our exercise by building a plausible sce-

nario of turbulence if the core had the magnetic field we
observe at large scales but was not rotating.

8.4.1. Mechanisms of MHD turbulence
Turbulence in the presence of a strong imposed mag-

netic field is quite different from classical hydrody-
namic turbulence. While eddies are the building bricks
of hydrodynamic turbulence, it is believed that Alfvén
waves are those of magnetohydrodynamic turbulence
(Tobias et al., 2013), at least as long as fluid veloci-
ties are smaller than the Alfvén speed (u(l) < VA) and
the Lundquist number is large Lu(`) � 1. In a uni-
form magnetic field, these waves are non-dispersive so
that wave-packets of any shape propagate without dis-
tortion. However, the collision of counter-propagating
Alfvén waves do produce some distortion as the waves
then propagate along modified field lines. These colli-
sions produce smaller scales to which energy cascades
down without dissipation, just like in classical hydrody-
namic turbulence, until the dissipation scale is reached.
Indeed, the half sum and half difference of the ener-
gies E+ and E− of the Elsasser variables correspond, re-
spectively, to the total energy and cross-helicity

∫
u · b,

which are both conserved in ideal incompressible MHD.

Two regimes have been identified: weak turbulence,
in which the linear term (VA · ∇) z± of equation 17 dom-
inates over the non-linear term (z∓ · ∇) z±, and strong
turbulence when the opposite holds. In weak turbu-
lence, it takes several collisions of wave packets for en-
ergy to cascade to smaller scales and the energy spec-
tral density is inferred to scale as E(k) ∼ k−2, while
non-linear collisions in strong turbulence are more effi-
cient in that respect, yielding E(k) ∼ k−3/2. The transi-
tion occurs when the Alfvén wave collision time τb(`)
is of the same order as the large-scale Alfvén wave time
tAl f ven. Turbulence always gets strong at short length-
scales. Note that in both cases, one expects an equipar-
tition of energy between the velocity and magnetic fluc-
tuations since Alfvén waves are in equipartition. It is
also important to realize that the cascade is for length-
scales perpendicular to the direction of the guide field
B0: the wave packets retain their along-field shape. As a
consequence, the wave packets become more and more
elongated in the guide field direction, somewhat like
vortices are elongated along the rotation axis in rotat-
ing turbulence, except that the effect gets larger as the
length-scale gets smaller, in contrast to the rotating case.

8.4.2. Two scenarios of MHD turbulence
Let us try to sketch the turbulent regimes a magne-

tized non-rotating Earth would experience. We will dis-
cuss two alternative scenarios and use the NS-regime
diagrams of figure 6 and 7 as a guide. We again con-
sider that we know the values of the diffusivities, and
draw a new line for magnetic diffusion as τη(`) = `2/η.
The large-scale starting point for the velocity field is
the same as before, deduced from secular variation core
flow inversion. We also assume that we know the inten-
sity of the large-scale magnetic field. Indeed, the recent
discovery of torsional waves in the Earth’s core (Gillet
et al., 2010) provides a profile of the rms intensity of
the s-component of the magnetic field as a function of
s, where s is the cylindrical radius.

We infer a typical intensity of B0 = 3 mT, which
translates into a large-scale Alfvén wave velocity VA =

B0/
√
ρµ0 ' 25 mm/s. Note that in fact, the velocity

of torsional oscillations depends upon the integral of B2
s

over azimuth and z, so that the contribution of small-
scales is included in our estimate of B0. We plot the
line τAl f ven = VA` in the NS-regime diagram of fig-
ure 6. At the largest scale (` = ro), the correspond-
ing time is about 108s, that is a few years, some two
orders of magnitude smaller that the characteristic time
of secular variation. This is just an expression of the
fact that magnetic energy is about four orders of magni-
tude larger than kinetic energy in the Earth’s core. In-
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Figure 6: A highly dissipative scenario for magnetohydrodynamic
and dynamo turbulence. The time-scale of the large-scale magnetic
field is tAl f ven, deduced from the velocity VA of torsional oscillations.
The green line τAl f ven(`) gives the time it takes for an Alfvén wave to
travel a distance ` at this velocity VA. The red line τb(`) measures the
strength of the magnetic field at length-scale `: it is the characteristic
collision time of Alfvén waves. The blue line τη(`) is the magnetic
diffusion line. Ohmic dissipation is graduated with squares along that
line. The squares are a factor 103 apart, and the TW square is filled.
Here, we assume that the τu, τb and τAl f ven lines all intersect the τη
line at the same point, where Rm(`) ∼ N(`) ∼ Lu(`) ∼ 1, yielding
unrealistic ohmic dissipation of millions of TW. The eddy turnover
time τu continues downscale and intersects the τν line at very small
scales, yielding again unrealistic viscous dissipation. This scenario is
discarded because it would imply super-alfvenic velocities.

deed, when expressed in Alfvén velocity, the magnetic
field intensity directly compares to flow velocity. The
intersection of the τη(`) and τAl f ven(`) lines defines the
minimum wavelength ` Alfvén waves can achieve with-
out being completely dissipated. It corresponds to an
`-scale Lundquist number Lu(`) = τη(`)/τAl f ven(`) ∼ 1.

Where should we plot the lines for the typical veloc-
ity field τu(`) and for the line for typical magnetic field
τb(`) (expressed in Alfvén wave time) ? We apply the
principles of the MHD turbulence cascade we just de-
scribed. Assuming equipartition down to the magnetic
diffusion scale implies that both the τu(`) and τb(`) lines
should intersect the τη(`) magnetic diffusion line at the
same place in the diagram, which will thus correspond
to Rm(`) ∼ 1.

8.4.3. A highly dissipative scenario
It is then tempting to infer that smaller scales will

be in a regime where the small-scale magnetic field re-
sults from the diffusion of the magnetic field induced by
the interaction of the small-scale velocity field with the
large-scale magnetic field. In this diffusive regime, one
has: (B0 · ∇) u ∼ η∇2b, yielding b ∼ uB0`/η, which
translates into: τb(`) = τAl f ven(`) τu(`)/τη(`). Since we
defined the intersection point by τu(`) = τb(`) = τη(`),
the intersection should take place where the τη(`) and
τAl f ven(`) lines intersect. This intersection thus simul-
taneously correspond to Lu(`) ∼ 1, Rm(`) ∼ 1 and
N(`) ∼ 1, where N(`) is the `-scale interaction parame-
ter that measures the effect of the large-scale magnetic
field on the velocity field.

At this intersection point, magnetic diffusion takes
over and we read the Ohmic dissipation (= Moη/τ

2
η(`))

on the τη(`) line. It reaches a million TeraWatts, a value
that is clearly unacceptable since no core flux can be
larger than our estimate of a total flux from the man-
tle to the core of 13 TW (see Table 3). The velocity
field is probably reduced at this intersection, but what
remains should still cascade downscale (Plunian et al.,
2013). One can easily check that the interaction pa-
rameter decreases as the length scale decreases in this
regime, so that hydrodynamic turbulence is recovered
with its classical Kolmogorov cascade, as drawn. Fig-
ure 6 shows that we finally reach the viscous line τν(`)
for length scales below a millimeter, and read a viscous
dissipation of a million TeraWatts again!

There is one problem with this scenario. MHD turbu-
lence above the intersection point at Rm(`) ∼ 1 would
be in the strong turbulence regime, for which the en-
ergy spectrum is found to be E(k) ∼ k−3/2 (Tobias et al.,
2013), yielding τ ∼ `3/4, as drawn in figure 6. This
means that the τu(`) line is below the τAl f ven(`) line over
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a large range of scales, implying that the fluid velocity
is larger than the Alfvén speed, which contradicts the
hypotheses of Alfvén wave turbulence.

8.4.4. A more realistic scenario
We thus take into account the latter constraint and

require that τu and τb remain above the Alfvén line.
The new scenario we build is drawn in figure 7. We
let the MHD strong turbulence cascade start from the
largest scale ro at time tAl f ven, and assume it goes all
the way down to the length-scale ` ∼ η

√
ρµ0/B0 for

which Lu(`) ∼ 1, at the intersection of the τη(`) and
τAl f ven(`) lines. Equipartition is still required, implying
that τu(`) gets down to times much shorter than tS V to
join the τb(`) line. We have assumed here a spectrum
Eu(k) ∼ k for this part, meaning that there is more ki-
netic energy at small scale than at the integral scale. In
contrast with the previous scenario, the interaction pa-
rameter N(`) = τ2

u(`)/τAl f ven(`) τb(`) remains large at
all scales, meaning that the large-scale magnetic field
strongly influences the flow. Turbulence in the magnetic
diffusive regime with a strong applied magnetic field
has been explored in laboratory experiments (Alemany
et al., 1979). The small-scales of the flow are severely
damped by the applied magnetic field: the kinetic en-
ergy spectrum is Eu(k) ∼ k−3, which translates into a
constant τu(`), as drawn in figure 7. The magnetic en-
ergy spectrum is even steeper (not drawn), obeying the
induction-diffusion balance. We read an Ohmic dissipa-
tion of more than a thousand TeraWatts, which could be
much lower though if the strong MHD turbulence spec-
trum was steeper than k−3/2.

Assuming equipartition at small scale down to the
magnetic diffusion scale has a drastic influence on the
kinetic and magnetic energy spectra. It is difficult to
build scenarios that do not require an unrealistic ohmic
dissipation. We will see that rotation can help us recover
a more viable scenario.

8.5. Turbulence in planetary cores

The Earth is rotating rather fast. On periods longer
than a day, rotation inhibits Alfvén waves (Braginsky,
1970; Jault, 2008). Only geostrophic Alfvén waves, i.e.
torsional oscillations, are not inhibited. They have in-
deed been detected in the core (Gillet et al., 2010), and
we have used their observed velocity to set our magnetic
time tAl f ven at the integral scale ro. Quasi-geostrophic
Alfvén waves are also possible. But in both cases, the
constraint of rotation prevents Alfvén wave collision to
be the mechanism by which the magnetic energy cas-
cades down to dissipation.
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Figure 7: A more realistic scenario for magnetohydrodynamic and
dynamo turbulence. In this scenario, we relax the hypothesis that
the induction-diffusion balance is achieved at Rm ∼ 1. Instead, we
consider than Alfvén waves can propagate down to a scale ` where
Lu(`) ∼ 1, i.e. at the intersection of the τη(`) line (blue) with the
τAl f ven(`) line (green). We assume that the strong turbulence MHD
cascade begins at the largest scale ro. The interaction parameter N(`)
remains large at all scales, and the flow at small scale is strongly
damped by the large-scale magnetic field. Projecting along the blue
dashed line yields an Ohmic dissipation of about a thousand Ter-
aWatts, as read on the τη(`) line.
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Figure 8: NS-regime diagram for turbulence in the Earth’s core. Both
rotation and the magnetic field are taken into account, combining the
lines already defined in figures 5, 6 and 7. We assume that the ki-
netic energy density follows a k−5/3 law in the quasi-geostrophic dy-
namo regime. The intersection of the τu(`) and τη(`) lines defines
Rm(`) ∼ 1, which marks the transition from the dynamo to the dif-
fusive regime. Quasi-geostrophic (QG) and semi-quasi-geostrophic
(SQG) diffusive MHD governs the following part, with a kinetic en-
ergy density spectrum in k−3 (yielding a flat τu(`) line) and a magnetic
energy density spectrum in k−5. Viscous dissipations of the QG (read
on the Rossby line) and of the SQG (read on the τν(`) line) MHD flows
amount to a few kiloWatt only. Ohmic dissipation is maximum at the
length scale ` where Rm(`) ∼ 1. Projecting along the blue dashed line
yields an Ohmic dissipation of a few TeraWatt, as read on the τη(`)
line. Alfvén waves can be excited and propagate for scales falling on
the Alfvén green line between its intersection with tΩ (which defines
λ(`) ∼ 1) and that with the magnetic diffusion line (which defines
Lu(`) ∼ 1).

Using the NS-regime diagram of figure 8, let us try
to infer what turbulence could look like in the core,
taking into account the Earth’s rotation, and the pres-
ence of a strong large-scale magnetic field. The main
difference with the previous scenarios is that we do
not impose equipartition at small scales. We let the
eddy turnover time τu(`) decrease with length-scale `,
assuming a spectrum Eu(k) ∼ k−5/3 in the dynamo
regime. The intersection of the τu(`) line with τη(`)
defines the length-scale where Rm(`) ∼ 1, below
which the flow cannot generate a magnetic field. Be-
low this scale, if the large-scale magnetic field B0 is
dominant, the small-scale magnetic field is obtained by
the balance between induction and diffusion and obeys
τb(`) = τAl f ven(`) τu(`)/τη(`). This time, flow veloc-
ities remain much lower than alfvenic speeds. Since
τu(`) = τη(`) for Rm(`) ∼ 1, the small-scale magnetic
field at Rm(`) ∼ 1 must lie on the Alfvén line. For sim-
plicity, we have thus drawn the τb(`) line following the
Alfvén line in the dynamo regime.

The interaction parameter N(`) =

τ2
u(`)/τAl f ven(`) τb(`) is very large at all scales, meaning

that the large-scale magnetic field strongly influences
the flow. Below the scale for which Rm(`) ∼ 1 we
thus enter a diffusive regime with a strong applied
magnetic field, where Alfvén waves are inhibited
by rotation. Following Alemany et al. (1979), we
assume a kinetic energy spectrum Eu(k) ∼ k−3, which
translates into a constant τu(`), as drawn in figure 8.
The magnetic energy spectrum is even steeper, obeying
the induction-diffusion balance.

Note that in our scenario, the flow is above the
Rossby line in the dynamo regime, hence quasi-
geostrophic. Most of the non-dynamo MHD regime
lies above the Rossby line, hence being also quasi-
geostrophic (QG). Viscous dissipation can be read along
the τRossby(`) line for the quasi-geostrophic MHD flow
and on the τν(`) line for the semi-quasi-geostrophic
MHD motions. Both are very small, below the kW
range. Ohmic dissipation dominates, and mostly oc-
curs at the `-scale where Rm(`) ∼ 1. It can be read
along the τη(`) line, where the dashed blue line inter-
sects, amounting to a few TW for the present scenario.

Behind this scenario is the idea that turbulence is very
much hindered under the combined constraints of strong
magnetic field and fast rotation. The rotating mag-
netized spherical Couette flow (DTS ) experiment pro-
vides evidence for this behaviour (Nataf and Gagnière,
2008). We end up with a very sluggish core, where
the smallest eddies are ten meters in diameter, and have
turnover times of several years!

Note that the Alfvén line intersects the τη(`) line be-
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low the tΩ line. This intersection defines Lu(`) ∼ 1,
while the intersection of the Alfvén line with the tΩ line
defines λ(`) ∼ 1. In that region of the τ − ` diagram,
it is possible for Alfvén waves to propagate without be-
ing hindered by the Earth’s rotation (because λ(`) > 1),
and without being damped by magnetic diffusion (be-
cause Lu(`) > 1). However, such waves will not be
involved in the cascade of energy from large to small
scales. Similarly, fluid motions could be excited at time-
scales shorter than a day (by tides for example), but they
are not part of the energy cascade.

9. Summary and perspectives

Early numerical simulations of the geodynamo have
demonstrated the crucial role of rotation in the gener-
ation of the magnetic field. One of our main messages
here is that rotation could also play a key role in limiting
the dissipation of the magnetic field.

Indeed the classical scenario of MHD turbulence
in the absence of rotation, based on the collision of
Alfvén waves, predicts dissipation rates far too large for
the core. The constraints brought by rotation prevent
Alfvén waves to be the carriers of turbulence. Instead,
turbulence gets organized in quasi-geostrophic eddies,
strongly elongated along the rotation axis, and strongly
damped by the large-scale magnetic field. We end up
with a very sluggish core, in which the smallest eddies
are ten meters in diameter and have turnover times of
several years. The smallest magnetic field structures are
even larger, in the kilometer range but their life time
might be much shorter (of the order of months). In this
scenario, viscous dissipation is negligible, while Ohmic
dissipation is in the TW range. However, one should
keep in mind that slightly different scenarios would lead
to largely different dissipations.

We note that a planet like Venus, which rotates much
more slowly than the Earth (rotation period of 243
days), would not be in this regime, and would not be
able to sustain a magnetic field as large as that of the
Earth.

The NS-regime diagram (or τ − ` diagram) that we
introduced is a useful tool for determining the various
regimes that can be encountered when going from the
large-scales down to the dissipative scales. We hope it
can guide the construction of appropriate parametriza-
tions of turbulence in Large Eddy Simulations.

In exploring the various turbulent scenarios, we have
noted that key elements were still missing, calling for
more experimental and numerical studies. For exam-
ple, we don’t know how to relate quasi-geostrophic and

zonal velocities in a convecting sphere. What is the rel-
evant injection scale in these systems? Furthermore,
some fundamental differences between the case of the
atmosphere of giant planets and that of the core might
have been overlooked. Our observation that the time re-
quired for a Taylor column to grow and extend across
the core is comparable to the propagation time of a
Rossby wave questions the validity of quasi-geostrophic
modeling of small scales.

MHD and rotating MHD turbulence is even more un-
certain. The scenarios we have built are very speculative
and await experimental and numerical backing.

What is the prospect of detecting turbulent structures
in the core? We have seen that the expected relative
density variations are extremely small (∼ 10−9), far too
small to affect the propagation of seismic waves or the
gravity field. However, the velocity of seismic waves
can also be modified by rotation, flow velocity and mag-
netic field. How important are these effects? Our τ − `
diagrams can guide us again. Seismic waves in the core
have velocities of about 9km/s, yielding a characteristic
time of about 400s at the integral scale ro. Scattering
of seismic waves by turbulent structures roughly scale
as their time ratio: strong effects occur when times are
comparable. In figure 8 we see that the time that gets
closest to the seismic time is tΩ: indeed it is well known
that seismic normal modes of the Earth are split by the
Coriolis force. The next relevant time is the magnetic
Alfvén wave time, but it is already 3 orders of magni-
tude further away from seismic times, leaving little hope
for detection.
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Jérôme Noir for spotting an error in an earlier version
of our manuscript.

23



References

Ahlers, G., Grossmann, S., Lohse, D., 2009. Heat trans-
fer and large scale dynamics in turbulent Rayleigh-Benard
convection. Reviews of Modern Physics 81, 503–537.
doi:10.1103/RevModPhys.81.503.

Alboussiere, T., Cardin, P., Debray, F., La Rizza, P., Masson, J.P.,
Plunian, F., Ribeiro, A., Schmitt, D., 2011. Experimental evidence
of Alfven wave propagation in a Gallium alloy. Phys. Fluids 23.
doi:10.1063/1.3633090.

Alboussière, T., Deguen, R., Melzani, M., 2010. Melting-induced
stratification above the Earth’s inner core due to convective trans-
lation. Nature 466, 744–U9. doi:10.1038/nature09257.

Alemany, A., Moreau, R., Sulem, P., Frisch, U., 1979. Influence of an
external magnetic field on homogeneous mhd turbulence. Journal
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