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Abstract Aftershock activity depends at first order on the main shock magnitude but also shows
important fluctuations between shocks of equal magnitude. We here investigate these fluctuations, by
quantifying them and by relating them to the main shock stress drop and other variables, for southern
California earthquakes. A method is proposed in order to only count directly triggered aftershocks, rather
than secondary aftershocks (i.e., triggered by previous aftershocks), and to only quantify fluctuations going
beyond the natural Poisson variability. Testing of the method subjected to various model errors allows to
quantify its robustness. It is found that these fluctuations follow a distribution that is well fitted by a
lognormal distribution, with a coefficient of variation of about 1.0 to 1.1. A simple model is proposed to relate
this observed dependence to main shock stress drop variability.

1. Introduction

The number of aftershocks N(m) in an aftershock sequence is known to vary with the magnitude of the main
shock m as N(m) = K exp(αm). Many studies have investigated this productivity law, by stacking over large
numbers of main shocks of equal magnitudes, in order to recover an ensemble average relationship.
Parameter α is a key parameter in aftershock sequence modeling, and more generally in modeling seismicity
dynamics. Its estimated value strongly depends on the type of method used, with direct counting within
magnitude-dependent, fixed-sized space-time windows following main shocks typically leading to high
values of α≃ 2 to 2.3 [Felzer et al., 2004; Helmstetter et al., 2005], while maximum likelihoodmethods generally
find lower α values [e.g., Hainzl and Marsan, 2008, and references therein]. The two approaches provide
different perspectives on the productivity law. If one assumes that any earthquake of magnitude m can
directly trigger on average N(m) aftershocks, then these aftershocks also trigger their own aftershocks and
so on, so that one must distinguish between the number of directly triggered aftershocks (i.e., our N(m))
and the total number of aftershocks (i.e., direct and indirect). Maximum likelihood methods estimate
numbers of direct aftershocks, while space-time window stacking counts total numbers. In theory, both
methods should provide the same α exponent, if the productivity law N(m) of direct triggering remains
stationary. However, while based on more objective processing than window methods, maximum likelihood
methods are more sensitive to model errors, in particular regarding to the use of point-like or finite rupture
sources [Hainzl et al., 2008], to magnitude uncertainties [Werner and Sornette, 2008], to the exclusion of poten-
tial triggering earthquakes outside the studied period and area [Wang et al., 2010], and to possible occur-
rences of transient increases in background earthquake rate [Hainzl et al., 2013].

While the ensemble averaged productivity law N(m) = K exp(αm) has thus been studied in some details, the
variability of the productivity prefactor K from one main shock to the other has attracted much less attention.
However, main shocks of equal magnitudes can trigger variable number of aftershocks, this variability going
beyond the simple Poisson fluctuations around the mean number N(m) [cf. e.g.,Marsan et al., 2014, Figure 3].
Much of this variability owes to the occurrence (or absence) of large aftershocks, which in turn trigger more
aftershocks, strengthening the natural variability of the process. It is therefore of particular importance, when
investigating the variability around themean productivity law, to properly account for this cascade of trigger-
ing, hence to evaluate which aftershocks are effectively directly triggered by the considered main shock.

Several dependences of aftershock productivity have been demonstrated or suggested in past studies. (i)
Since aftershock occurrence is probably conditioned to afterslip [e.g., Perfettini and Avouac, 2007], a depen-
dence on postseismic slip rate is expected [Lange et al., 2014]. (ii) Heat flow has been found by Yang and
Ben-Zion [2009] to inhibit aftershock productivity, by favoring viscous instead of brittle deformation. For
the five areas in southern California studied by these authors, a factor of about 10 is observed between
the most and the least productive sequences, which is about twice the related ratio in heat flow (cf. their
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Figure 6b), implying that this dependence could generate significant local variability of the aftershock
production. This is particularly well evidenced in the case of oceanic transform faults, which are known to
host relatively weak aftershock sequences [Boettcher and Jordan, 2004; McGuire et al., 2005]. (iii)
Dependence of K on faulting style is described by Tahir and Grasso [2014, 2015]; thrust earthquakes are
shown to trigger more aftershocks, which could be related to the larger increase of Coulomb stress change
in this context [Lin and Stein, 2004]. (iv) Supershear ruptures have been shown to be depleted of on-fault
aftershocks [Bouchon and Karabulut, 2008], the shock wave generated during the earthquake instead trigger-
ing off-fault aftershocks. It can be expected that this specific pattern has a direct influence on the number of
triggered aftershocks. Inversely, slow ruptures have been observed to trigger fewer earthquakes [Pollitz and
Johnston, 2006] than fast ruptures of equivalent size. It is however well known that such slow ruptures can
also trigger abundant seismicity, as is for example the case of the off-Boso swarms [e.g., Hirose et al., 2012],
the depth at which slow slip occurs likely exerting a major control on aftershock triggering [Delahaye et al.,
2009]. (v) Finally, there exists a positive correlation between the numbers of foreshocks and of aftershocks,
possibly related to preslip continuing in the postseismic phase [Marsan et al., 2014]. It can also be expected
that the variability in the number of aftershocks is partly linked to other characteristics of the main shock, in
particular its stress drop, and the spatial heterogeneity of the slip distribution.

Here we aim at estimating the variability of the productivity factor K. We will thus investigate direct after-
shocks only, in an attempt to grasp the dependence of N(m) on main shock characteristics. This analysis
therefore needs to account for (1) the Poisson, natural variability of N(m): the latter is the mean number, while
the observed number of aftershocks is a random realization of a Poisson distribution with this mean N(m);
and (2) the triggering of indirect aftershocks, i.e., so to only count the earthquakes in the aftershock sequence
that are effectively triggered by the main shock, not by previous aftershocks. This then allows to evaluate the
residual variability beyond these two phenomena. We analyze this variability for earthquakes that occurred in
California and study more particularly how it relates to stress drop variability.

2. Method

We here describe how we estimate the variability of the productivity prefactors Ki from one earthquake i to
another. As a working hypothesis, we assume that the statistics of K do not depend on the main shock
magnitude, so that the term eam in the productivity law N(m)=Keαm encompasses all the dependence on

m. To quantify the variability of K around its mean K , we seek to estimate the coefficient of variation C

¼ σK
K

where σK is the standard deviation.

The first step consists in estimating the numbers Ni of (directly) triggered aftershocks for each earthquake i.
This is done by fitting a parameterized seismicity model to the data {ti,mi,xi,yi,zi}; we here further develop
previous works based on this approach; see Zhuang et al. [2011] for a review. We define λ the modeled rate
density of earthquakes, i.e., the expected number per unit time and unit volume, as

λ x; y; z; tð Þ ¼ μþ
X
i=ti<t

νi x; y; z; tð Þ (1)

with μ the background rate density, and

νi x; y; z; tð Þ¼ Kie
αmi t þ c � tið Þ�pf i x; y; zð Þ=Fi (2)

the interaction term, that incorporates the spatial kernel fi(x, y, z). While the productivity term Kieαmi and the
temporal dependence (t+ c� ti)

�p are widely accepted as ensemble average laws, there is less consensus on
the exact form for the spatial kernel fi (seeMoradpour et al. [2014] and van der Elst and Shaw [2015] for recent

studies on this). We therefore use a histogram estimate for fi: f i rð Þ ¼ f r=Lið Þ=L3i with Li ¼ 100:5 mi�4ð Þ the
characteristic rupture length in km, which ensures a magnitude-independent stress drop and is in agreement
with previous observations [Utsu, 2002; van der Elst and Shaw, 2015]. The kernel f(s) is piecewise constant over

logarithmically increasing bins and is normalized as ∫∞0 ds4πs
2f sð Þ ¼ 1 so that for all earthquake i, ∫∞0 dr4πr

2f i rð Þ
¼ 1 also. To account for the fact that earthquakes can only occur in the half-space z> 0, where z is depth
taken positive, we compute the integral
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Fi ¼ ∫∫dx dy ∫
∞

0
dz f i x; y; z � zið Þ (3)

for each earthquake i, so that 0 ≤ Fi ≤ 1, and Fi→ 1 when zi≫ Li. This allows to normalize the interaction term νi
as described by equation (2). Without these correction factors Fi, we would introduce a break in the produc-
tivity law N(m)=Keαm at the characteristic magnitude of earthquakes rupturing the whole width of
the schizosphere.

This model is inverted with an Expectation-Maximization algorithm that allows the processing of large data
sets. We a priori fix the mean probability for an earthquake to be a background earthquake based on the esti-

mate of Hainzl et al. [2006] E tiþ1–tif g2
var tiþ1–tið Þ. To facilitate the treatment, we draw at each iteration of the expectation

step a realization of the branching structure. The algorithm is fully described in Appendix A. We then count
the number of aftershocks Ni for each main shock i, based on the best model. These numbers are integer
values and correspond to one random realization of the inverted branching structure.

In a second step, the statistics of K are estimated, by averaging over large numbers of earthquakes. As
such, these statistics depend very little on the drawn realization of the branching structure. Integrating
equation (1) over space and observation time [ti,tmax] we find that the expected number of aftershocks
Ni for main shock i is

Ni¼ Kie
αmiXi (4)

with

Xi ¼ tmax þ c � tið Þ1�p � c1�p

1� p
for p≠1; or; Xi ¼ ln tmax þ c � tið Þ � lnc for p ¼ 1 (5)

We thus compute the estimated prefactors K̂ i as K̂ i ¼ Ni

eαmiXi
. The terms Xi are correction terms related to the

fact that the observed number of aftershocks must decrease for earthquakes occurring late in the catalog,
since the observation period, of duration tmax� ti, is shorter after these earthquakes.

To illustrate this treatment, we run it on a synthetic catalog of 10,000 earthquakes generated with α = 2,

p = 1.1, and c = 10�4 days, a branching ratio of 0.92, and a (continuous) 3-D spatial kernel f sð Þ ¼ 3 γ�1ð Þ
4π 1þs3ð Þγ with

γ = 1.6; see Figure 1. In the case of this simulated data set, we do not impose a realistic thickness for the schi-
zosphere and let the earthquakes populate a (1000 km)3 cubic volume. More realistic simulations and exhaus-
tive testing are described in the next section. The simulated, “true” Ki values are drawn from a lognormal

distribution with
σK
K

¼ 1 . Magnitudes are drawn from a Gutenberg-Richter law with b = 1, starting at

m = 2.5 (cutoff magnitude of the Californian data set analyzed in section 4). Our estimated model parameters

are α, p̂ ¼ 1:06, and ĉ ¼ 8:3�10�5 days, close to the true values. Comparing the estimated K̂ i with the true Ki,
we obtain a linear correlation coefficient of 30% that increases to 94% if only considering the 13 largest
earthquakes (with m ≥ 5.5); see Figure 1c. We display in Figure 1d the cumulative distributions of the true
and estimated K values, the latter shown for various magnitude cutoffs.

It is clear from this example that the estimated coefficient of variation Ĉ ¼ σK̂
K
only becomes a good estimate

of the true
σK
K
when a highmagnitude cutoff is imposed. It can be shown (see Appendix B) that this arises from

the fact that Ni are integer values; this adds an extra variability on K̂ i that vanishes when Ni take large values,

i.e., for large main shocks. We exploit equation (B1) that describes how
σ2
K̂

K
depends on the magnitude cutoff

m, by fitting the log
σK̂
K
versusm curve to yield the estimated Ĉ. Figure 2 shows this fit for the synthetic catalog

of Figure 1, for which we find Ĉ ¼ 0:92 in place of the true value C = 1; the error bars are here only propor-

tional to the inverse square roots of the weights
n mð Þ
σ2
K̂

used when fitting the datapoints, where n(m) is the

number of earthquakes with mi ≥m, and do not account for the uncertainty on σK̂ . This method allows to
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account for the discretization of Ni but still using all information at hand rather than only considering a small
set of large main shocks.

3. Tests

We here investigate the accuracy of the method using synthetic catalogs. The goal is to assess how this treat-
ment behaves in presence of model errors, i.e., when the estimating model (as described in section 2 and
Appendix A) differs from the generating model. More specifically, we study how the estimation of K is
affected in the presence of (1) model errors related to wrong assumptions about the spatial distribution of
earthquakes, namely, the fact that there exists a finite width of the schizosphere and that earthquakes occur
on faults with finite (rather than vanishingly small) size. The analyzing model assumes that aftershocks are
distributed isotropically around the source hypocenter modeled as a point. This simplifying assumption is
required since in general the main shock fault geometry and its position relative to its hypocenter is
unknown, although attempts at reconstructing fault networks from seismicity data [e.g., Ouillon et al.,
2008] could help tackling this issue; (2) model errors related to a rapidly varying magnitude of completeness

Figure 1. Synthetic catalog with imposed C ¼ σK=K ¼ 1 variability. (a) Space-time plot, with space shown along the first
direction x. The four 6.1<m< 6.4 main shocks removed when testing the influence of time-varying μ(t) are shown in
magenta; see section 3.4. (b) Cumulative time series in blue, with the occurrence times of the four 6.1<m< 6.4 main
shocks indicated with vertical lines. The green curve is after removing simulated nondetected aftershocks; see section 3.2.
(c) Correlation coefficient between the true and inverted prefactors K, function of the magnitude cutoff m. The colored
circles refer to the colored distributions of graph (Figure 1d). (d) Cumulative distributions of the prefactors K, for various
magnitude cutoffs, compared to the true lognormal distribution, with K normalized by the true mean value.
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following large main shocks, i.e.,
when small earthquakes that are nor-
mally detected are not listed in the
catalog due to temporary anoma-
lously high earthquake rates; (3)
model errors due to possible fluctua-
tions in the parameters of the Omori-
Utsu law, from one main shock to the
other; and (4) model errors due to
unmodeled temporal and spatial var-
iations in the background rate μ.

Our synthetic catalogs are all gener-
ated with the model of equations (1)
and (2), with parameter values
μ = 0.1, α = 2, p = 1.1, c = 10�4 days,

K ¼ 3:24�10�5 (giving a branching
ratio of 0.92, cf. Helmstetter et al.
[2003]; here the branching ratio is

computed using K ). Magnitudes are
drawn from a Gutenberg-Richter

law with b = 1, starting at mc= 2.5 and with no upper bound. The statistics of the prefactor K differ from

catalog to catalog. The estimated Ĉ values are detailed in Table 2.

3.1. Spatial Distribution

We consider 3 cases for the spatial distribution, use 3 values of C for each case (C = 0, 1, or 2), and simulate 10
independent catalogs of 10,000 earthquakes each, for each of the nine scenarios. Table 1 details the charac-
teristics for each scenario. Catalogs with C = 0 correspond to a null model, with no variability in K; the esti-

mated Ĉ must therefore be close to 0 if the method does not create artificial variability.

In case 1, the background earthquakes populate an unrealistic 1000 × 1000 × 1000 km3 volume, and after-

shocks are located isotropically from their parent hypocenter according to a f sð Þ ¼ 3 γ�1ð Þ
4π 1þs3ð Þγ kernel, with

γ = 1.6. The seismogenic volume is very big compared to the typical rupture lengths: for b = 1 and 10,000

earthquakes above m = 2.5, the ensemble average maximum magnitude is 1
In10 In10

4 þ 0:577
In10 þ 2:5 ¼ 6:75,

hence an average maximum rupture length of 23 km, much less than 1000 km. Edge effects are thus very lim-
ited, and the generating model can therefore be considered the same as the analyzing model.

In case 2, we limit the seismogenic volume to (1000 × 1000) km2 × 10 km (in depth). The positions of the after-
shocks relative to their parent hypocenter are determined by first drawing a distance r according to the same

spatial kernel f(s) as for case 1, and
then the azimuth and takeoff angles
are drawn at random; the position is
checked to ensure that it lies within
the 10 km wide schizosphere, or the
azimuth and takeoff angles are
redrawn until it does so.

Finally, in case 3, the same procedure
is applied, but instead of locating the
aftershock relative to the parent
hypocenter, we do the same but rela-
tive to a point source that is taken at
random on the causative fault. For
each earthquake, we define a square
rupture plane dislocation of size

Figure 2. Estimated coefficient of variation Ĉ ¼ σK̂
K

function of the magni-

tude cutoff m, in blue, for the simulated catalog of Figure 1. The error bars

are proportional to
σK̂ffiffiffiffiffiffiffiffiffiffiffi
n mð Þp , with n(m) the number of earthquakes with

magnitude above the cutoff magnitude m. The best fit obtained with the

model of equation B1 is shown in black; it converges at large m toward Ĉ ¼
0:92 (dashed line), which is the estimated coefficient for this catalog (the true
C value being 1).

Table 1. Summary of the Nine Scenarios for the Synthetic Catalogs Used in
the Testsa

Case σK=K Seismogenic Volume Source Geometry

1 0 1000 × 1000 × 1000 km3 Point

1 1 Idem Point

1 2 Idem Point

2 0 1000 × 1000 × 10 km3 Point
2 1 Idem Point
2 2 Idem Point

3 0 Idem Square dislocation

3 1 Idem Square dislocation

3 2 Idem Square dislocation

aFor each scenario, 10 independent catalogs are drawn, containing
10,000 earthquakes each.
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L× L, still with L= 0.01 × 100.5m (in km), centered on the hypocenter. The strike is drawn uniformly in a 40o

interval, and the dip is uniform between 70° and 90°. The rupture cannot extend above z = 0 or below
z = 10 km and is made rectangular if it reaches these limits, keeping a L2 overall surface. Although reality is
far more complex, this case is intended to provide “Californian-like” catalogs. The point source assumption
made in cases 1 and 2, and, more importantly, in the analyzing model, is known to significantly affect
(Epidemic-Type Aftershock Sequences) ETAS-type inversions [Hainzl et al., 2008], and we thus need to
evaluate this specific limitation of the method.

We show in Figure 3 the estimated coefficient of variation Ĉ ¼ σK̂
K
versus the true coefficient C. The estimate is

reasonably good for C = 0 and 1 but becomes significantly too low for C = 2. For C = 0, the inverted Ĉ is
generally nonzero, since models with variable K are by construction much more flexible than those with
constant K. Thus, a non-Dirac distribution of K is effectively obtained, although its dispersion is limited.

Among all model parameters, α is the one suffering from the strongest error. As shown in Figure 4, it is (except
for one catalog among the 90 that were generated) always underestimated, the more so in case 3 for which
model errors are the strongest. Too low an α value gives too strong a role on small main shocks as triggers: as
a limit case, α = 0 would imply that all earthquakes trigger on average equal numbers of aftershocks, what-
ever the size of the main shock. Models with a low α value have a better ability to explain fluctuations in the
earthquake rate. This is best explained by considering the opposite situation of α≫ 1, so that only the largest

Figure 3. Estimated Ĉ versus the true coefficient of variation C, for the 90 synthetic catalogs. The dots have been slightly
shifted for clarity purposes (the true C is either 0, 1, or 2). The mean of Ĉ for each case (hence averaged over 10
synthetic catalogs) is shown with the outlined square boxes. The mean values and standard deviations of Ĉ are detailed
in Table 2. The diamonds refer to the mean of the estimated Ĉ in presence of model errors due to both the finite size of
the earthquake rupture (case 3) and fluctuations in the magnitude of completeness after large main shocks.3

Figure 4. Estimated α value, compared to true value α = 2. As in Figure 3, the dots have been slightly shifted to the right for
visual clarity (the true C is either 0, 1, or 2). The mean of α for each case is shown with the outlined square boxes.
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main shock has significant triggering capacity; any pattern in the time series distinct from an Omori-like
decay after this shock would then end up being not modeled. As a consequence, underestimated α values
yield flexible models that do not require extra variability in K, thus resulting in an underestimation of the

variability of K. This in particular can at least partly explain the low Ĉ found for C = 2.

3.2. Undetected Aftershocks

Helmstetter et al. [2006] found that the magnitude of completenessmc varies with time t after a main shock of
(large) magnitude m, according to

mc tð Þ ¼ m� δ� ϕ lnt (6)

for t in days, with δ = 4.5 and ϕ = 0.32 using the Advanced National Seismic System catalog for California
earthquakes. A similar relationship was found with the relocated data set of Hauksson et al. [2012] by
Hainzl [2016], albeit with a slightly smaller value for δ; we infer δ ≃ 4.2 by visual inspection of Figure 3 of
Hainzl [2016].

We apply themc(t) cutoff to our 90 synthetic catalogs of section 3.1, usingϕ = 0.32 and themore constraining
δ = 4.2 value (cf. Figure 1b for an example), and rerun the estimation of C. On average, 8821 earthquakes are

kept out of the initial 10,000. The estimated Ĉ is systematically larger than without undetected aftershocks, by

on average 0.20; this difference grows roughly as
ffiffiffî
C

p
. Interestingly, the estimated α value is not statistically

affected by this model error, increasing from 1.75 ± 0.12 on average to 1.82 ± 0.15: because of the limited
detection, the observed number of aftershocks is found to decrease uniformly, at first order, between all main
shocks regardless of their magnitude. Since periods following the largest earthquakes are more depleted of
aftershocks than other periods, this acts to strengthen the observed variability of triggering.

3.3. Variability in the Omori-Utsu Law

Our model only allows parameter K to vary between main shocks. The mean number of aftershocks directly
triggered by a main shock of magnitude m is N(m)=KeαmX, cf. equations (4) and (5). Large variations in N(m)
between main shocks of equal magnitudesm are, in our approach, accounted for by an appropriate variabil-
ity in K. However, parameters c and p are also potential sources of variability; we here address how these
variabilities interfere with the estimated distribution of K.

We show in Appendix C that a lognormal distribution of c with a coefficient of variation Cc¼ σc=c causes the

estimated K̂ (for an analyzing model with constant c) to also follow a lognormal distribution, with a coefficient

of variation C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

c

� � p�1ð Þ² � 1
q

, in the limit of an infinitely long observation time tmax. For realistic

values of p, i.e., close to 1, this implies only modest C values: for Cc = 1, we find C = 0.083 (for p = 1.1) and
C = 0.167 (for p = 1.2); for Cc = 2, i.e., a strong variability in c, we find C = 0.127 (for p = 1.1) and C = 0.255
(for p = 1.2). Since there exists a tradeoff between the distributions of K and c, we must keep in mind that

in our analysis which assumes a constant c value, a contribution (although likely small) in the estimated Ĉ
actually originates from the unmodeled variability in c. The two effects are impossible to distinguish, at least
in the absence of an independent estimate of the variability in c.

To evaluate the impact of a potential variability in p, we generate a new set of synthetic catalogs. Stability of
the model requires p> 1 [Zhuang et al., 2013]; moreover, even only a slight change in p can significantly

impact N(m), as it depends on p asN mð Þ∼ c1�p

p�1. We therefore assumes a p value uniformly distributed between

1 and 1.4. We draw 10 synthetic catalogs of case 1, with C = 0. We find that Ĉ ¼ 0:25±0:16, compared to Ĉ ¼
0:15±0:14without accounting for this model error. This extra variability is only marginal, especially given the
relatively large interval of p values.

3.4. Temporal Variations in Background Rate

We reanalyze the 90 synthetic catalogs of section 3.1, after removing all earthquakes with magnitude (i)
6.1<m< 6.4 and (ii) m> 6.4. The two tests (i) and (ii) are done separately. Removing an earthquake j from
the catalog implies that its aftershocks now result from a space and time-varying background rate μ equal
to νj, i.e., the direct effect of the removed main shock. Equation (1) then becomes
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λ x; y; z; tð Þ ¼ μ x; y; z; tð Þ þ
X
i=ti<t

νi x; y; z; tð Þ (7)

with

μ x; y; z; tð Þ ¼ μþ
X
j=tj<t

νj x; y; z; tð Þ; (8)

where the summation in equation (8) is now done on the removed main shocks j. We therefore simulate slow
slip events equivalent to magnitudes 6.1–6.4 (tests (i)) or greater than 6.4 (tests (ii)) earthquakes. On average,
there are (i) 1.22 and (ii) 1.26 such simulated slow slip events per catalog. The average total number of after-
shocks of the removed main shocks is 130 and 329, respectively, for tests (i) and (ii), which represents 1.3%
and 3.29% of the total seismicity. There are in effect more earthquakes belonging to these simulated bursts
of seismicity, as we here only count directly triggered aftershocks of removedmain shocks, hence without the
second (andmore) generations of aftershocks. This compares well with the estimated 2% of the regional seis-
micity found by Vidale et al. [2006] for southern California. Our analysis of these simulated catalogs shows that
ignoring temporal variations in background rate in the analyzing model has little effect on the estimated
variability of K; see Table 2.

3.5. Spatial Variations in Background Rate

The analyzing model assumes that μ is independent of location (cf. equation (1)). However, the back-
ground density is effectively nonuniform; it can be directly computed and mapped as a by-product of
our method, by smoothing ω0j, the probabilities to be a background earthquake. We here use a smooth-
ing length of 10 km, and an exponential smoothing kernel. As explained in section 4, the average ω0 of
ω0j over all 42,865 analyzed southern California earthquakes is constrained to equal 0.29. Based on this
nonuniform background density, we simulate 10 catalogs of 10,000 earthquakes, using a case 3 triggering
kernel, for three values of C (0, 1, and 2). As shown in Figure 3 and Table 2, this does not affect the

distribution of Ĉ.

We conclude these tests by emphasizing the fact that while model errors indeed affect the model parame-
terization, our method provides a reasonable estimate of the variability of K, at least when C = 0 or 1, but
underestimates it for stronger variability (e.g., C = 2), the underestimation caused by the nonisotropic nature
of the earthquake rupture dominating the overall error for this level of variability. It is therefore relatively
robust, even though it requires the nontrivial inversion of the full branching structure in presence of
variable triggering.

Table 2. Estimated Coefficient of Variation Ĉ, Compared to the True Value C, for the Proposed Three Cases for the Spatial
Distribution of Earthquakes (see Table 1)a

C = 0 C = 1 C = 2

Case 1 0.15 ± 0.14 0.94 ± 0.07 1.31 ± 0.04
0.29 ± 0.20 1.17 ± 0.11 1.53 ± 0.15
0.16 ± 0.14 0.98 ± 0.08 1.34 ± 0.06
0.27 ± 0.31 1.03 ± 0.15 1.38 ± 0.06

Case 2 0.13 ± 0.07 0.91 ± 0.06 1.45 ± 0.06
0.18 ± 0.17 1.19 ± 0.17 1.73±0.12
0.21 ± 0.18 1.03 ± 0.07 1.44 ± 0.05
0.17 ± 0.14 1.08 ± 0.18 1.50 ± 0.10

Case 3 0.34 ± 0.25 0.91 ± 0.10 1.30 ± 0.05
0.47 ± 0.29 1.10 ± 0.27 1.60 ± 0.13
0.37 ± 0.29 0.93 ± 0.10 1.31 ± 0.06
0.37 ± 0.34 0.94 ± 0.13 1.31 ± 0.06
0.31 ± 0.18 0.98 ± 0.10 1.34 ± 0.07

aFirstvalue:withnoothermodelerrors. Secondvalue:withundetectedaftershocks, accordingto themc(t) relationshipof
equation (6). Third value: after removing 6.1<m< 6.4 main shocks to simulate a space-time varying background rate μ.
Fourth value: after removing m> 6.4 main shocks. Fifth value: using a spatially nonuniform background density. Table
entries in italics give values corresponding to model errors.
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4. Analysis of California
Earthquakes and
Relationship With
Stress Drops

We analyze the data set of earth-
quakes in California, 1981–2016, by
Hauksson et al. [2012]. Inspecting
the magnitude-frequency relation-
ship, we find a completeness magni-
tude of mc = 2.5 for the 35 year long
period. We thus analyze the 42,865
earthquakes withm≥ 2.5. The estima-
tor of Hainzl et al. [2006] gives a mean
probability to be a background earth-
quake of ω0 = 0.29.

We apply our method to find Ĉ
¼ 1:05, cf. Figure 5. We vary ω0, also

testing ω0 = 0.2 and ω0 = 0.4, as well as halving or doubling the characteristic lengths L, to measure the

sensitivity of Ĉ to these parameters. This yields a range of 0:99≤Ĉ≤1:11. As the tests have shown, this value

is possibly underestimated, although the bias cannot be known. The mean of K̂ is 0.0082, giving an estimated
branching ratio of 0.74; we moreover obtain p = 1.24 and c = 0.039 days.

Figure 6 suggests that at large magnitudes, the distribution of K can be modeled as lognormal, above the
censoring value K0. A Kolmogorov-Smirnov test cannot reject the null hypothesis that this distribution is
lognormal with censoring, at the 95% significance level. A similar result is found for a chi-square test with
discretization intervals counting at least five main shocks. However, given the size of the samples (120 and
38 main shocks, respectively), it is difficult to assess whether the distributions are indeed lognormal or could
be better fitted by other functional forms. As demonstrated by the tests of section 3 (cf. Figure 1), censoring,
especially at small magnitudes, causes the distribution of K to deviate from a pure, uncensored lognormal
distribution. Moreover, even though a censored lognormal form describes the distribution of K well, at least

at first order for m≥ 5 and m≥ 5.5 main shocks, we note that these two distributions give underestimated Ĉ

values: for m≥ 5, we obtain that
σK̂
K

¼ 1:01, while
σK̂
K

¼ 0:93 form ≥ 5.5. This demonstrates the need to fit the

σK̂
K

versus m curve as a whole (as we do, cf. Appendix B), rather than only considering values at specific

magnitude cutoffs.

Figure 5.
σK̂
K

versus main shock magnitude cutoff m, for the earthquake

catalog of Hauksson et al. [2012]. The error bars are proportional to
σK̂ffiffiffiffiffiffiffiffiffiffiffi
n mð Þp

as in Figure 2. The best fit with equation (B1) is shown with the black line and

yield an estimated Ĉ ¼ 1:05 (dashed lines). The distributions of K corre-
sponding to the two C values computed at m = 5 and m = 5.5 (arrows) are
shown in Figure 6.

Figure 6. Distribution of main shocks with magnitude (left) m ≥ 5 and (right) m ≥ 5.5, which Ĉ values are indicated with
arrows in Figure 5. The best lognormal fits are shown in magenta and yield

σK̂
K

¼ 1:01 and
σK̂
K

¼ 0:93, respectively, show-

ing that a direct estimation of C based on the lognormal distribution of K for a single main shock magnitude cutoff can be

unstable and little accurate.
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We investigate possible spatial dependences of the variability of K, by running the estimation provided by
equation (B1) on individual square areas with 20 km length, only keeping those cells that are populated by

at least 100 earthquakes; see Figure 7. We do not find any clear pattern, as most areas exhibit a Ĉ value in
the 0.9–1.2 interval with a mean of 1.09, hinting at a limited control by tectonic factors on this local variability.
Most notably, the variability of K does not appear to be particularly high in the Salton Trough area, known for
its high surface heat flow and its swarm-like seismicity. Heat flow is known to correlate with both the charac-
teristics of aftershock triggering (in numbers, cf. Boettcher and Jordan [2004] andMcGuire et al. [2005], and in
temporal dependence, e.g., the p value of the Omori-Utsu law, cf. Kisslinger and Jones [1991]) and the average
stress drop [Oth, 2013; Hauksson, 2015]. Moreover, large variations in stress drop have been observed in
geothermal areas, likely linked to variations in pore pressure [Chen and Shearer, 2011; Lengliné et al., 2014],

that could also affect the triggering
of aftershocks. Productivity variability
displays a clear dependence with
depth; see Figure 8, with little varia-
bility at shallow depth (z< 5 km).
We did not find any such depen-
dence in the synthetic catalogs (cases
2 and 3 that are limited to 0–10 km in
depth). This feature is not simply due
to a lack of resolution at these
depths, as the number of earth-
quakes rapidly increase after the first
2 km, and similar low numbers of
earthquakes at greater depths
(z ≥ 14 km) yield much larger variabil-

ity coefficients Ĉ.

It can be expected that the number
of aftershocks depends on the main
shock stress drop, which we here
denote τ. We now address the ques-
tion as to how much the variability
of τ could contribute to the variability
of K. Rate-and-state friction models
predict that on the long term, the
total number of earthquakes

Figure 7. Estimated coefficient of variation Ĉ of the triggering prefactor K for individual square areas of 20 km length that
count at least 100 earthquakes. We define a grid with 10 km spacing, so that cells overlap; we thus map the cells with 10 km
instead of 20 km length, even though they really are 20 × 20 km2 cells. The black dots are all earthquakes with m ≥ 4.

Figure 8. Dependence on depth of (top) the number of earthquakes and the
median stress drop, and (bottom) the coefficient of variation Ĉ. The fit pro-
vided by equation (B1) is run on successive 1 km-wide intervals.
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triggered by a stress step is proportional to the stress step, even when it is accompanied by a change in stres-
sing rate as expected during seismic swarms [Helmstetter and Shaw, 2009]. For a dislocation of size L and slip
u, the stress change is proportional to u/L and affects a volume that scales with L. We assume a fractal distri-
bution of target faults around the dislocation, such that their number grows as LD. The value of D was found
to be 1.65 by bothMarsan and Lengliné [2010] andMoradpour et al. [2014], for which we infer this value from
the r�1.35 decay of the linear density on the intermediate regime (Figure 3 of Moradpour et al. [2014], for
100 m < r < 10 km, for 3 < m < 4 main shocks), in both cases for relocated California earthquake data sets.
Alternatively, Ouillon and Sornette [2011] find D = 1.85 for the fault network activated during the 1986 Mount
Lewis sequence in northern California, while Hainzl et al. [2014] suggest that D = 1.8 for the distribution of
faults in southern California. The number of aftershocks N thus depends on stress drop τ and fault length L
as N∝ τLD. We now proceed to express N as a function of the two variables τ and M0 instead of τ and L, so
to address how it depends on stress drop and magnitude. The seismic moment scales as M0∝ uL

² [Aki,

1967], and τ ∝ u/L, thus L∝ M0
τ

� �1=3
. This implies that N∝τLD∝τ1�D=3MD=3

0 . The relationship between seismic

moment M0 and local magnitude m is of the form M0∝ 10
γm, with γ typically ranging from 1 to 1.5 [Prieto

et al., 2004; Shearer et al., 2006]. We observe that N∝ eαm at constant stress drop, hence N∝Mα=γ ln10
0 , i.e., D ¼

3α
γ ln10. The dependence of K on τmust therefore be of the form K∝ τ1� α/γ ln 10. For 1.65 ≤D ≤ 1.85 and 1 ≤ γ ≤ 1.5,
we find that 1.26 ≤ α ≤ 2.12. Our estimated α is 1.38, although we have shown in section 3 that the estimated α
is generally significantly lower than the true value (cf. Figure 4). Publishedmaximum likelihood estimates of α
for California typically range from 1.1 to 2.0 [Marsan and Lengliné, 2008; Werner et al., 2011; Woessner et al.,
2011; Hainzl et al., 2013; Schoenberg, 2013], depending on the method, the underlying assumptions, and
the data set analyzed. The expected 1.26 ≤ α ≤ 2.12 interval is therefore coherent with independent estimates
of α. Based on this argument, we obtain that K scales as τa, with 0.38 ≤ a ≤ 0.45.

An alternative interpretation of our results comes from the observation that the spatial clustering of earth-
quakes is multifractal rather than monofractal [Hirata and Imoto, 1991; Hirabayashi et al., 1992; Hooge et al.,
1994; Legrand et al., 1996; Pasten and Comte, 2014], in which case our previous argument implies that a
distribution of fractal dimensions D should give a distribution of α parameters. Local α values are thus
expected; the productivity law for any earthquake of index i is then Ni¼ Kieαmi . Assuming a constant α value
as we do in our analysis would then artificially increase the estimated variability of K. A model in which K and α
are both variable is however not tractable: the two parameters cannot be separated on the sole basis of
counting aftershocks. We thus must be cautious that our model with variable K and constant α is only an
efficient representation of a possibly more complex reality.

Stress drop variability for California earthquakes has been studied by Shearer et al. [2006], for magnitude 1.5
to 3.1 events occurring in 1989–2011. As is very generally the case [e.g., Allmann and Shearer, 2007, 2009;
Baltay et al., 2011; Oth et al., 2010], a lognormal distribution of τ was observed, here with a standard deviation
σlnτ = 1.52, but reducing to σlnτ =1.10 for the best recorded shocks (i.e., with at least 20 readings). The latter
criterion resulted in removing outliers, hence a better fit with a lognormal law, and a reduction of the disper-
sion. Taking σlnτ =1.10 and K∝ τawith a = 0.4 implies that σlnK= 0.44 if the variability of Kwas solely due to the

variability in stress drop. As σ lnK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ C²
� �r

for lognormal laws, Ĉ≃1:05 translates into σlnK≃ 0.86. The

contribution of stress drop variability to the overall variability of triggering would thus amount to about
50%, according to our analysis. A direct relationship between individual values of τ and K is not investigated
here: for the ML ≤ 3.1 magnitude interval explored in Shearer et al. [2006], the individual K values are badly
resolved, cf. Figures 1c and 1d, owing to the censoring effect, cf. Appendix B. Only the overall level of varia-
bility, measured with the coefficient of variation C, can be correctly estimated even in the presence of this
censoring, as demonstrated by Figure 1 and more generally the tests of section 3.

Finally, we note that the dependence of median stress drop with depth of Shearer et al. [2006] bears some

similarity with the observed dependence of Ĉ with depth; the correlation between the two quantities is
57%, cf. Figure 8. Shearer et al. [2006] commented that the increase of median stress drop with depth, at
shallow depth (z ≤ 8 km), is a robust feature of their analysis. Earthquakes occurring at shallow depths were
found to be relatively depleted in high frequencies, which could potentially impact their capacity to trigger
large numbers of aftershocks, hence reducing the variability of aftershock productivity.
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5. Discussion and Conclusions

The estimation of K for individual earthquakes is a delicate issue, as relaxing the K = constant hypothesis
classically done in ETAS modeling implies that the model becomes very flexible, and possibly nonrobust.
Our approach was here to decipher the branching structure of triggering from the data, using a 3-D
space-time ETAS model. Other models could be used to do so [Marsan and Lengliné, 2008; Zaliapin and
Ben-Zion, 2013]. Trade-offs between model parameters are observed when analyzing synthetic data sets,
especially when model errors are introduced, leading to an underestimation of the variability of K. The

fact that Ĉ is actually below the real C value (see Figure 3) is a positive feature, as it implies that the
model does not overfit the data, i.e., generating an ad hoc and trivial representation of the earthquake
time series.

The estimated variability of K exhibits robust features: K values are distributed lognormally above censoring,
when this censoring for small main shocks is not strong, and the variability is at first-order independent of
location, although a correlation with depth is noted. A coefficient of variation C of 1.05, possibly increasing
up to 1.5 if accounting for errors in the modeling of the earthquake time series, is found. Aftershock produc-
tivity does thus vary substantially from one main shock to the other (of equal magnitudes): for C = 1.5 and a
lognormal distribution of K, 58% of main shocks trigger less than half or more than twice the mean number of
direct aftershocks; this probability is still 6% for gains in numbers of aftershocks greater than 10 times or less
than 1/10 of the mean.

The fact that both K and stress drop follow lognormal distributions, along with intuitive and physical argu-
ments, point to a significant correlation between the two. A simple model predicts that 40% to 80% of the
variability of K could be caused by stress drop variability.

Spurious apparent variability of K could be caused by using a triggering model with spatially and tempo-
rally uniform parameters. If any one of the model parameters (in particular α, p, and μ in our case)
depends on the location and/or is subject to temporal fluctuations, the estimated variability of K will
automatically increase, which is the only model parameter that can vary from one main shock to the
other. While α values are difficult to estimate, and their actual geographical or temporal variability is
therefore little known (see however Wang et al. [2010], for large-scale variations, and Enescu et al.
[2009] and Hainzl et al. [2013] for its dependence on heat flow), p and μ are known to exhibit significant
variabilities. Previous analyses suggest that the p value could depend on the faulting style [Tahir and
Grasso, 2015], on the surface heat flow [Kisslinger and Jones, 1991], on the magnitude of the main shock
[Ouillon and Sornette, 2005; Hainzl and Marsan, 2008], on depth (P. Shebalin, personnal communication),
and even possibly on rupture frictional heating [Wiemer and Katsumata, 1999]; c has also been reported
by Narteau et al. [2009] to vary with the tectonic regime, which could impact the estimated p values as
both parameter estimates are strongly correlated. A theoretical dependence of c on main shock and
aftershock magnitudes is also argued by Davidsen and Baiesi [2016] to be required in order to preserve
the self-similar scaling of earthquake triggering laws. The μ parameter is also known to exhibit spatial
variability at all scales [e.g., Zhuang et al., 2002; Helmstetter and Werner, 2012], as well as large temporal
fluctuations, especially during swarms, as it models the tectonic as well as the potentially rapidly varying
aseismic forcing [Reverso et al., 2015]. Swarm activity exists in California [Vidale and Shearer, 2006], and so
this could affect our analysis. Given the difficulty to invert the branching structure for a K-variable model,
we do not attempt at further complexifying it and therefore do not explore even more flexible models
with nonconstant α, p, or μ parameters that could yield a weaker variability of the productivity K factor.
Since the actual variability of these parameters is unknown, we cannot infer at this stage how they
would affect our results. We emphasize that our estimation of the variability of K for southern
California earthquakes relies on the assumption of an otherwise (i.e., apart from K) homogeneous and
stationary model.

Appendix A: Computation of the Numbers of Aftershocks Ni
Given the earthquake data set {ti,mi,xi,yi,zi}, the goal is here to estimate, for each earthquake i, the number Ni

of its aftershocks. This is a delicate issue, especially as we here relax the hypothesis that the prefactor K is the
same for all earthquakes. Doing so, we add as many unknowns as there are earthquakes in the catalog,
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making this problem highly nontrivial. We show in sections 2 and 3 that while the individual values of K are
generally badly estimated, its overall distribution can be recovered, at least when considering the largest
main shocks. Moreover, the coefficient of variation characteristic of this distribution can be relatively
well estimated.

We model seismicity with equations (1) and (2). We start with an initial guess on the model parameters {α, p,
c}, and on the spatial kernel f(s). The prefactors Ki are initially assumed to be all equal, the chosen value K

mattering not. The algorithm consists in iterating three steps: (a) given the values ki¼ Ki=K, we draw a reali-
zation of the branching structure; (b) we optimize the model parameters for this drawn structure; and (c) we

finally update the prefactors ki¼ Ki=K .

Step A. We first need to compute the probabilities ωij that earthquake i triggered earthquake j, defined as

ωij ¼ νij
μþ

X
k<j

νkj
, where νij=νi(xj,yj,zj,tj), cf. equation (2), for all pairs {i,j}. The direct estimation of μ would

consist in dividing the number of background earthquakes by the duration of the catalog and by the
seismogenic volume, i.e., the total volume in which earthquakes can occur. This latter quantity is difficult
to evaluate, and we therefore follow an approach that avoids the determination of this volume: instead of

estimating μ, we compute the ratio μ=K . The probabilities ωij can then be rewritten as

ωij ¼ νij ’

μ=K þ
X
k<j

νkj ’

with

νij ’ ¼ Ki

K
eαmi tj þ c � ti

� ��p
f i xj; yj; zj
� �

Similarly, the probability that earthquake j is a background earthquake is

ω0j ¼ μ=K

μ=K þ
X
k<j

νkj ’

so that ω0j þ
X
i<j

ωij ¼ 1. We invert the ratio
μ
K
by constraining

ω0 ¼ 1
N

X
j

ω0j ¼ E tiþ1 � tif g2
var tiþ1–tið Þ [Hainzl et al., 2006]. This then permits the full knowledge of all ωij values.

To speed up the processing, we draw a random realization of the branching structure, by attributing one
single parent to all earthquakes. For each earthquake j, a unique parent of index i (with 1 ≤ i< j), or i = 0 if j
is background, is drawn, using the probabilities ωij and ω0j.

Step B. The model parameters {a,p,c}, and f(s), are optimized. Parameters p and c are found by fitting the

density f t tð Þ ¼ p�1
c1�p t þ cð Þ�p to the time lags δtj=tj� ti between earthquake j and its parent i. We here do

not account for the finite observation time; although the estimates of p and c are improved when using finite
observation times, the final estimate of Ki and its distribution is only very marginally affected, while the
computation time is significantly reduced in the infinite observation time limit we adopt here. Maximizing

the likelihood ∏
j
f t δtj
� �

is then equivalent to solving the equation in c:

c E
1

δtj þ c

� �
lnc–1–E ln δtj þ c

� �	 
� �þ 1 ¼ 0:

The estimate of c is then used to compute the estimate of p as follows:
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p ¼ 1

1–cE 1
δtjþc

n o :

Given the drawn branching structure, the number of aftershocks Ni is known for each earthquake, as is the

expected number eNi¼ Kie
αmiXi , where Xi ¼ Tþc�tið Þ1�p�c1�p

1�p and Ki¼ Kki . Maximizing the likelihood ∏
i
e�eNi

eNi
Ni

Ni!
with respect to α and K yields that parameter α must be such that

X
i

Nimi�
X
i

K ie
αmi Xi ¼

X
i

Ni�
X
i

miKie
αmiXi:

We numerically solve this equation to obtain α. We emphasize that parameter K can also be optimized along

α, although it is not required in this treatment: in step (A), only the valueski¼ Ki=K are needed, independently

of K .

Finally, we fit a piecewise-constant spatial kernel f(s) to the data. The kernel is defined as f(s)=fk for Sk ≤ s< Sk + 1,

with Sk¼ S1
Snþ1
S1

� �k�1=n
, for 1 ≤ k< n+ 1. This defines n nonoverlapping intervals, ranging from S1 to Sn+1. The

distances rij from earthquake j to its parent i are normalized by the rupture lengths Li ¼ 0:01�100:5mi (in
km): sij=rij/Li. We then count the number of sij falling into each interval Sk ≤ s< Sk + 1 and obtain the density

by normalizing with the volume4
3 π S3kþ1–S

3
k

� �
. We take n = 20 and define S1 asminij{sij> 0} and Sn + 1 =maxij{sij}.

Step C. Knowing the numbers of aftershocks Ni and the model parameters, the prefactors Ki are estimated as

Ki ¼ Ni
eαmi Xi

.

Steps (A) and (B) are iterated until the parameter estimates converge. Step (C) is then processed. The full loop
is then iterated; we found that three iterations are sufficient to obtain a stable distribution of K for catalogs
made of a few tens of thousands earthquakes.

Appendix B: Estimator of the Coefficient of Variation
We here describe the estimator of the coefficient of variation, and how this estimation is performed, in an
ideal case where there are no model errors, i.e., the estimated model parameters are exact, so that the exact
number of aftershocks Ni is known for all main shocks i.

For a given earthquake i characterized by {ti,mi}, the expected number of triggered aftershocks isΛi¼ Kieαmi Xi

withXi ¼ tmaxþc�tið Þ1�p�c1�p

1�p for p≠ 1, or Xi= ln(tmax + c� ti)� ln c for p = 1. Instead of Λi, we observe a realization

Ni of a Poisson law with mean Λi [Feller, 1968]: Ni= Poisson(Λi). Our estimated K̂ i is defined as K̂ i ¼ Ni

eαmi Xi
.

Parameter Ki is a random law with mean K and standard deviation σK. This makes Λi random. We distinguish
two types of averages:

1. E{.} the sample mean, i.e., averaging over the earthquakes i;
2. E<.> the ensemble average, which correspond to averaging over independent realizations of {K1,K2,… ,

Kn}, keeping {ti,mi}, hence eαmi and Xi, fixed.

In practical situations, only E type averages can be computed. We thus define estimators of K and σK using
such E<.> type averages and calculate their biases with E{.} type averages, both types of average being
conditioned on the minimum magnitude.

First-order moment:

The sample mean of K̂ i is E K̂ i j mi ≥ m
� � ¼ 1

n mð Þ
X

i=mi ≥ m

Ni

eαmiXi
, with n(m) the number of earthquakes with

mi ≥m. Its ensemble average is E E K̂ i j mi≥m
� �	 
 ¼ 1

n mð Þ
X

i=mi ≥ m

E Nif g
eαmiXi

. Since E Nif g ¼ E Λif g¼ KeαmiXi ,
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we simply find that E E K̂ i j mi ≥ m
� �	 
 ¼ K , i.e., E K̂ i j mi ≥ m

� �
is an unbiased estimator of K , which

random fluctuations around K decrease as n(m) increase (i.e., as m decreases).

Second-order moment:

As with the first-order moment, it is straightforward to show that E E K̂ i
2 j mi≥m

D En o
¼ 1

n mð Þ
X

i=mi≥m

E N2
i

	 

e2αmi X2

i

. Since Ni is a Poisson law, we get that E N2
i

	 
 ¼ E Λ2
i

	 
þ E Λif g¼ e2αmi X2
i K

2þeαmiXiK .

Therefore, E E K̂ i
2 j mi≥m

D En o
¼ K

2 þ KE eαmiXið Þ�1 j mi≥m
� �

. For n(m)≫ 1, the variability of E averages

becomes small, and we approximate E
σ2
K̂

K
2 mij ≥ m

( )
with

σ2K
K
2 þ

1

K
E eαmiXið Þ�1 j mi ≥ m
� �

. The estimator
σ2
K̂

K

is thus biased, but with a bias which ensemble average can be approximated. The method we follow is thus

to compute the conditioned
σ2
K̂

K
for various cutoff magnitudesm and fit the resulting

σ2
K̂

K
versusm curve (in log

scale) with

σ2
K̂

K
¼ Ĉ2 þ 1

K
E eαmi Xið Þ�1 j mi ≥ m
� �

; (B1)

to obtain the estimated coefficient of variation Ĉ . We weight the
σ2
K̂

K
values with

n mð Þ
σ2
K̂

to account for the
decaying error at large n(m).

We illustrate this method in a simplistic case with α = 2, p = 1.1, and c = 10�4, and the magnitudes mi drawn
from a Gutenberg-Richter law with b = 1 starting at m = 0. Only the main shocks are simulated, occurring at
times ti uniformly distributed between 0 and 1000. The prefactors Ki are drawn from a lognormal law with

C ¼ σK
K
equal to 0, 1, or 2, depending on the run. We perform 1000 realizations of the data set for each value

of C, each data set counting 1000 main shocks. As already indicated at the beginning of this Appendix, the

estimated N̂i is here taken equal to the true Ni (no model errors), i.e., we assume a perfectly accurate esti-

mation of the numbers of aftershocks. For each catalog, we then calculate
σK̂
K

and compute the best fit with

the model of equation (B1) in log scale, i.e., we fit log
σK̂
K̂

 �
with log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ2 þ 1

K
E eαmiXið Þ�1 j mi≥m
� �r !

; a

L1-norm is used for this fit, as experiencing with this norm as well as with the more classical L2-norm gave
marginally better results for our tests as described in section 3. We show in Figure B1 the resulting distribu-

tion of Ĉ, proving that the estimation is robust.

Figure B1. Estimated coefficient of variation Ĉ for 1000 realizations of a synthetic data set, for three values of C = 0, 1, and 2.
The best Gaussian fits are shown in magenta, and the means are indicated with the dashed lines.
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Appendix C: Variability in K Caused by Fluctuations in c
We here investigate how a variable c parameter affects the estimation of the variability of K. We recall that N

(m)=KeαmX (equation (4)) and that X ¼ c1�p

p�1 in the limit of tmax→∞ and for p≠ 1. Fluctuations in c, for all

parameters fixed, thus generate variability in N. Our analyzing model does not admit any variability in c

but does so for K. The estimated K̂ then depends on c as K̂∼cp�1. We assume c to be lognormally distributed:
c= ex with x a normal law with mean μx and standard deviation σx. The coefficient of variation Cc of c is then

Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσx² � 1

p
. Since K̂∼cp�1, this causes K̂ to be lognormally distributed too: K̂ ¼ ey , with y a normal law of

mean (p� 1)μx and standard deviation (p� 1)σx. The coefficient of variation C of K̂ is C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eσ

2
y � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e p�1ð Þ2σ2x � 1

p
, and thus, we finally obtain that C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

c

� � p�1ð Þ² � 1
q

:
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