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Abstract—Magnetohydrodynamic (MHD) turbulence is an in-
trinsic part of astrophysical phenomena, which plays a crucial
role is the generation of cosmic magnetic fields. The two-scale
dynamo concept suggests that the small scale interactions are
demanded to drive the large scale magnetic fields of planets, stars
and galaxies. Since experimental study of MHD turbulence is
almost impossible the numerical simulation is only a way to verify
theoretical ideas and phenomenology. The purpose of this work
is to demonstrate the possibilities of direct numerical simulation
of MHD turbulence using the TARANG code (open source
software). We focus on mathematical formulation and the built-in
postprocessing functions for analysis of spectral distributions and
transfers of energies and helicities in the forced 3D homogeneous
isotropic MHD turbulence.

Index Terms—direct numerical simulations, MHD turbulence,
pseudospectral code, energy and helicity spectral transfers

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is an intrinsic

part of astrophysical phenomena, which plays a crucial role

is the generation of cosmic magnetic fields. The two-scale

dynamo concept suggests that the small scale interactions are

demanded to drive the large scale magnetic fields of planets,

stars and galaxies [1], [2]. Current phenomenology obtained

for the mean hydrodynamic flows has a satisfactory agreement

with experiment and allows to solve various engineering prob-

lems. However, the permanent complication of technology and

the optimization of parameters require more precise solutions.

The intensive development of computer technology in recent

decades has brought to the forefront computer modeling as

the main research tool. For MHD turbulence this is especially

important, since conducting a laboratory experiment is almost

impossible [3]. Description of turbulent flows of a continuous

medium remains one of the most acute modern problems of

the mechanics of gas, liquid, and plasma. The problems to

be solved concern both the fundamental questions of geo-

and astrophysics, and the applied problems arising in the

development of new technologies.

Software packages of applied problems have become widely

spread, allowing to take into account the turbulent nature of the

motion. Typically the task is not solved in all its details, but a

certain model of turbulence is used. In problems with complex

geometry or in case of several active fields (convection, MHD,

active chemistry) verification is required. This might be done

experimentally, which is usually very expensive or impossible

at all, or resort to complete direct numerical modeling. In

the latter case, the success of a study will depend on the

computational efficiency of the method and the flexibility in

the formulation of the numerical setup.

At present, methods that are applicable for direct numerical

simulation are constantly developing. Most codes are based

on numerical algorithms using finite elements, finite volumes,

finite differences or spectral representation. A comparative

analysis of these methods involves a lot of research, which are

not discussed here. The purpose of this work is to demonstrate

the possibilities of direct numerical simulation of turbulence
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using the TARANG code [4]. Its advantages include: top per-

formance and scalability characteristics, multi-physics, open

source software is freely distributed, constantly updated by

an actively working group of researchers, has a transparent

configuration for rapid development and use. In this paper, we

focus on the built-in postprocessing functions for analysis of

spectral distributions and spectral energy and helicity transfers

in homogeneous and isotropic MHD turbulence forced in a

cubic region with periodic boundaries. As far as we know,

such self-consistent mathematical description and numerical

realization is suggested for the first time.

II. MATHEMATICAL FORMALISM

A. MHD equations

The MHD equations that describe the dynamics of an

incompressible and electrically conducting fluid are given by

∂u

∂t
= −∇P + u× ω + J×B+ ν∇2u+ F, (1)

∂B

∂t
= ∇× (u×B) + η∇2B, (2)

∇ · u = 0, (3)

∇ ·B = 0, (4)

where u is the velocity, P is the normalized pressure ( p/ρ0),

B is the normalized magnetic field (b/
√
μρ0), J = ∇ × B

is the current density, ω = ∇ × u is the vorticity and F
is the external force. Here ρ0, ν, and η = (σμ)−1 denote

the fluid mean density, the kinetic viscosity, and the magnetic

diffusivity, σ and μ being the electrical conductivity and the

magnetic permeability.

We decompose the velocity and magnetic fields in the

Fourier space as

u(r, t) =
∑
k

u(k, t) exp(ik · r), (5)

B(r, t) =
∑
k

B(k, t) exp(ik · r), (6)

where the wavevector k = (kx, ky, kz) satisfies

kx =
2πl

Lx
; ky =

2πm

Ly
; kz =

2πn

Lz
, (7)

Lx × Ly × Lz denoting the box size and l,m, n being

integers. For convenience the Fourier coefficients u(k, t) and

B(k, t) will be denoted u(k) and B(k), with implicit time

dependency. This convention is followed throughout the paper.

In Fourier space (1) to (4) take the following form

u̇(k) =
∑
�kpq

u∗(p)× ω∗(q) + J∗(p)×B∗(q)

− iP (k)k− ν|k|2u(k) + F(k), (8)

Ḃ(k) = ik×
∑
�kpq

u∗(p)×B∗(q)− η|k|2B(k),(9)

k · u(k) = 0, (10)

k ·B(k) = 0, (11)

where each sum denotes a double sum on all p and q forming

a triad with k satisfying k+ p+ q = 0, the dotted u and B
denoting their time derivatives and the asterisk the complex

conjugation. This from of equations implies invariance in

exchanging p and q.

The Fourier coefficients of the vorticity and current density

fields take the following form

ω(k) = ik× u(k), J(k) = ik×B(k). (12)

B. Energies transfers

The kinetic and magnetic energies are defined by

EK(r) =
1

2
u2, EM (r) =

1

2
B2. (13)

Their Fourier coefficients take the following form

EK(k) =
1

2
�{u(k) · u∗(k)}, (14)

EM (k) =
1

2
�{B(k) ·B∗(k)}, (15)

where � denotes the real part. After (8) and (9) we find

d

dt
EK(k) =

1

2
�{u̇(k) · u(k)}

=
1

2

∑
�kpq

�{(u(p),ω(q),u(k))}

+
1

2

∑
�kpq

�{(J(p),B(q),u(k))}

− ν|k|2EK(k), (16)

d

dt
EM (k) =

1

2

∑
�kpq

�{(u(p),B(q),J(k))}

− η|k|2EM (k), (17)

where (·, ·, ·) denotes the vector triple product. As (16) and

(17) must be invariant exchanging p and q, they can be written

as (
d

dt
+ 2ν|k|2

)
EK(k) =

1

2

∑
k=p+q

SEK
(k|p,q) (18)

(
d

dt
+ 2η|k|2

)
EM (k) =

1

2

∑
k=p+q

SEM
(k|p,q) (19)

where SEK
(k|p,q) and SEM

(k|p,q) are the kinetic and

magnetic energy transfer rates from modes p and q to mode

k. They are respectively defined by

SEK
(k|p,q) = Su

EK
(k|p,q) + SB

EK
(k|p,q) (20)

with

Su
EK

(k|p,q) = �{(u(p),ω(q),u(k))}
+ �{(u(q),ω(p),u(k))}, (21)

SB
EK

(k|p,q) = �{(J(p),B(q),u(k))}
+ �{(J(q),B(p),u(k))}, (22)
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and

SEM
(k|p,q) = �{(u(p),B(q),J(k))}

+ �{(u(q),B(p),J(k))}. (23)

The kinetic energy in mode k is transfered from or towards the

other modes p and q via two types of non linear interactions

Su
EK

(k|p,q) and SB
EK

(k|p,q). For B = 0 only Su
EK

(k|p,q)
remains. The magnetic energy in mode k is transfered from or

towards the other modes p and q via the non linear interaction

SEM
(k|p,q).

C. Helicities transfers

The kinetic helicity HK , the magnetic helicity HM and the

cross helicity HC play important roles in MHD turbulence

since they are conserved in a limit of zero viscosity and

diffusivity (it is true for HK at B = 0 only). In real space

helicities are defined as

HK(r) =
1

2
ω · u, (24)

HM (r) =
1

2
A ·B, (25)

HC(r) = u ·B, (26)

where A is the magnetic vector potential (under the Coulomb

gauge ∇ · A = 0) defined by B = ∇ × A and its Fourier

coefficient takes the form

A(k) =
1

|k|2 ik×B(k). (27)

Their Fourier coefficients take the following form

HK(k) =
1

2
�{u(k) · ω∗(k)} = 1

2
�{ik,u(k),u∗(k)} (28)

HM (k) =
1

2
�{A(k) ·B∗(k)}

=
1

2|k|2�{ik,B(k),B∗(k)}, (29)

HC(k) =
1

2
�{u(k) ·B∗(k)}. (30)

Finally the time evolution of HK(k), HM (k) and HC(k)
take the form(

d

dt
+ 2ν|k|2

)
HK(k) =

1

2

∑
k=p+q

SHK
(k|p,q), (31)

(
d

dt
+ 2η|k|2

)
HM (k) =

1

2

∑
k=p+q

SHM
(k|p,q), (32)

(
d

dt
+ (ν + η)|k|2

)
HC(k) =

1

2

∑
k=p+q

SHC
(k|p,q), (33)

where kinetic helicity transfer rate SHK
(k|p,q) and cross

helicity transfer rate SHC
(k|p,q) can be split in two parts

SHK
(k|p,q) = Su

HK
(k|p,q) + SB

HK
(k|p,q), (34)

SHC
(k|p,q) = Su

HC
(k|p,q) + SB

HC
(k|p,q), (35)

each part being defined as

Su
HK

(k|p,q) = �{(u(p),ω(q),ω(k))}
+ �{(u(q),ω(p),ω(k))}, (36)

SB
HK

(k|p,q) = �{(J(p),B(q),ω(k))}
+ �{(J(q),B(p),ω(k))}, (37)

SHM
(k|p,q) = �{(u(p),B(q),B(k))}

+ �{(u(q),B(p),B(k))}, (38)

Su
HC

(k|p,q) = �{(u(p),ω(q),B(k))}
+ �{(u(q),ω(p),B(k))}
+ �{(u(p),B(q),ω(k))}
+ �{(u(q),B(p),ω(k))}, (39)

SB
HC

(k|p,q) = �{(J(p),B(q),B(k))}
+ �{(J(q),B(p),B(k))}. (40)

Having definitions (21)-(23) and (36)-(40) one can introduce

the mode-to-mode transfers and fluxes which define scale

exchanges of velocity and magnetic fields by energy and

helicities. Kinetic energy transfer can be expressed as

Su
EK

(k|p,q) = Tu
EK

(k|p|q) + Tu
EK

(k|q|p), (41)

where Tu
EK

(k|q|p) is the kinetic energy transfer from mode

p (the giver) to mode k (the receiver) via the mode q (the

mediator). Then from Eq. (21) we can define

Tu
EK

(k|p|q) = �{(u(q),ω(p),u(k))}, (42)

Tu
EK

(k|q|p) = �{(u(p),ω(q),u(k))}. (43)

It satisfies necessary condition

Tu
EK

(k|p|q) = −Tu
EK

(q|p|k). (44)

Systematic introduction of all expressions can be found in

[5] (non-local transfers were implemented in shell models

in [6]). Energy transfer among Fourier modes, energy flux,

and shell-to-shell energy transfers are important quantities in

MHD turbulence. They are in the basis of statistical theory of

magnetohydrodynamic turbulence [7].

III. TARANG CODE

TARANG (synonym for waves in Sanskrit) is a general-

purpose flow solver for turbulence and instability studies.

It is a parallel and modular code written in object-oriented

language C++, and it can solve incompressible flows involving

pure fluid, Rayleigh-Bénard convection (RBC), passive and

active scalars, magnetohydrodynamics (MHD), liquid-metals,

rotating turbulence etc [4]. TARANG is an open-source code

and it can be downloaded from http://turbulencehub.org.

Basic numerical structure of TARANG for all solvers

follows pseudospectral method [8], [9]. The Navier-Stokes

and related equations are numerically solved given an initial

condition of the fields. The equations are time advanced using

a time stepping method, e.g., the fourth-order Runge-Kutta

scheme. The nonlinear terms, e.g. ûluj and ̂ulBj become con-

volutions in spectral space whose computation requires O(N6)
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floating point operations for a N3 grid. Orszag promoted the

idea of using Fast Fourier Transform (FFT) with which a

convolution is computed in O(N3 log(N3)) operations [8]. For

the computation of ûluj , ûl(k) is transformed to real space

ul(r), the product uluj is computed in the real space, and then

the product is transformed back to the Fourier space. Since

the computation of the nonlinear terms involves multiplication

in real space, this method is called pseudospectral method.

The procedure however suffers from aliasing errors, which is

solved by filling up only 2/3 part of the array in each direction.

See Boyd [9], Canuto et al. [8], Verma [4] for details.

The forward and inverse FFT operations take ≈ 80% of the

total time in a pseudospectral code. Therefore, one of the most

efficient parallel FFT routines, FFTK (Fast Fourier transform

Kanpur) [10] is used in TARANG. A pencil decomposition is

implemented in FFTK and in the spectral code, which allows

usage of maximum of N2 cores for a N3 grid simulations.

Recently, Chatterjee et al. [10] scaled FFTK and TARANG

up to grid resolution of 81923 grid using 65536 cores of

Blue Gene/P and 196608 cores of Cray XC40 supercomputers

(Shaheen I and II respectively of KAUST). This is the largest

reported scaling of FFT in literature.

In Tarang, each step of the solution of Eqs. (1, 2)

using variables u,B requires 27 FFTs. However, the

number of FFTs are reduced to 15 when Elsässer variables

are used, thus saving computational time [4]. Also note

that a MHD simulation requires 27 arrays for variables

u(k),B(k),u(r),B(r),Fu(k),FB(k),nlinu(k),nlinB(k),
and three temporary arrays. Hence, a 10243 MHD simulations

with double precision requires more than 27 × 8 = 216
Gigabytes of memory. For most simulations, FB(k) = 0,

but we have kept it in our design keeping in mind that

TARANG is a general partial differential equation solver.

Tarang employs explicit time-integration for the nonlinear

term. The diffusive terms however solved using exponential

trick [4].

Below we mention a few results that were obtained using the

code. TARANG has been used for studying RBC in two (2D)

and three (3D) dimensions [11]. Large resolution simulations

of stably stratified flows and RBC [12] showed that stably

stratified flows exhibit Bolgiano-Obukhov (BO) scaling in the

buoyancy-dominated regime. Turbulent convection, however,

exhibits Kolmogorov‘s spectrum rather than the BO spectrum.

TARANG also used for performing simulations of MHD

flows. Dynamo simulations [13] for the magnetic Prandtl

number Pm = 20 demonstrated that the magnetic energy

growth is caused by nonlocal energy transfers from the large-

scale or forcing-scale velocity field to small-scale magnetic

field. Nonhelical MHD simulations [14] showed that the large-

scale magnetic field can grow in nonhelical MHD when

random external forcing is employed at scale 1/10 the box

size. The energy fluxes and shell-to-shell transfer rates show

that the large-scale magnetic energy grows due to the energy

transfers from the velocity field at the forcing scales.

Fig. 1. Results for 5123 grid simulation of MHD turbulence at ν = 0.008,
η = 0.004: distributions of kinetic (top) and magnetic (bottom) energies.

A. Forcing

The injection of energy, kinetic helicity and cross helicity

into the flow is provided by the action given by the volumetric

force F. The properties of the force will influence the nature

of the turbulence being realized. The specific choice of the

parametrization plays an important role and determines the

possibilities of a study. Special forcing constrains in MHD

simulation with shell models allow to distinguish particular

effects of magnetic helicity [15] and cross helicity [16].

To implement a turbulent cascade with an inertial interval,

the force usually acts only in the range of large scales

k0 ≤ |k| ≤ k1, which is specified by two values of the

wave numbers k0 and k1. Turbulent flow can be excited as

a strictly deterministic force, i.e. which depends on velocity

and magnetic fields or a force having a random component.

Both options are implemented in the TARANG code. Here we

show an example of a parametrization of deterministic forces

that consists of three terms:

F =
αu

|u|2 +
βω

|ω||u| +
γb

|b||u| , (45)
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3

helicity supply rate is 0, bias
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helicity supply rate is 0, non bias
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E h(k
) k

5/
3

helicity supply rate is 0.35, bias
helicity supply rate is 0.35, non bias

Fig. 2. Results for 5123 grid, helical hydrodynamic turbulence, ν = 0.001,
energy supply rate is 0.1. Kinetic energy (top) and kinetic helicity (bottom)
spectra are normalized by “−5/3” power law. The forcing is applied in the
wave number band 2 ≤ k ≤ 4, which is indicated in figure using a grey
color.

where α, β and γ control injection rate of kinetic energy,

kinetic helicity and cross helicity, respectively. As an example

for α = 3, β = 1 and γ = 0, Fig. 1 shows instant distributions

of kinetic and magnetic energies at saturated nonlinear state

of the small scale dynamo. One can see that structures of the

magnetic field obeys the same turbulent scale as the kinetic

energy.

B. Implementation of spectra calculation

The energy spectral density E(k) is a well-known diag-

nostic of homogeneous turbulence and magnetohydrodynamic

turbulence. However in most of the curves plotted by different

authors, some systematic kinks can be observed at k = 9,

k = 15 and k = 19. These kinks have no physical meaning,

and are the artifacts of the method which is used to estimate

E(k) from a 3D grid. Instead of widely used formula

En =
∑

n<|k′|≤n+1

Ê(k′), (46)

another method can be implemented, in order to get rid of the

spurious kinks and to estimate E(k) much more accurately

[17]. Main solution of the problem consists in an exact

adjustment of the assumption that the number of points is

proportional to the shell volume. All spectral densities in the

TARANG code are calculated by

En =
4π

Mn

∑
n<|k′|≤n+1

Ê(k′)|k′|2, (47)

EU
EB

�=0,�=0

�=1,�=0

�=0,�=1

1 5 10 50 100

10-8

10-5

10-2

k

E
U
,E
B

Fig. 3. Kinetic and magnetic energy spectra.

where again Mn is the number of vectors k′ belonging to shell

n < |k′| ≤ n+ 1 with an assigned wave number

kn =
1

Mn

∑
n<|k′|≤n+1

|k′|. (48)

We perform the direct numerical simulation of the helical

hydrodynamic turbulence with ν = 0.001 for 5123 grid to

compare spectra calculated by (46) and (47) (see Fig. 2).

C. Implementation of fluxes calculation

We use the above formalism to compute various spectral

transfer diagnostics. The energy flux Π(k0), defined as the

energy emanating from the wave number sphere of radius k0,

is computed using the following formula:

Πu
EK

(k0) =
∑
k>k0

∑
p≤k0

Tu
EK

(k|p|q). (49)

It corresponds to running over all possible triad which is im-

possible to do in practice even for low resolution simulations.

A trick to overcome this limitation is to make a convolution of

the Fourier modes in the physical space. We use (21) to derive

energy transfers from a set of Fourier modes in a region with

k ≤ k0 (A) to another set of modes in region with k > k0 (B):

Πu
EK

(k0) = �{
∑
k∈B

[
∑
p∈A

u(q)× ω(p)A

+ u(p)× ω(q)A] · [uB (k)
]}

= �{
∑
k∈B

[N(k)] · [uB (k)
]}, (50)

where

uA,B(k) =

{
u(k) fork ∈ (A,B)
0 otherwise

(51)

and nonlinear N(k) is calculated in the physical space but

the sum of [N(k)] · [uB(k)] is taken in the Fourier space. We

have implemented the all transfer functions in the TARANG

code. Additional computational expenses coursed by direct

and Fourier transforms are much less costly than the direct

integration by definition (49).
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Fig. 4. Kinetic, magnetic and cross helicity spectra. Positive and negative
values of helicity are denoted by open and close circles, correspondingly.

IV. SIMULATIONS OF MHD TURBULENCE WITH KINETIC

AND CROSS HELICITY INJECTION

We show spectra of kinetic and magnetic energies (see

Fig. 3), helicity spectra (see Fig. 4), energy fluxes (see Fig. 5)

and helicity fluxes (see Fig. 6 and Fig. 7) for DNS in 5123

with ν = 0.008 and η = 0.004. α is always adjusted to

provide a unit injection rate of helicity. Three cases of forcing

parameters are considered which correspond to: no helicity

injection (β = 0, γ = 0), kinetic helicity injection (β = 1,

γ = 0) and cross helicity injection (β = 0, γ = 1).

In the case of the kinetic helicity forcing we find a gen-

eration of magnetic field at largest scale. It corresponds to

so-called nonlinear alpha-effect related to the inverse cascade

[18]. However the total energy flux ΠE is zero in range of

scales 1 ≤ k ≤ 2. We can observe a dual cascade in its

components only: ΠU<
U> and ΠB<

U> are negative (inverse) and

ΠB<
B> and ΠU<

B> are positive (direct). Direct cascade from
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Fig. 5. Total energy flux and its components.

forcing scales to the small scales by ΠU<
U> is significantly

reduced due to effect of kinetic helicity (see various scenarios

of helical turbulence in [19]–[21]). We note that the total

magnetic helicity is conserved at zero value but it appears

at large and small scales with an opposite sign.

In the case of the cross helicity forcing we find a peak of

magnetic field at the forcing scale. It means that such flow is

more efficient in the sense of local magnetic field generation.

One see a particular changes of kinetic helicity fluxes as a

result of cross helicity cascade [16].

V. CONCLUSIONS

We have described the possibilities of direct numerical

simulation and postprocess analysis of MHD turbulence us-

ing the TARANG code. We have focused on the built-in

postprocessing functions for analysis of spectral distributions

and spectral energy and helicity transfers in homogeneous

and isotropic MHD turbulence forced in a cubic region with
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periodic boundaries. Self-consistent mathematical description

and numerical realization of spectra transfers are suggested. It

gives a comprehensive inside view in the nonlinear process of

the small scale dynamo.
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