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Abstract. It is generally believed that helicity can play a significant role in turbulent systems, e.g. supporting the generation
of large-scale magnetic fields, but its exact contribution is not clearly understood. For example there are well-known examples
of large scale dynamos produced by a flow which is pointwise non-helical. In any case a break of mirror symmetry seems to
be always at the heart of the dynamo mechanism. A fruitful framework to analyze such processes is the use of helical mode
decomposition. In pure hydrodynamics such framework has proved its availability in study of the processes responsible for
helicity cascades. It has also been used in the analysis of MHD helical mode interactions. The present work deals with the
kinematic dynamo problem, solving the induction equation within the framework of helical Fourier modes decomposition. We
show that the simplest modes configuration leading to an unstable solution has the form of a tetrahedron. Then the dynamo is
produced by only two scales flow. We find necessary conditions for such dynamo action, not certainly related to flow helicity.
The results help to understand generic dynamo flows like the one studied by G.O. Roberts (1972).

1. Introduction
It is generally believed that helicity can play a significant role in turbulent systems, e.g. supporting
the generation of large-scale magnetic fields, but its exact contribution is not clearly understood. For
example there are well-known examples of large scale dynamos produced by a flow which is pointwise
non-helical but in any case a break of mirror symmetry seems to be always at the heart of the dynamo
mechanism. Most of the dynamo studies are based on solutions of the mean field equations, direct
numerical simulations or shell model of turbulence. Another framework to analyze such processes is
the use of helical mode decomposition. In pure hydrodynamics such framework provide comprehensive
studies the processes responsible for helicity cascades [1–4]. It has also been used in the analysis of
MHD mode interactions [5].

The present work deals with the kinematic dynamo problem, solving the nondiffusive induction
equation within the framework of helical Fourier modes decomposition. We look for the simplest modes
configuration leading to an unstable solution with only two flow scales. We look for necessary conditions
for the dynamo action in terms of helical mode amplitudes, not directly related to flow helicity. The
results should help for better understanding generic dynamo flows like the one studied by G.O. Roberts
[6].

2. Helical decomposition
The induction equation that governs the time evolution of the magnetic induction b for a given flow u is(

∂t − η∇2) b(x) = ∇× (u(x) × b(x)) , (1)

http://creativecommons.org/licenses/by/3.0
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where η is a magnetic diffusivity. Assuming triply periodic boundary conditions in a cube of volume L3,
both fields, flow and magnetic induction, can be expanded into discrete Fourier series:

u(x) = ∑
k

u(k)eik·x, b(x) = ∑
k

b(k)eik·x, (2)

where u(k) and b(k) are the complex Fourier coefficients. Then in Fourier space the induction equation
takes the form (

∂t + ηk2) b(k) = ∑
p,q

k+p+q=0

i k × (u∗(p) × b∗(q)) . (3)

Following the approach presented by [7] one can introduce, in Fourier space, a base of polarised helical
waves h± defined as the eigenvectors of the curl operator [8–10],

ik × h± = ±kh±. (4)

Note that the helical vectors h±(k) are defined up to an arbitrary rotation of axis k. Taking

h±(k) = u2(k) ± iu1(k) (5)

with u1(k) = (zk × k)/|(zk × k)| and u2(k) = u1(k) × k/k, where zk is an arbitrary vector that, in
general, may depend on k, though it is not proportional to k. This approach has been extended to MHD
with the following line of argument [11].

The Fourier modes of velocity and magnetic fields are expanded on that helical base

u(k) = u+(k) h+(k) + u−(k) h−(k), (6)
b(k) = b+(k) h+(k) + b−(k) h−(k). (7)

Replacing the expressions (6-7) for u and b in Eqs. (3), and projecting on to the helical base hsk (k)
(with sk = ±1) leads to the following equation(

dt + ηk2) bsk (k) = −sk k ∑
∆kpq

∑
sp ,sq=±1

gsk ,sp ,sq (k, p, q) (usp (p)bsq (q) − bsp (p)usq (q))∗ , (8)

where ∆kpq means a sum over all possible triads (k + p + q = 0) containing k and two arbitrary vectors
p and q , g is a function of k, p, q, sk,sp,sq is defined as

gsk ,sp ,sq (k, p, q) ≡ − 1
hsk (k)∗ · hsk (k)

(hsk (k)∗ × hsp (p)∗) · hsq (q)∗. (9)

Considering a single triadic interaction, it is not necessary to introduce an arbitrary unit vector zk to
define the unit vectors u1 and u2. Indeed, there is a natural direction which is represented by the unit
vector perpendicular to the plane of the triad:

λ = (k × p)/|k × p|= (p × q)/|p × q|= (q × k)/|q × k| . (10)

A second unit vector µk = k × λ/k is introduced and the helical vectors are then defined as

hsk (k) = eisk φk (λ + i sk µk) . (11)

The angle φk defines the rotation around k needed to transform the base (µk, λ) onto the base
(u1(k), u2(k)). Since the base (µk, λ) depends on the triad, the angle φk is also a function of (k, p, q).
The coupling constant for this triad then simply reduces to

gsk ,sp ,sq = −1
2

e−i(sk φk+sp φp+sq φq) sk sp sq (sk sin αk + sp sin αp + sq sin αq) (12)

with

sin αk =
Qkpq

2 p q
sin αp =

Qkpq

2 k q
sin αq =

Qkpq

2 k p
, (13)

and Qkpq =
√

2 k2 p2 + 2 q2 p2 + 2 q2 k2 − k4 − q4 − p4.
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3. Solution in one triad
For one triad ∆kpq where k, p and q are fixed, and using the notation usk for usk (k), u±

k for u±(k), and
gsk ,sp ,sq for gsk ,sp ,sq (k, p, q), the diffusionless induction equation is given by

dtbsk = −skk ∑
tp ,tq=±1

gsk ,tp ,tq (utp btq − btp utq )∗

dtbsp = −sp p ∑
tq ,tk=±1

gtk ,sp ,tq (utq btk − btq utk )∗ (14)

dtbsq = −sqq ∑
tk ,tp=±1

gtk ,tp ,sq (utk btp − btk utp )∗.

which is equivalent to

dtb+
k = −k[g+,+,+(u+

pb+
q − b+

pu+
q )∗ + g+,−,−(u−

p b−q − b−p u−
q )∗

+g+,+,−(u+
pb−q − b+

pu−
q )∗ + g+,−,+(u−

p b+
q − b−p u+

q )∗]

dtb+
p = −p[g+,+,+(u+

q b+
k − b+

q u+
k )∗ + g−,+,−(u−

q b−k − b−q u−
k )∗

+g−,+,+(u+
q b−k − b+

q u−
k )∗ + g+,+,−(u−

q b+
k − b−q u+

k )∗]

dtb+
q = −q[g+,+,+(u+

k b+
p − b+

k u+
p)∗ + g−,−,+(u−

k b−p − b−k u−
p )∗

+g+,−,+(u+
k b−p − b+

k u−
p )∗ + g−,+,+(u−

k b+
p − b−k u+

p)∗] (15)

dtb−k = +k[g−,+,+(u+
pb+

q − b+
pu+

q )∗ + g−,−,−(u−
p b−q − b−p u−

q )∗

+g−,+,−(u+
pb−q − b+

pu−
q )∗ + g−,−,+(u−

p b+
q − b−p u+

q )∗]

dtb−p = +p[g+,−,+(u+
q b+

k − b+
q u+

k )∗ + g−,−,−(u−
q b−k − b−q u−

k )∗

+g−,−,+(u+
q b−k − b+

q u−
k )∗ + g+,−,−(u−

q b+
k − b−q u+

k )∗]

dtb−q = +q[g+,+,−(u+
k b+

p − b+
k u+

p)∗ + g−,−,−(u−
k b−p − b−k u−

p )∗

+g+,−,−(u+
k b−p − b+

k u−
p )∗ + g−,+,−(u−

k b+
p − b−k u+

p)∗].

We look for a growing solution of the linear system of ODEs (15) in the form

bsk
k = b̌sk

k eγt, γ = ±
√

a. (16)

Therefore a necessary condition for having a positive growthrate γ is to have a positive.

3.1. Single helical triad
In this case we assume b−sk = b−sp = b−sq = u−sk = u−sp = u−sq = 0. Then we solve an eigenvalue
problem with three variables

dtbsk = −skkgsk ,sp ,sq (usp bsq − bsp usq )∗

dtbsp = −sp pgsk ,sp ,sq (usq bsk − bsq usk )∗ (17)
dtbsq = −sqqgsk ,sp ,sq (usk bsp − bsk usp )∗.

It leads to non trivial solutions
a = −skspsqkpq|gsk ,sp ,sq |2F (18)

where F is given by

F = sk
|usk |2

k
+ sp

|usp |2
p

+ sq
|usq |2

q
. (19)
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Figure 1. Tetrahedron configuration of interacting four triads (k, p, q), (k, p′, q′), (p, q′, k′) and
(q, k′, p′).

Defining a potential vector w such that u = ∇× w, we have w(k) = k−1
(
u+(k) h+(k) − u−(k) h−(k)

)
,

one can express a potential helicity in the form F(k) = u · w = k−1 (|u+(k)|2−|u−(k)|2
)
. Therefore F

above is the potential helicity for the whole triad ∆kpq. We find that if sk = sp = sq then a is negative,
suggesting that within a triad of only one type of helical modes it cannot lead to dynamo action. Taking
usk = 0 and sk = −sp = −sq leads to positive a. Then there is always a magnetic field scale k with
helicity opposite to u such that dynamo action occurs. The importance of such potential helicity has
already been put forward in the context of large scale dynamos [12] with indeed opposite helical modes
between the large scale magnetic field and the flow.

3.2. Full triad
Considering all possible kinetic and magnetic helical modes within one triad b±k , u±

k , b±p , u±
p , b±q and u±

q
we find

(20)a = −
Q2

kpq

4

∣∣∣∣∣u+
k − u−

k
k

∣∣∣∣∣
2

+

∣∣∣∣∣u+
p − u−

p

p

∣∣∣∣∣
2

+

∣∣∣∣∣u+
q − u−

q

q

∣∣∣∣∣
2
 ,

provided we choose zk = zp = zq = λ. Contrary to the previous cases a is always negative. It shows
that one triad alone cannot lead to dynamo action (unless some helical magnetic modes are suppressed as
previously seen). This result is consistent with the antidynamo theorem that says that no dynamo effect
is possible for a magnetic field which depends only on two coordinates. Indeed for any triad ∆kpq there
is always a rotational transformation which makes the problem two dimensional. So it is necessary to
involve an additional magnetic field mode which does not belong to the plane ∆kpq.

4. Solution in one tetrahedron
In addition to vectors k, p, q we introduce an arbitrary wave number vector q′. Then the tetrahedron is
formed by four triads: (k, p, q), (k, p′, q′), (p, q′, k′) and (q, k′, p′) as shown in figure 1. Vectors k′ and
p′ have to be included for consistency.

We assume that the flow is given by the two vectors uk and up only (u±
q = u±

k′ = u±
p′ = u±

q′ = 0) and
we solve the eigenvalue problem with all twelve magnetic field unknowns. We find a solution in the form

(21)

a = −
Q2

kp′q′

4

∣∣∣∣∣u+
k − u−

k
k

∣∣∣∣∣
2

−
Q2

pq′k′

4

∣∣∣∣∣u+
p − u−

p

p

∣∣∣∣∣
2

±
Qkp′q′Qpq′k′

2
|sin ψq′ |

q′

√√√√( |u+
k |2 − |u−

k |2
k

)(
|u+

p|2 − |u−
p |2

p

)
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where ψq′ is the angle between the planes defined by the triads (k, p′, q′) and (p, q′, k′). If the two
triads are coplanar, corresponding to sin ψq′ = 0, then a is always negative, ruling out any possibility for
dynamo action. If the flow is non helical (u+

k = u−
k and u+

p = u−
p ) then a = 0. Now if the two triads

are non coplanar and the flow is helical then dynamo becomes possible. Oscillatory solutions are always
possible provided H(k) · H(p) < 0. If H(k) · H(p) > 0 then only non local dynamo action is possible
(q′ ≪ k and q′ ≪ p).

5. Conclusion remarks
From solution (21) we can learn several things that are in favour of dynamo and provide highest growth
rate: flow with maximum helicity, interaction of large magnetic field and small scale velocity field,
orthogonal configuration of u(k), u(p) and b(q′). These are known since G.O. Roberts dynamo example
[6]. He considered the flow u = (sin y, sin x, cos x − cos y) and found asymptotic unstable solution for
b(x, y, z) = b0eikzz for kz < 1. If we consider this solution in terms of helical modes then k = (1, 0, 0),
p = (0, 1, 0) and q′ = (0, 0, kz). Also u+

k = 1/2, u−
k = 0 and u+

p = −1/2, u−
p = 0. Extracted

highlights form (21) are in full agreement. We show that the simplest modes configuration leading to an
unstable solution has the form of a tetrahedron. Here the dynamo is produced by only two scales flow.
We find necessary conditions for the dynamo action which is expressed by helicities of the individual
helical modes and not directly related to flow helicity. For the case of one triad with single helical modes
(section 3.1) we have found the growth rate depending on potential helicity [12]. Our general approach is
similar the study of low-dimensional magnetohydrodynamic models containing three velocity and three
magnetic modes [13]. These low-dimensional models exhibit a dynamo transition at a critical forcing
amplitude that depends on the Prandtl number. In comparison we took an advantage of helical mode
decomposition that prevents break of conservation laws automatically.
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