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Seismic traveltimes and their spatial 
derivatives are key quantities for 
many geophysical applications:

 - Source location
e

 - Imaging and macromodel building
   prior to FWI/MVA:
        * (stereo)tomography
        * migration
e

 - Data windowing
e

 - Computation of seismograms

I - INTRODUCTION

Ray-tracing methods are 
efficient in simple models but 
they are no longer reliable in 
complex media and/or when a uniform sampling of the 
medium is required, where Eulerian methods 
perform better.

Existing Eikonal solvers:
e
 - Mostly finite-difference based
 - Mostly first-order convergent:
   high-order is costly
 - Not suitable for topography handling
 - Recently extended to anisotropy,
   either iteratively or by explicitly
   solving quartics

Traveltime is continuous but singularities occur in the derivatives, even in smooth areas 
of the model, due to the non-linearity of the first-arrival Eulerian problem.

Main goal of this study:
r
 - Design a highly accurate Eikonal solver suitable for 
anisotropy and topography handling.
e
Main ingredient:
e
 - State-of-the-art discontinuous Galerkin
   techniques

II - EIKONAL 
In an isotropic medium, Eikonal rules the 
behavior of traveltime T(x) with respect to the 
wave velocity c(x). The non-linear partial 
differential equation writes

e

In a 2D transversely isotropic (TI) medium, the 
Eikonal equation is derived from the Christoffel's 
equation and under the acoustic approximation, 
yielding

with 3 parameters related to the Thomsen's 
parameters of the medium:

The tilted (TTI) case is obtained by introducing 
the local tilt angle θ through the local rotation

Traveltimes are computed as the steady-state 
solution of a dynamic Hamiltonian formulation 
(Osher (1993)). The generic Hamilton-Jacobi 
equation writes

The additive factorization is performed in 
order to reduce the point-source effect and 
gain accuracy. The numerical solution is 
decomposed into two additive factors:

 - a suitable reference solution u0(x),
 - the numerical perturbation τ(x,ξ) which has 
to satisfy the factored Hamilton-Jacobi 
equation.

The point-source singularity is thus carried by 
the reference solution. The perturbation is 
smooth at the source point and the source no 
longer pollutes the numerical solution.

III - COMPUTATIONAL METHOD
Discontinuous Galerkin discretization 
of the domain with either triangular or 
quadrangular elements, structured or 
unstructured meshes.
e
Different elements may have different 
sizes.
e

Approximation spaces Pi are local and may 
differ among elements.

h- and p-adaptivity

The local weak formulation is the following:

with suitable flux terms designed by Cheng and Wang (2014);
Le Bouteiller et al. (2017).

Integrals are estimated by quadrature rules.
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The partial derivative in the first integral allows for integration in 
evolution parameter ξ with a Runge-Kutta scheme. The steady-

state must be reached to obtain 
traveltimes.

Domain boundaries and topography 
are handled by the weak formulation: 
an outgoing boundary condition is 
designed by the use of an additional 
flux term.

Isotropic constant gradient of velocity case study

Analytical traveltimes
Relative error patterns

without and with factorization

L2 integrated error:
1st-order convergence without 
factorization, 2nd-order convergence with factorization

BP 2007 TTI realistic model
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Traveltime isochrones for various source positions.
Results from a FD code superimposed.

537600 degrees of freedom.

Volcano case study

Traveltime isochrones for various source positions.
316000 degrees of freedom.

x-(top) and z-(bottom) derivatives of the traveltime field.
Blue isochrones superimposed.

Conclusions
We develop an  accurate and efficient solver for TTI traveltimes in  complex media. 
Flexibility is provided by the discontinuous Galerkin discretization for  topography handling. 
However, the computational cost is significantly higher than standard finite-difference-based 
methods, due to the dynamic HJ framework and the related Courant-Friedrichs-Lewy condition.

Perspectives
Fast Sweeping Method: promising approach for fast steady state computation 
Transport equation solver based on the same engine for computation of   
amplitudes
3D (no expected theoretical difficulties)
Other classes of anisotropy:  Orthorhombic... 

Target applications
Migration (accurate solution and derivatives) 
Stereotomography (uniform sampling)
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In a 1D medium with a constant gradient of 
velocity, the upwind singularity of the solution u 
at the source is carried by u0. Therefore τ is 
smooth at the source.
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