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Abstract
Considering low-order systems of kinematic dynamo, we look for the lowest
possible system order which can lead to a dynamo instability. For that we
decompose, in Fourier space, both velocity and magnetic fields into helical
modes. Starting with a single triad, which is the lowest possible order system,
we show that a dynamo instability cannot occur, unless both velocity and
magnetic fields are decimated. Decimation means that only one helical mode
per wave number is kept, which is unlikely in a physically realizable situation.
The next possible system order is the one composed of a set of four triads
forming a tetrahedron. In that case we show that a dynamo instability is
possible, without needing to decimate either the velocity field or the magnetic
field. Finally we find that dynamo action is not possible if the kinetic helicity is
zero at each wave number.

Keywords: kinematic dynamo, helical mode decomposition, low dimensional
model, antidynamo theorem

(Some figures may appear in colour only in the online journal)

1. Introduction

Dynamo action is the physical phenomenon corresponding to a magnetic instability produced
by the motion of an electrically conducting fluid. The time evolution of the magnetic field b
obeys to the induction equation
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b u b , 1t
2h¶ -  =  ´ ´( ) ( ) ( )

where u is the velocity field and η the magnetic diffusivity. We speak of a kinematic dynamo
when the dynamic feedback of the magnetic field onto the flow is ignored. In that case the
velocity field is considered as prescribed.

Similarly to what has been done for convection instability, it is tempting to derive low-
order systems composed of only a few velocity and magnetic modes (Verma et al 2008,
Kumar and Wahi 2017). Of course such models cannot account for true dynamos as by
construction they are composed of only a limited number of magnetic scales. As a result
magnetic diffusion, which acts against the dynamo instability and is increasing as the square
of the wave number, is most probably underestimated. However such models present
dynamic behaviors comparable to natural dynamos while authorizing a detailed description of
the dynamo mechanisms in action.

Following the spirit of low-order systems, the present study aims at finding a kinematic
dynamo model of the lowest order. In order to carry the analytical analysis as far as we can,
we first project all quantities and induction equation on a Fourier basis. Working within triads
guarantees the conservation of all ideally conserved quantities (e.g. kinetic energy and helicity
in three dimensional hydrodynamics). Then we decompose all Fourier modes on a basis of
helical modes, leading to a tractable system of equations for the diffusionless induction
equation. We consider two cases of increasing complexity, first within a single triad
(section 3) and second within four triads forming a tetrahedron (section 4). As we look for a
magnetic instability, a negative or zero growth rate in absence of magnetic diffusivity (η=0)
is sufficient to conclude for the impossibility of dynamo action. On the other hand, a positive
growth rate with η=0 does not necessarily mean dynamo action, then needing a numerical
confirmation (section 4).

2. Helical decomposition in Fourier space

2.1. Fourier space

In real space kinetic energy and helicity are defined as follows

E Hx u x u u
1

2
,

1

2
. 22= =  ´( ) ( ) · ( )

We also introduce a potential kinetic helicity defined as

F x w w
1

2
, 3=  ´( ) · ( )

where w is a velocity potential vector such that u w=  ´ .
Assuming triply periodic boundary conditions in a cube, both velocity and magnetic

fields can be expanded into discrete Fourier series

u x u k b x b ke , e , 4
k

k x

k

k xi iå å= =( ) ( ) ( ) ( ) ( )· ·

where u k( ) and b k( ) are complex Fourier coefficients. Then the induction equation (1) takes
the form

d k b k k u p b qi , 5t
k p q

2

0

* *åh+ = ´ ´
+ + =

( ) ( ) ( ( ) ( )) ( )

where the sum is a double sum on all p and q defining the triads k p q, ,( ) such
that k p q 0+ + = .
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The kinetic energy and kinetic helicity take the form

E Hk u k u k k k u k u k
1

2
,

1

2
i , , . 6* *= =( ) ( ) ( ) ( ) ( ( ) ( )) ( )

The potential kinetic helicity satisfies

F k Hk k . 72= -( ) ( ) ( )
The advantage of working within the framework of triads is that all quantities which must be
conserved in absence of viscosity and magnetic diffusivity are automatically conserved within
each single triad. At the onset of dynamo action the kinetic energy and helicity are conserved.
After the onset the conserved quantities are the total energy (magnetic plus kinetic), the
magnetic helicity and the cross helicity (Plunian et al 2013).

2.2. Helical decomposition

Following the approach introduced by Craya (1958), Herring (1974), Cambon and Jacquin
(1989), Waleffe (1992) we consider a basis of polarized helical waves h defined as the
eigenvectors of the curl operator,

kk h k h ki . 8´ =  ( ) ( ) ( )
The Fourier modes of velocity and magnetic fields are then expanded on that helical basis

u uu k k h k k h k , 9= ++ + - -( ) ( ) ( ) ( ) ( ) ( )

b bb k k h k k h k . 10= ++ + - -( ) ( ) ( ) ( ) ( ) ( )
We note that the helical vectors h k( ) are defined up to an arbitrary rotation of axis k. Taking

h k u k u ki 112 1= ( ) ( ) ( ) ( )
with u k z k z kk k1 = ´ ´( ) ( ) ∣( )∣ and ku k u k k2 1= ´( ) ( ) , where zk is an arbitrary vector
that, in general, may depend on k, though not proportional to k, the kinetic energy, kinetic
helicity and potential kinetic helicity at wave number k take the form

E u uk k k
1

2
, 122 2= ++ -( ) (∣ ( )∣ ∣ ( )∣ ) ( )

H
k

u uk k k
2

, 132 2= -+ -( ) (∣ ( )∣ ∣ ( )∣ ) ( )

F
k

u uk k k
1

2
. 142 2= -+ -( ) (∣ ( )∣ ∣ ( )∣ ) ( )

Such a helical decomposition has recently been brought up to date. It is indeed an interesting tool
to discriminate between the two types of helicity, negative or positive and study their interactions in
hydrodynamics (Lessinnes et al 2011, Biferale et al 2012, Kessar et al 2015, Stepanov et al 2015,
Alexakis 2016) and magnetohydrodynamics (Lessinnes et al 2009, Linkmann et al 2016).

Replacing the expressions(9), (10) of u and b in equation (5), and projecting onto the
helical basis h ksk( ) (with s 1k =  ) leads to the following form of the induction equation
(Lessinnes et al 2009)

d k b s k g u b b u , 15t
s

k
s s

s s s
s s s s2

, 1
, ,

k

p q

k p q
p q p q

kpq

*å åh+ = - -
D =

( ) [ ] ( )

where the first sum is made over all possible triads kpqD , meaning over all possible triads
k p q, ,( ) satisfying k p q 0+ + = . In particular the sum is not repeated when exchanging p
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and q, contrary to (5). From now and in the rest of the paper u u u b b b, , , , ,s s s s s sk p q k p q stand for
u u u b b bk p q k p q, , , , ,s s s s s sk p q k p q( ) ( ) ( ) ( ) ( ) ( ), and gs s s, ,k p q

denotes a function of k p q, , , sk,sp,sq
which is defined as

g
h k h p h q

h k h k
, ,

. 16s s s

s s s

s s, ,k p q

k p q

k k

*
*

= -
( ( ) ( ) ( ))

( ) · ( )
( )

Considering a single triadic interaction, it is not necessary to introduce an arbitrary unit
vector zk to define the unit vectors u1 and u2. Indeed, there is a natural direction which is
represented by the unit vector perpendicular to the plane of the triad:

k p k p p q p q q k q k . 17l = ´ ´ = ´ ´ = ´ ´( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( )
A second unit vector kkkm l= ´ can be introduced and the helical vectors are then defined as

sh k e i . 18s s
k k

ik k k l m= +j( ) ( ) ( )

The angle kj defines the rotation around k needed to transform the basis ,km l( ) into the
basis u k u k,1 2( ( ) ( )). Since the basis ,km l( ) depends on the triad, the angle kj is also a
function of k p q, ,( ). The coupling constant for this triad then simply reduces to

g s s s s s s
1

2
e sin sin sin 19s s s

s s s
k p q k k p p q q, ,

i
k p q

k k p p q q a a a= - + +j j j- + + ( ) ( )( )

with

Q

p q

Q

k q

Q

k p
sin

2
, sin

2
, sin

2
, 20k

kpq
p

kpq
q

kpqa a a= = = ( )

andQ k p q p q k k q p2 2 2kpq
2 2 2 2 2 2 4 4 4= + + - - - which, after Heronʼs formula, is

four times the surface of the triad kpqD .

3. Solution in one triad

After (15) the diffusionless (η=0) induction equation within a single triad kpqD is given by

d b k g u b b u g u b b u

g u b b u g u b b u

d b p g u b b u g u b b u

g u b b u g u b b u
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The system (21) can be written in the form d X AXt *= , where A is a 6-by-6 matrix and
X b b b b b b, , , , ,k p q k p q= + + + - - -( ). The second time derivative of X obeys to d X AA Xt

2 *= . Then
calculating the set of complex eigenvalues ai 1,6= , of AA*, the growth rate of X will correspond
to a amaxi i

1 2
1,6

1 2= ={ } ( { })R R . If a is real and negative then X will be oscillatory or
stationary, without growth ( a 01 2 ={ }R ), ruling out any hope of dynamo action for non zero
magnetic diffusivity. In all other cases dynamo action may be possible depending on the level
of magnetic diffusivity.

3.1. One full triad

Choosing z z zk p q l= = = , we find that the non trivial eigenvalues of (21) correspond to
the square roots of

a
Q u u

k

u u

p

u u

q4
. 22

kpq k k p p q q
2 2 2 2

= -
-

+
-

+
-+ - + - + -⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

As a 01 2 ={ }R , this shows that one triad alone cannot lead to dynamo action for non zero
magnetic diffusivity.

The same conclusion can also been found directly from (1) choosing a system of Car-
tesian coordinates (x y z, , ) with z l= . In that case both velocity and magnetic fields depend
on x and y only (and not on z). Then the x and y components of the magnetic field decouple
from the z-component of the flow (and magnetic field), having no other option than decaying,
as already shown by Zel’dovich and Ruzmaikin (1980) for a two-dimensional motion.
Therefore to obtain dynamo action it is necessary to involve an additional magnetic field
mode which does not belong to the plane kpqD as will be done in section 4.

3.2. One helical triad

It is tempting to consider the case of a single helical triad corresponding to only one single
helical mode per wave number, setting b b b u u u 0s s s s s sk p q k p q= = = = = =- - - - - - . Fol-
lowing (Biferale et al 2012) we speak of a decimated system of equations. We emphasize that
the ideally conserved quantities mentioned in section 2.1 are also conserved within each
single helical triad.

The system (21) reduces to three equations and three unknowns

d b s kg u b b u

d b s pg u b b u

d b s qg u b b u

,

,

, 23

t
s

k s s s
s s s s

t
s

p s s s
s s s s

t
s

q s s s
s s s s

, ,

, ,

, ,

k
k p q

p q p q

p
k p q

q k q k

q
k p q

k p k p

*

*

*

=- -

=- -

=- -

( )

( )

( ) ( )

with non trivial eigenvalues corresponding to the square roots of

a s s s kpq g F2 , 24k p q s s s kpq, ,
2

k p q
= - D∣ ∣ ( ) ( )

where F kpqD( ) is the potential kinetic helicity for the whole triad kpqD , given by

F F F Fk p q 25kpqD = + +( ) ( ) ( ) ( ) ( )

s
u

k
s

u

p
s

u

q2 2 2
. 26k

s

p

s

q

s2 2 2k p q

= + +
∣ ∣ ∣ ∣ ∣ ∣ ( )
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We find that if s s sk p q= = then a is negative suggesting that, within a triad of only one
type of helical modes, dynamo action cannot occur. On the other hand taking u 0sk = and
s s sk p q= - = - leads to positive a. Then there is always a magnetic field scale k with helicity
opposite to u such that dynamo action occurs. The importance of such potential helicity has
already been put forward in the context of large scale dynamos (Rädler and Branden-
burg 2008) with indeed opposite helical modes between the large scale magnetic field and
the flow.

We note that the antidynamo theorem that was invoked in section 3.1 in the case of a full
triad does not apply to the case of an helical triad. This suggests that arbitrary decimation may
change the physics of the dynamo instability. Therefore such decimation should be used with
caution, unless it naturally arise from an external input, like for example an imposed external
magnetic field.

4. Solution in one tetrahedron

In addition to wave vectors k p q, , we now introduce an additional wave vector q¢ which is
not coplanar with kpqD . The resulting tetrahedron is then formed of four triads k p q, ,( ),
k p q, ,¢ ¢( ), p q k, ,¢ ¢( ) and q k p, ,¢ ¢( ) as shown in figure 1.

In order to keep the problem analytically tractable we assume that the flow is given by the
two vectors uk and up only, setting u u u u 0q k p q= = = =

¢


¢


¢
 . The resulting diffusionless

problem corresponds to a 12-by-12 system with non trivial eigenvalues corresponding to the
square roots of

a
Q u u

k

Q u u

p
Q Q

q
F Fk p

4 4

sin
,

27

kp q k k pq k p p
kp q pq k

q
2 2 2 2 y

= -
-

-
-


¢

¢ ¢
+ -

¢ ¢
+ -

¢ ¢ ¢ ¢
¢∣ ∣

( ) ( )

( )

where qy ¢ is the angle between the planes defined by the triads k p q, ,¢ ¢( ) and p q k, ,¢ ¢( ). If
the two triads are coplanar, corresponding to sin 0qy =¢ , then a is always negative, ruling out
any possibility for dynamo action. We immediately see from (27) that it is the product
F Fk p( ) ( ) which is important for the dynamo action. If F Fk p 0=( ) ( ) then only decaying
solutions are possible. Dynamo action is possible only if F Fk p 0¹( ) ( ) and for q¢
sufficiently small in comparison with k and p.

We note that, as helicity H k( ) differs from potential helicity F k( ) by a factor k2, having
F Fk p 0=( ) ( ) is equivalent to have H Hk p 0=( ) ( ) . In the next section 5 the discussion will
be hold in terms of helicity, instead of potential helicity, without loss of generality.

To eventually conclude on the possibility of dynamo action in a tetrahedron, magnetic
diffusion must be added to the problem, that can be handled only numerically. As an example
we choose the tetrahedron formed by the three vectors k 2, 0, 0= ( ), p 0, 2, 0= ( ) and
q 0, 0, 1¢ = ( ). The velocity helical modes are chosen such that u uk p 1= =+ +∣ ( )∣ ∣ ( )∣ and
u uk p 0= =- -∣ ( )∣ ∣ ( )∣ , which corresponds to a maximally helical flow. Replacing this values
in (27) leads to a=2 and therefore to a magnetic growth rate 20g = . The equation (15) is
solved numerically for different values of η, with random complex phase for u k+( ) and u p+( )
for each run. The resulting magnetic growth rate γ is plotted versus 1h- (equivalent to the
magnetic Reynolds number) in figure 2. In the diffusionless limit we find that lim 0 0g g=h .
The onset of dynamo action at critical *h corresponds to 0*g h =( ) .
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5. On the role of kinetic helicity in dynamo action

The role of kinetic helicity in dynamo action as been discussed for a long time starting with
the mean-field approach, the expression of the so-called α-effect being directly proportional
either to the kinetic helicity or to the potential kinetic helicity, depending on which limit is
considered, either the high-conductivity or the low-conductivity limit (Krause and
Rädler 1980). Since then, the possibility of dynamo action in non helical flows has been well
documented, advocating either for time dependent flows (Gilbert et al 1988, Avalos-Zuniga
et al 2009), potential helicity (Rädler and Brandenburg 2008) or memory effect (Rheinhardt
et al 2014). Eventually direct numerical simulations of non helical turbulence lead to the
generation of magnetic field by dynamo action (Kumar et al 2015, Kumar and Verma 2017)
such that, today, kinetic helicity is known to be un-necessary for dynamo action.

However this is not what expression (27) tells us. Indeed, after (27) if at each wave
number the kinetic helicity is zero H H Hk p q 0= = =( ) ( ) ( ) , then dynamo action is found
not to be possible. Of course if such a condition holds then it necessarily implies zero kinetic
helicity for the whole triad H 0kpqD =( ) , as

H H H Hk p q . 28kpqD = + +( ) ( ) ( ) ( ) ( )

However the reciprocal is not true. This means that we can have zero kinetic helicity in each
triad, leading to a flow with pointwise zero kinetic helicity, but non zero kinetic helicity at
each wave number. This makes all the difference between our finding issued from (27) and
what is usually understood as zero kinetic helicity.

To illustrate our point we consider two of the four flows introduced by Roberts (1972)
because they present the two extreme possible cases with either maximal or zero helicity. The
first flow y x x yu sin , sin , cos cos1 = -( ) is Beltrami (u u1 1=  ´ ) and then maximally
helical (H Ex x1 1=( ) ( )) as in the numerical application of section 4. The second flow

y x x yu sin , sin , cos cos2 = +( ) is pointwise zero helical (H x 02 =( ) ). Roberts (1972)
showed that both flows were dynamo capable.

As these two flows depend only on two coordinates x and y we can apply our formula
(27) in order to calculate a1 and a2. We take k 1, 0, 0= ( ) and p 0, 1, 0= ( ), leading to

u k 0, ,1
i

2

1

2
= -( )( ) , u p , 0,1

i

2

1

2
= - -( )( ) and u k 0, ,2

i

2

1

2
= -( )( ) , u p , 0,2

i

2

1

2
= -( )( ) .

Choosing sh k 0, i , 1s
kk = -( ) ( ) and sh p i , 0, 1s

pp =( ) ( ) we find that

Figure 1. Tetrahedron configuration of four interacting triads k p q, ,( ), k p q, ,¢ ¢( ),
p q k, ,¢ ¢( ) and q k p, ,¢ ¢( ).
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u u u uk p k p
1

2
, 0, 291 1 1 1= - = = =+ + - -( ) ( ) ( ) ( ) ( )

u u u uk p k p
1

2
, 0. 302 2 2 2= = = =+ - - +( ) ( ) ( ) ( ) ( )

Then for qq 0, 0,¢ = ¢( ) we find

a q q a q q
1

2
1 ,

1

2
i . 311 2= ¢ - ¢  = ¢ - ¢ ( ) ( ) ( )

In the first case we can have a 01
1 2 { }R provided q 1¢∣ ∣ . In the second case whatever the

value of q¢ among the possible square roots of a2 there is always one such that a 02
1 2 ( )R .

Provided diffusion is neglected we find that both flows are dynamo capable. Now calculating
the kinetic helicity for both flows we find that

H H H Hk p k p
1

8
,

1

8
321 1 2 2= = = - =( ) ( ) ( ) ( ) ( )

leading to

H H
1

4
, 0. 33kpq kpq1 2D = D =( ) ( ) ( )

The flow u2 is a clear example of a dynamo capable flow with zero pointwise helicity. As
stated above it is the fact that the helicity is non zero at each wave number which is in fact
crucial for dynamo action.

6. Concluding remarks

In section 3.2 we found that dynamo action in a single triad was possible only if the magnetic
and the velocity fields are decimated, keeping only one helical mode per wave vector. In
another context such a wave number decimation has been suggested and experimented in a
recent model of turbulence (Gürcan 2017). However we also found in section 3.1 that the
dynamo action disappears as soon as both types of helical modes are included, stressing that
decimation should be used with caution.

Figure 2. Plot of the magnetic field growth rate γ versus η−1.
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Considering four triads forming a tetrahedron we found in section 4 that dynamo action
becomes possible, without any need for decimation. In addition, our findings suggest the
following antidynamo theorem, that a flow with zero kinetic helicity at each wave number
cannot lead to dynamo action. However our study being limited to only two flow wave
numbers, additional investigation with more complex flows needs to be done to confirm this
assertion.

Acknowledgments

This work was supported by joint project of the Russian Science Foundation (grand RSF-16-
41-02012) and the Department of Science Technology of the Ministry of Science and
Technology of the Republic of India (grant INT/RUS/RSF/3).

References

Alexakis A 2016 J. Fluid Mech. 812 752
Avalos-Zuniga R, Plunian F and Rädler K H 2009 Geophys. Astrophys. Fluid Dyn. 103 375–96
Biferale L, Musacchio S and Toschi F 2012 Phys. Rev. Lett. 108 164501
Cambon C and Jacquin J 1989 J. Fluid Mech. 202 295–317
Craya A 1958 P.S.T. Ministère de l’Air 345
Gilbert A D, Frisch U and Pouquet A 1988 Geophys. Astrophys. Fluid Dyn. 42 151–61
Gürcan O D 2017 Phys. Rev. E 95 063102
Herring J R 1974 Phys. Fluids 17 859–72
Kessar M, Plunian F, Stepanov R and Balarac G 2015 Phys. Rev. E 92 031004
Krause F and Rädler K H 1980 Mean-Field Magnetos and Dynamo Theory (Berlin: Akademie-Verlag)
Kumar R and Verma M K 2017 Phys. Plasmas 24 092301
Kumar R, Verma M K and Samtaney R 2015 J. Turbul. 16 1114–34
Kumar R and Wahi P 2017 Phys. Plasmas 24 092305
Lessinnes T, Plunian F and Carati D 2009 Theor. Comp. Fluid Dyn. 23 439–50
Lessinnes T, Plunian F, Stepanov R and Carati D 2011 Phys. Fluids 23 035108
Linkmann M, Berera A, McKay M and Jäger J 2016 J. Fluid Mech. 791 61–96
Plunian F, Stepanov R and Frick P 2013 Shell models of magnetohydrodynamic turbulence Phys. Rep.

523 1–60
Rädler K H and Brandenburg A 2008 Phys. Rev. E 77 026405
Rheinhardt M, Devlen E, Rädler K H and Brandenburg A 2014 Mon. Not. R. Astron. Soc. 441 116–26
Roberts G O 1972 Phil. Trans. R. Soc. A 271 411–54
Stepanov R, Golbraikh E, Frick P and Shestakov A 2015 Phys. Rev. Lett. 115 234501
Verma M K, Lessinnes T, Carati D, Sarris I, Kumar K and Singh M 2008 Phys. Rev. E 78 036409
Waleffe F 1992 Phys. Fluids A 4 350–63
Zel’dovich Y B and Ruzmaikin A 1980 J. Exp. Theor. Phys. 51 493
Zel’dovich Y B and Ruzmaikin A 1980 ZhETF 78 980 (in Russian)

Fluid Dyn. Res. 50 (2018) 051409 R Stepanov and F Plunian

9

https://doi.org/10.1080/03091920903006099
https://doi.org/10.1080/03091920903006099
https://doi.org/10.1080/03091920903006099
https://doi.org/10.1103/PhysRevLett.108.164501
https://doi.org/10.1017/S0022112089001199
https://doi.org/10.1017/S0022112089001199
https://doi.org/10.1017/S0022112089001199
https://doi.org/10.1080/03091928808208861
https://doi.org/10.1080/03091928808208861
https://doi.org/10.1080/03091928808208861
https://doi.org/10.1103/PhysRevE.95.063102
https://doi.org/10.1063/1.1694822
https://doi.org/10.1063/1.1694822
https://doi.org/10.1063/1.1694822
https://doi.org/10.1103/PhysRevE.92.031004
https://doi.org/10.1063/1.4997779
https://doi.org/10.1080/14685248.2015.1057340
https://doi.org/10.1080/14685248.2015.1057340
https://doi.org/10.1080/14685248.2015.1057340
https://doi.org/10.1063/1.4998472
https://doi.org/10.1007/s00162-009-0165-y
https://doi.org/10.1007/s00162-009-0165-y
https://doi.org/10.1007/s00162-009-0165-y
https://doi.org/10.1063/1.3567253
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1017/jfm.2016.43
https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/10.1103/PhysRevE.77.026405
https://doi.org/10.1093/mnras/stu438
https://doi.org/10.1093/mnras/stu438
https://doi.org/10.1093/mnras/stu438
https://doi.org/10.1098/rsta.1972.0015
https://doi.org/10.1098/rsta.1972.0015
https://doi.org/10.1098/rsta.1972.0015
https://doi.org/10.1103/PhysRevLett.115.234501
https://doi.org/10.1103/PhysRevE.78.036409
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858309
https://doi.org/10.1063/1.858309

	1. Introduction
	2. Helical decomposition in Fourier space
	2.1. Fourier space
	2.2. Helical decomposition

	3. Solution in one triad
	3.1. One full triad
	3.2. One helical triad

	4. Solution in one tetrahedron
	5. On the role of kinetic helicity in dynamo action
	6. Concluding remarks
	Acknowledgments
	References



