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In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure
[(U)HP] rocks provides a key to distinguish among competing exhumationmechanisms. However, in spite of the
relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge
beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity
structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography
independently validated by receiver function analysis. Our results point to a composite structure of the mantle
wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly
above partly serpentinized peridotites (Vp ~7.5 km/s; Vp/Vs = 1.70–1.72), documented from ~10 km depth
down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly
formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against
dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We
propose that serpentinizedmantle-wedge peridotiteswere exhumed at shallow crustal levels during late Eocene
transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented
under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhuma-
tion may represent a major feature of the deep structure of exhumed continental subduction zones. The deep
orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where
mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Exhumed (ultra)high-pressure [(U)HP] rocks bear compelling
evidence of the interaction between subducting plates and the overly-
ing mantle wedge (Carswell and Compagnoni, 2003; Deschamps et al.,
2013; Ferrando et al., 2009; Gilotti, 2013; Hacker et al., 2006;
Scambelluri et al., 2010). However, the role played by the mantle
wedge during (U)HP rock exhumation is still poorly understood. Some
numerical models point to a negligible mantle involvement during
exhumation (Butler et al., 2013; Yamato et al., 2008), whereas other
models suggest that mantle rocks may be strongly involved, and may
follow the exhumation path of buoyant (U)HP rocks towards the Earth's
), marco.malusa@unimib.it
surface (Petersen and Buck, 2015; Schwartz et al., 2001). The behaviour
of themantlewedge during (U)HP rock exhumationmay thus provide a
key to discriminate among competing exhumation models (e.g., Agard
et al., 2009; Guillot et al., 2009a; Liou et al., 2009; Warren, 2013).

In the Cenozoic metamorphic belt of the Western Alps, the geologic
record of subduction and exhumation is exceptionally well preserved
(e.g., Lardeaux et al., 2006; Malusà et al., 2011), but a high-resolution
image of the mantle wedge is still lacking. A detailed analysis of the
seismic velocity structure beneath the Dora-Maira (U)HP dome,
where coesite attesting deep continental subductionwas first described
three decades ago (Chopin, 1984), may thus provide new insights
on the ongoing debate concerning the mechanisms triggering the
exhumation of (U)HP rocks (e.g., Agard et al., 2009; Butler et al., 2013;
Ducea, 2016; Jolivet et al., 2003; Little et al., 2011; Malusà et al., 2015;
Schwartz et al., 2001). Moreover, this kind of analysis may provide
new interpretation keys to understand the field relationships between
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mantle-wedge rocks and continental (U)HP rocks in deeply unroofed
pre-Cenozoic orogenic belts (e.g., Scambelluri et al., 2010; van
Roermund, 2009), where the geophysical record of subduction and
exhumation is no longer preserved (e.g., Zhao et al., 2017).

In this article, we exploit a comprehensive seismic dataset, also
including anomalously deep earthquakes (Eva et al., 2015), to derive a
local earthquake tomography model of the mantle wedge beneath the
Dora-Maira (U)HP dome, which is then compared with the results
provided by receiver function analysis along the CIFALPS transect
(China-Italy-France Alps seismic survey; Zhao et al., 2015). Our results
indicate that part of the mantle wedge was metasomatized above
the Alpine subduction zone, and subsequently exhumed at shallow
depth beneath continental (U)HP rocks now exposed at the surface.
This suggests that mantle-wedge exhumation may be a prominent
feature of the deep structure of many (U)HP belts, which should be
integrated in future theoretical models of continental subduction and
(U)HP rock exhumation.

2. Tectonic framework

2.1. The orogenic wedge of the southern Western Alps

The Western Alps are the result of oblique subduction of the
Alpine Tethys under the Adriatic microplate since the Late Cretaceous,
followed by continental collision between the Adriatic and European
paleomargins during the Cenozoic (Coward and Dietrich, 1989;
Dewey et al., 1989; Handy et al., 2010; Lardeaux et al., 2006;
Malusà et al., 2016a). The resulting slab structure is still largely pre-
served (Zhao et al., 2016a), as well as the orogenic wedge formed
atop the European slab (Beltrando et al., 2010; Lardeaux et al.,
2006; Malusà et al., 2011). In the southern Western Alps, along the
CIFALPS transect (X-X’ in Fig. 1), the Alpine orogenicwedgemainly con-
sists of rocks derived from the Piedmont ocean-continent transition
and from the adjoining European paleomargin (Dumont et al., 2012;
Lemoine et al., 1986). The external zone, exposed to the west of the
Fig. 1.A) Tectonic sketchmap showing the (U)HPdomes of theWestern Alps (dark blue), the gr
transect (X-X’). Acronyms: Br, Briançonnais; DM, Dora-Maira; FPF, Frontal Pennine Fault; GP
Rivoli-Marene deep fault; Se, Sesia-Lanzo; SL, Schistes lustrés; Vi, Viso; Vo, Voltri; VVF, Villa
stations utilized in this work (blue = CIFALPS; red = other networks) and location of tomo
figure legend, the reader is referred to the web version of this article.)
Frontal Pennine Fault (FPF in Fig. 1), includes the Pelvoux andArgentera
basements and their deformed Meso-Cenozoic sedimentary cover
sequences (Ford et al., 2006), which record a transition from thin-
skinned to thick-skinned compressional tectonics during the Neogene
(Schwartz et al., 2017). East of the Frontal Pennine Fault, in the Alpine
metamorphic wedge, the Briançonnais nappe stack (Br in Fig. 1)mainly
consists of Upper Paleozoic toMesozoic metasediments and underlying
pre-Alpine basement rocks that underwent subduction starting from
the Paleocene, and were later exhumed in the Eocene - early Oligocene
(Ganne et al., 2007; Lanari et al., 2014; Malusà et al., 2002, 2005a). The
Briançonnais nappe stack forms the core of the present-day Alpine fan-
shaped structure (Michard et al., 2004) thatwas overprinted by a dense
network of extensional faults during the Neogene (Malusà et al., 2009;
Sue et al., 2007). The eastern part of the fan is formed by oceanic
metasediments of the Schistes lustrés complex (SL in Fig. 1; Lemoine
et al., 1986; Lagabrielle and Cannat, 1990), including boudinaged
decametre-to-kilometre-sized ophiolitic bodies that were deformed
and metamorphosed during Alpine subduction under blueschist to
transitional blueschist–eclogite facies conditions (Agard et al., 2002;
Schwartz et al., 2009; Tricart and Schwartz, 2006) (Fig. 2A). A ductile
normal fault (DF1 in Fig. 2A; Ballèvre et al., 1990) separates the Schistes
lustrés complex from the Viso metaophiolites (Vi in Fig. 1; Lombardo
et al., 1978; Angiboust et al., 2012), representing major imbricated
remnants of the Tethyan oceanic lithosphere that were deformed and
metamorphosed under eclogite facies conditions during the Eocene
(Duchêne et al., 1997; Rubatto and Hermann, 2003; Schwartz et al.,
2000). Another ductile normal fault (DF2 in Fig. 2A; Blake and Jayko,
1990) separates the Viso eclogites from the underlying stack of deeply
subducted continental basement slices referred to as the Dora-Maira
(U)HP dome (DM in Fig. 1; Henry et al., 1993; Michard et al., 1993),
which also includes the coesite-bearing Brossasco-Isasca eclogitic unit
(black star in Figs. 1 and 2A; Chopin et al., 1991; Compagnoni and
Rolfo, 2003). Along the boundarywith the Po Plain, the CIFALPS transect
crosses the southern tip of the Lanzomassif (La in Fig. 1; Boudier, 1978;
Piccardo et al., 2007), an eclogitized mantle slice separated from the
avimetric anomaly of the Ivrea body (0mGal isoline in red), and the location of the CIFALPS
, Gran Paradiso; IF, Insubric Fault; IV, Ivrea-Verbano; La, Lanzo; MR, Monte Rosa; RMF,
lvernia-Varzi Fault. The black star marks the Brossasco-Isasca UHP locality. B) Seismic
graphic cross sections (black lines). (For interpretation of the references to color in this
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Fig. 2. A) Geologic cross-section of the Dora-Maira (U)HP dome (see location in Fig. 1A;
based on Avigad et al., 2003; Lardeaux et al., 2006). B, C) Alternative scenarios of mantle
involvement in (U)HP orogenic belts. In (B), synconvergent exhumation of (U)HP rocks
(e.g., Butler et al., 2013), possibly associated with deep duplex formation (Schmid et al.,
2017), is followed by indentation of the upper-plate mantle beneath the accretionary
wedge, with consequent fast erosion of the (U)HP dome andmajor tectonic shortening in
the upper plate (e.g., Béthoux et al., 2007). Seismic velocities in the upper-plate mantle
are similar beneath the orogenic belt and in the hinterland, as indicated by the uniform
dark blue color. In (C), divergence between upper plate and accretionary wedge triggers
the exhumation of (U)HP rocks (Malusà et al., 2011) and the emplacement of serpentinized
mantle-wedge rocks at shallow depth. Erosion on top of the (U)HP dome is minor at this
stage, and shortening is negligible. Because of widespread serpentinization of the mantle
wedge during subduction, seismic velocities will be lower in the mantle-wedge rocks
beneath the (U)HP dome (as indicated by the pale green color), and higher in the adjoining
drymantle rocks of theupper plate (dark blue). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Dora-Maira dome by a near-vertical active fault system rooted in the
uppermantle (Rivoli-Marene deep fault - RMF in Fig. 1) at the southward
prolongation of the Insubric Fault (Eva et al., 2015; Malusà et al., 2017).
The Lanzomassif consists of slightly serpentinized spinel plagioclase peri-
dotites surrounded by a 3–5 km thick envelope of foliated serpentinites
(Debret et al., 2013; Müntener et al., 2004), and records a high-pressure
metamorphic peak of early Eocene age (Rubatto et al., 2008). Beneath
the Po Plain, the complex transition zone between the Adriatic upper
plate and the Apennines, also involving rotated fragments of the Alpine
orogenicwedge (Maffione et al., 2008; Eva et al., 2015), is mainly covered
by thick Cenozoic to Quaternary sedimentary successions.

2.2. The Dora-Maira (U)HP dome

The Dora-Maira (U)HP dome is exposed all along the internal side of
the southern Western Alps (Chopin et al., 1991; Lardeaux et al., 2006)
(Fig. 1). To the west of Torino, it is juxtaposed against the Lanzo massif
along the Lis-Trana deformation zone (Perrone et al., 2010), possibly
representing a shallow splay of the Rivoli-Marene deep fault (Eva
et al., 2015). To the south, it is partly buried by the sedimentary succes-
sions of the Po Plain (Fig. 1), and is exposed as a half-dome including
coesite-bearing eclogitic rocks (Brossasco-Isasca unit) sandwiched be-
tween quartz-eclogite facies rocks, above, and blueschist facies rocks,
below (Avigad et al., 2003; Compagnoni et al., 1995; Compagnoni and
Rolfo, 2003) (Fig. 2A). The Brossasco-Isasca unit is a coherent continen-
tal crust sliver composed of granitic gneisses (Lenze and Stöckhert,
2007), whiteschists (Chen et al., 2017), mafic eclogites (Groppo et al.,
2007) and impure marbles (Ferrando et al., 2017). It was subducted to
depths greater than ~100 km by the late Eocene (e.g., Chopin et al.,
1991; Hermann, 2003; Rubatto andHermann, 2001), andwas exhumed
close to the Earth's surface by the early Oligocene, at rates faster than
subduction rates (Malusà et al., 2015; Rubatto and Hermann, 2001),
as confirmed by low-temperature thermochronology data (Beucher
et al., 2012; Gebauer et al., 1997; Tricart et al., 2007). The overlying
quartz-eclogite Venasca p.p. and Dronero units, including gneisses and
metasediments derived from a Permian-Triassic detrital sequence, and
the underlying blueschist-facies Sanfront-Pinerolo unit, consisting
of orthogneisses and metasediments intruded by Permian diorites
(Avigad et al., 2003), were piled up together with the Brossasco-Isasca
and Viso units during late Eocene exhumation (Malusà et al., 2011;
Schwartz et al., 2009), to became part of the Eocene Eclogite belt now
exposed along the upper-plate side of the Western Alps (Fig. 1), at the
rear of a lower-pressure Paleogene wedge (LP in Fig. 2B,C).

The structure and lithologic composition of the orogenic wedge
beneath the Dora-Maira (U)HP dome is still largely unknown. The
velocity structure provided by available seismic tomography models is
well resolved only for the uppermost 15–20 km (Béthoux et al., 2007;
Paul et al., 2001). Recent tectonic reconstructions postulated the
occurrence of Briançonnais crust slivers down to depths N30 km, and
suggested that these slivers would be involved in an east-vergent
backfold at the scale of the whole Eclogite belt (Schmid et al., 2017).
However, the Dora-Maira dome shows no cartographic evidence of
such large-scale backfolding, which is instead observed in the Monte
Rosa dome (MR in Fig. 1) of the northern Western Alps, where late
backfolding is possibly ascribed to progressive westward shifting
of Adria indentation from the Central Alps to the northern Western
Alps during the Neogene (Malusà et al., 2016b). As a matter of fact,
alternative interpretations of the deep tectonic structure of the southern
Western Alps are not adequately supported by geophysical data. This
information gap has so far precluded a full understanding of the
exhumationmechanisms thatwere activewithin the Alpine subduction
zone during the late Eocene.

2.3. Exhumation models and implications on the deep orogenic structure

In general terms, exhumation models applied to (U)HP belts can be
framed within two different groups, also implying alternative scenarios
of mantle involvement: (i) synconvergent exhumation models, either
requiring fast erosion or forced circulation in a low-viscosity wedge
(e.g., Beaumont et al., 2001; Jamieson and Beaumont, 2013; Zeitler
et al., 2001), and (ii) exhumation models that consider boundary
divergence within the subduction zone, with a minor role played by
erosion (e.g., Brun and Faccenna, 2008; Dewey, 1980). Both categories
of models have been applied to the Western Alps (e.g., Butler et al.,
2013; Malusà et al., 2011).

Classic tectonic reconstructions of the Alpine belt suggest that
synconvergent exhumation could be favoured by deep duplex forma-
tion via the accretion of continental material derived from the lower
plate (Agard et al., 2009; Schmid et al., 2004), which may be followed
by indentation of the upper-plate mantle beneath the accretionary
wedge (Béthoux et al., 2007; Schmid and Kissling, 2000). This scenario
would imply that seismic velocities in the upper-plate mantle should

Image of Fig. 2


626 S. Solarino et al. / Lithos 296–299 (2018) 623–636
be similar beneath the orogenic wedge and in the hinterland (Fig. 2B).
In case of divergent motion between the upper plate and the descend-
ing slab, (U)HP rock exhumation might be instead associated to the
emplacement of serpentinized mantle-wedge rocks at shallow depth
beneath (U)HP continental rocks, provided that divergence is sufficient-
ly high (Fig. 2C). Because of widespreadmantle-wedge serpentinization
during subduction (Lafay et al., 2013; Plümper et al., 2017), seismic
velocities are predicted to be lower in mantle-wedge rocks beneath
the (U)HP dome, and higher in adjoining dry mantle rocks of the
upper plate (Fig. 2C).

These alternative scenarios would be in agreement with alternative
end-member tectonic reconstructions of the southern Western Alps,
based on recent geophysical data from the CIFALPS experiment (Zhao
et al., 2016b). One possible end-member reconstruction, consistent
with geophysical data, invokes a thick complex of (U)HP continental
slivers, in line with predictions of numerical models of syn-convergent
exhumation, whereas a second end-member reconstruction invokes
a larger volume of mantle rocks possibly exhumed at shallow depth
during divergent motion within the subduction zone (Malusà et al.,
2017; Zhao et al., 2015). A local earthquake tomography model,
complementing previous studies based on receiver function analysis,
would be extremely useful to discriminate between these end-member
tectonic reconstructions, and may allow a decisive step forward in our
understanding of mechanisms leading to exhumation of (U)HP rocks.
3. Methods

3.1. Building the database

The local earthquake tomography presented in this work is largely
based on the dataset collected during the CIFALPS experiment (Zhao
et al., 2016b), which was integrated by data recorded in the same time
interval by permanent seismic networks operating in Italy and France,
and complemented with selected older events. The temporary network
of the CIFALPS experiment (blue marks in Fig. 1B) includes 46 broad-
band seismic stations deployed along a linear WSW-ESE transect from
the European foreland to thewestern Po Plain, and 9 additional stations
installed to the north and to the south of the main profile. Stations
operated from July 2012 to September 2013, and were specifically
deployed for a direct comparison between receiver function and local
earthquake tomography. Stations located along the main profile were
conceived for receiver function analysis (Zhao et al., 2015). Their
spacing ranges from ~5 km in the Western Alps mountain range to
~10 km in the European foreland and in thewestern Po Plain. Off profile
stations were installed to improve the crossing of seismic rays for local
earthquake tomography.

The high number of recording stations along the main CIFALPS pro-
file may increase the computational burden during local earthquake
tomography (e.g. in ray tracing) without a direct improvement in the
final resolution. However, it ensures a number of advantages. For exam-
ple, any potential loss of data due to station malfunctioning is easily re-
covered by adjacent instruments, and doubtful data can be discarded
without jeopardizing the quality of the dataset. In order to improve
the ray coverage and ensure ray crossing from any azimuth in the
study volume, we added to the dataset all published phase pickings
recorded by permanent seismic stations operating in France and Italy
during the CIFALPS experiment (red marks in Fig. 1B). We additionally
considered few events that occurred before the experiment tofill specif-
ic spatial gaps. This was the case of the intermediate depth earthquakes
thatwere useful to sample anomalies at the bottomof the study volume.
Because these earthquakes are relatively rare (Eva et al., 2015), only few
events were recorded during the CIFALPS experiment. In summary,
270 events on a total of 1088 events utilized in this work were added
as supplementary entries from datasets available at French and Italian
seismic networks; about 80% of the remaining events were merged
with existing phase pickings. The final P and S ray coverage is shown
in Fig. 3A.

3.2. Seismic tomography setup and reconstruction test

We adopted the local earthquake tomography code SIMULPS
(Thurber, 1983) for tomographic analysis, in its version 14 that imple-
ments the ray tracer by Virieux (1991) to cope with models of regional
size. We subdivided the study volume into layers containing nodes,
and used an initial velocity model derived from previous seismic exper-
iments over a larger area (Scafidi et al., 2009). Several tests were per-
formed for a correct choice of the inversion parameters, and classical
damping trade-off curves (Eberhart-Phillips, 1986) were computed to
pick up the best values for P and S velocities.

The resolution capability of the coupling between inversion setup
and data was evaluated by checkerboard and reconstruction tests.
These tests were useful to choose an adequate geometry of the starting
model and evaluate the smearing due to the contrast between high and
low velocity anomalies. The reconstruction test was specifically con-
ceived to test the potential impact of the high-velocity Ivrea body,
a long recognized tectonic feature associated to a positive gravimetric
anomaly (red dotted line in Fig. 1) and interpreted as a slice of Adriatic
mantle emplaced at shallow depth (Closs and Labrouste, 1963; Nicolas
et al., 1990). We used a “stairwell” geometry to simulate a high-
velocity east-dipping layer along the CIFALPS profile (Fig. 3B) and test
the resolution capability of the coupling between seismic dataset and
inversion setup. The same geometry after interpolation by the algorithm
used in SIMULPS is shown in Fig. 3C. A comparison with Fig. 3B shows
that the interpolation process introduces a smoothing of the anomalies
and a band of fake colors around them. Fig. 3D shows the reconstruction
of the imposed stairwell structure based on our seismic dataset. The
inversion of synthetic data does not consider the resolution, and
Fig. 3D only displays the reconstructed model as if it was completely
resolved except for areas that were not sampled (in white). As shown
in the reconstruction test, the shape of the anomaly is well reproduced,
but the velocity of the first and second steps is lowered from ~8.0 km/s
(blueish) to about ~7.5 km/s (greenish), andweak vertical and horizon-
tal periodic stripes of yellow color appear at ~50 km depth. These arti-
facts, and the undestimation of the magnitude of the high velocity
anomalies in the uppermost 10 km of the crust, have been considered
during the subsequent phases of tomography interpretation. The real
data tomographicmodel is about 700 × 700 kmwide, andwas obtained
after 6 iterations on a 12 layers model of 36 × 36 nodes each. In the
central part of the model, spacing between nodes is equal to 15 km.

4. Results

Fig. 4 shows the Vp and Vp/Vs cross-sections along the CIFALPS
profile. The lighter areas are those where the diagonal elements of the
resolution matrix are b0.1. This threshold was chosen as the divider
between resolved and non-resolved areas based on a comprehensive
comparison between different resolution indicators (Paul et al., 2001).
As expected, the maximum depth of the resolved area is limited by
the depth of occurrence of most of the deepest events (Eva et al.,
2015; Malusà et al., 2017). Beneath the Dora-Maira (U)HP dome, the
tomography model is well resolved down to 50–60 km depth, whereas
the two extremes of the CIFALPS cross section are poorly resolved.
Letters “a” to “k” indicate the relevant velocity features highlighted by
the tomography model. The main tectonic structures previously
inferred from receiver function analysis (Zhao et al., 2015) and surface
geology (Lardeaux et al., 2006; Malusà et al., 2015) are also indicated
for comparison (black lines in Fig. 4).

Themost prominent feature of the tomographymodel is represented
by the high velocity body (Vp ~7.5 km/s; Vp/Vs = 1.70–1.72), labelled
with “a”, which is located right below the Dora-Maira (U)HP dome, at
depths as shallow as ~10 km. Such a high-velocity body was already



Fig. 3.A) Three-dimensional P and S ray coverage based on the seismic events considered in this study (X-X’ indicates theCIFALPS transect, see Fig. 1). B) Imposed stairwell geometry along
the CIFALPS transect for testing the resolution capability of the coupling between seismic dataset and inversion setup. C) Same geometry after interpolation by the algorithm used in
SIMULPS, which introduces a smoothing and a thin band of fake colors around the anomalies. D) Reconstruction test showing that the shape of the imposed stairwell structure is well
reproduced using our dataset, but the high velocities in the uppermost 10 km are converted to lower values (as less as 0.5 km/s); the weak vertical and horizontal periodic stripes of
yellow color at 50 km depth within the blue area are artifacts; white areas are not sampled. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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imaged with similar velocities by previous works (Vp ~7.4–7.7 km/s;
Paul et al., 2001; Béthoux et al., 2007), but was only resolved down to
depths of 15–20 km. It is still observed to the south of theCIFALPS profile
(Fig. 5D,E), but progressively vanishing towards the north (Fig. 5A,B).
A series of N-S cross sections, ranging from the Western Alps to the Po
Plain (Fig. 6), shows that this high-velocity anomaly is exclusively
found beneath the Dora-Maira (U)HP dome (Fig. 6A), and disappears
farther east.

The mantle-wedge region labelled with “b” is located at depth of
20–45 km, in correspondence with a cluster of intermediate depth
earthquakes that mark the Rivoli-Marene deep fault (RMF in Fig. 4A;
Eva et al., 2015). This region shows higher Vp values (~8.0 km/s)
compared to region “a”, and anomalously high Vp/Vs ratios (N1.74)
that are supportive of low shearwave velocities. This cluster of interme-
diate depth earthquakes in region “b” is not only observed along the
CIFALPS profile, but also in cross sections located more to the north
or to the south (Fig. 5). The deepest mantle wedge region resolved
by the tomographic model is labelled with “c”. This region, located
at depth of ~40–50 km atop the European slab, shows lower Vp and
Vp/Vs values compared to region “b” (Vp ~7.0–7.5 km/s; Vp/Vs b 1.70),
but the Vp/Vs ratio is locally higher (Vp/Vs ~1.74).
Thewell-resolved regions of themodel also include some subducted
European lower crust. This shows a progressive increase in Vp from the
region labelled with “d” (Vp ~6.7 km/s) to the region labelled with “e”
(Vp ~7.6 km/s), under a rather constant Vp/Vs ratio of 1.70–1.72. Such
variations are detected in all of the analyzed WSW-ENE transects of
Fig. 5. No seismic event was recorded in regions “d” and “e” since
1990 (installation of permanent seismic networks) and during the
CIFALPS experiment (Malusà et al., 2017).

On the eastern side of the transect, the region labelled with “f” is lo-
cated below the Adriatic Moho as determined by receiver function anal-
ysis combined with gravity modeling. It shows Vp values ~8.0 km/s and
Vp/Vs = 1.70–1.72. This region is affected by intermediate depth earth-
quakes that are also observed to the north and to the south of the
CIFALPS transect (Fig. 5). The vertical and horizontal periodic stripes of
yellow color observed at 50 km depth in this region are artifacts, as con-
firmed by the reconstruction test of Fig. 3D. Above the Adriatic Moho,
measured Vp values are much lower, generally b6.7 km/s, but in places
they reach values as high as ~7.2 km/s. Very high Vp/Vs values (N1.8)
are locally observed at ~30 km depth at the base of the Adriatic crust.
This region, labelled with “g”, is also characterized by a cluster of seismic
events that are only observed in the vicinity of themain CIFALPS transect.

Image of Fig. 3


Fig. 4. Tomographic cross sections along the CIFALPS transect. A) Absolute Vp velocity. The velocity structure beneath the Dora-Maira (U)HP dome is well resolved down to 50–60 km
depth (acronyms as in Fig. 1A); areas with resolution diagonal elements b0.1 are masked, white areas are not sampled; letters a to k indicate regions of the model discussed in the
main text; black circles indicate earthquakes as located with the 3D model; black lines and text in italics indicate the main tectonic features previously inferred from receiver function
analysis (Zhao et al., 2015; Malusà et al., 2017, see Fig. 7B). Note the prominent high velocity body (labelled with “a”) located right below the Dora-Maira (U)HP dome. The vertical
and horizontal periodic stripes of yellow color at 50 km depth are artifacts, as attested by the reconstruction test of Fig. 3D. B) Vp/Vs ratios. White dashed lines are isolines of equal
Vp/Vs, grey areas are not sampled (other keys as in frame A). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In the uppermost part of the Alpine orogenic wedge (regions “h”
to “k”), Vp values are invariably b6.5 km/s, but major variations in
Vp/Vs ratios are locally observed. For example, the region to the
east of the Dora-Maira (U)HP dome (labelled with “h”) shows Vp/Vs
values N1.72, whereas the region corresponding to the western
flank of the Dora-Maira dome (labelled with “j”) shows much lower
Vp/Vs ratios, even b1.66. Vp/Vs ratios b1.68 are also observed in the
region labelled with “k”, located beneath the Frontal Pennine Fault.
The double-vergence accretionary wedge located to the east of
the Frontal Pennine Fault, and labelled with “i”, shows instead Vp/Vs
values N1.75, and includes most of the shallow earthquakes recorded
in the Western Alps area.
5. Comparison with receiver function analysis

Results of local earthquake tomography are compared in Fig. 7 with
published CIFALPS results of receiver function analysis (Zhao et al.,
2015). Unlike local earthquake tomography, the receiver function tech-
nique is based on the analysis of teleseismic earthquakes, and enhances
P-to-S (Ps)-converted waves on velocity interfaces beneath an array.
The polarity of the converted signal depends on the sign of the velocity
change, and interfaces with velocity increase can be discriminated from
interfaces with velocity decrease. Assumptions and arbitrary choices
of the receiver function approach applied to the CIFALPS transect
(e.g., magnitude threshold, epicentral distance, seismograms filtering,
velocity model, choice of the direction of back azimuths) are described
in full in Zhao et al. (2015).
Fig. 5. Lateral variations in Vp velocity in themantle wedge as shown in a series ofWSW-ENE c
(C). The high velocity body labelledwith “a” progressively disappearsmoving to the north. Black
dashed lines, reported in all sections for comparison, indicate the European and Adriatic Moho
The image of Fig. 7B is based on radial receiver functions from
teleseismic events with magnitude ≥5.5, epicentral distance of 30–90°,
and ENE back-azimuths (see Zhao et al., 2015). This image shows
two major interfaces marked by positive-polarity Ps-conversions
(red-to-yellow regions), which attest the downward velocity increase
corresponding to the European and Adriatic Mohos (thick dashed lines).
The eastward-dipping European Moho is recognized from ~40 km
depth beneath the Frontal Pennine Fault to ~75 km depth beneath the
Po Plain. The Adriatic Moho is recognized from 20 to 30 km depth,
to the east, to 10–15 km depth, to the west. The red spots located at
40–55 km depth beneath the Adriatic Moho are multiples, as confirmed
by synthetic tests (Zhao et al., 2015). A shallow positive-polarity convert-
ed phase is also observed beneath the Dora-Maira massif, between re-
gions “a” and “h”, whereas a spot of negative-polarity Ps-conversions
marking a downward velocity decrease is located above region “c”,
at 20–40 km depth (blue region).

On the eastern side of the CIFALPS transect, the sharp velocity
increase from Vp b6.5 km/s to Vp N8 km/s evidenced by local earth-
quake tomography faithfully matches the location of the downward ve-
locity increase highlighted by receiver function analysis. Localized
anomalies in Vp/Vs ratios, e.g., in region “g”, match with major breaks
in the alignment of positive-polarity Ps-conversions. Beneath the
Dora-Maira (U)HP dome, the downward increase in Vp values from
region “h” (Vp b6.5 km/s) to region “a” (Vp ~7.5 km/s) is consistent
with the observed positive-polarity Ps-conversions, whereas the
downward velocity decrease from regions “a” and “b” (Vp ~7.5 km/s
and N8 km/s) to region “c” (Vp ~7.0–7.5 km/s) is consistent with the
ross-sections lying to the north (A, B) and to the south (D, E) of the main CIFALPS transect
circles are projected hypocentres locatedwithin±5 kmdistance off the profiles. The thick
s inferred from receiver function analysis (cf. Fig. 7B). Other keys as in Fig. 4.
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spot of negative-polarity Ps-conversions located at 20–40 km depth in
Fig. 7B. The shape of the high-velocity region labelled with “a” is also
mirrored by the distribution of seismic events recorded since 1990.
Region “a” is virtually aseismic (Malusà et al., 2017), and earthquakes
are chiefly located along its external boundaries or in the surrounding
regions (Fig. 7B). On the western side of the CIFALPS transect, the align-
ment of positive-polarity Ps-conversions generated along the European
Moho is partly includedwithin the resolved area of the local earthquake
tomography model, and fits with a downward velocity increase
from ~6.7 km/s (region “d”) to ~7.6 km/s (region “e”). The velocity
structure unravelled by the analysis of local earthquakes is thus
independently confirmed by the analysis of teleseismic earthquakes
(Zhao et al., 2015) and by the distribution of seismic events (Eva et al.,
2015; Malusà et al., 2017).

6. Geologic interpretation

The geologic cross section of Fig. 7C shows the main features of the
orogenic wedge of theWestern Alps, and of themantle wedge between
the European and theAdriatic plates, as inferred from the velocity struc-
ture derived from local earthquake tomography along the CIFALPS
profile. Correlation between seismic velocity and lithology in former
subduction zones is a challenging task. Subducted rocks are heteroge-
nous, and display anisotropic fabrics and velocity variations as a func-
tion of direction (e.g., Rudnick and Fountain, 1995; Weiss et al., 1999).
A full 3D coverage of seismic rays is thus required to get a reliable
characterization of the velocity structure (see Fig. 3A).

In the European plate, the Vp values ~6.7 km in region “d” are
supportive of a relatively felsic composition of the European lower
crust (e.g. Goffé et al., 2003; Mechie et al., 2012; Rudnick and
Fountain, 1995; Wang et al., 2005; Weiss et al., 1999). The homoge-
neous Vs values b4 km/s reported by Lyu et al. (2017) suggest that
the European lower crust may be rather homogeneous at the scale of
seismic observations, andmay consist of granulite having felsic to inter-
mediate composition. Major occurrence of granulitic metapelites can be
safely excluded, because it would result in much higher Vp (N6.7 km/s
up to 7.2 km/s) and Vs values (~4 km/s; Rudnick and Fountain, 1995).

The increase in Vp values evidenced at ~40 km depth by local
earthquake tomography, from ~6.7 km/s in region “d” to ~7.6 km/s in
region “e”, may mirror a progressive eclogitization of lower crust rocks
with consequent density increase by metamorphic phase changes
(e.g., De Paoli et al., 2012; Hacker et al., 2003). Mineral equilibria at
the granulite-eclogite transition depend on rock composition. The
eclogitization of a felsic granulite strongly increases the garnet content,
and consequently the density from 2.90 to 3.30 kg/dm3, and the P veloc-
ity up to a maximum of 7.6 km/s (e.g., Christensen, 1989; Hacker and
Abers, 2004; Hacker et al., 2003, 2015; Hetényi et al., 2007). These values
are consistent with the Vp values observed in region “e”. The increase in
P velocity from region “d” to region “e” is associated with a progressive
increase in S velocity up to 4.2 km/s (Lyu et al., 2017), which may be
either interpreted as an increase in mafic component, or as an effect of
metamorphic reactions under increasing pressure-temperature condi-
tions. However, Vp values in region “e” are far too low for a pure mafic
eclogite (Bezacier et al., 2010; Reynard, 2013), thus suggesting no
major compositional changes from west to east in the European lower
crust, but only a progressive change in metamorphic assemblage during
subduction. This interpretation also explains the progressive weakening
of the positive-polarity converted phases observed along the European
Moho, from red to yellow background colors in Fig. 7B, as previously
described by Zhao et al. (2015).

On the eastern side of theWestern Alps, Vp values N8 km/s confirm
the presence of Adriatic mantle at shallow depth beneath the western
Po Plain (10–15km), just in correspondencewith the positive gravimet-
ric anomaly classically referred to as the Ivrea body (Closs and
Labrouste, 1963; Nicolas et al., 1990) and in linewith results of previous
tomographic models (e.g., Diehl et al., 2009; Paul et al., 2001; Scafidi
et al., 2006, 2009; Solarino et al., 1997; Wagner et al., 2012). East of
the Ivrea body gravimetric anomaly, the Adriatic Moho is located at
30–35 km depth, which is a much more reliable estimate of the Moho
depth beneath the Po Plain compared to previous estimates based on
receiver function alone (Zhao et al., 2015). The locally high Vp/Vs
ratios N1.8, associated to Vp of 7.0–7.5 km/s (region “g”), may be
supportive of gabbro (Weiss et al., 1999) underplated at the base of
the Adriatic lower crust. Noteworthy, Permian gabbros are indeed ex-
posed north of the Po plain, where they are intruded into lower crust
rocks belonging to the Adriatic (Southalpine) basement (Quick et al.,
1994; Schaltegger and Brack, 2007). Above the Adriatic Moho, local
spots with Vp ~7.2 km/s but low Vp/Vs ratios (Fig. 5) are supportive
of a more heterogeneous composition of the Adriatic lower crust com-
pared to the European lower crust, and may suggest a local occurrence
of granulite facies metapelites (Vp 6.7–7.2 km/s, Vs ~4 km/s; Rudnick
and Fountain, 1995) not only at the surface (e.g., Ewing et al., 2014),
but also at depth. Differences in velocity structure among crustal
sections now exposed on the opposite sides of the Alps probably reflect
a different pre-Alpine evolution, rather than processes related to the
Cenozoic evolution of the Adria-Europe plate boundary zone (Bergomi
et al., in review; Carosi et al., 2012; Guillot et al., 2009b).

In the uppermost part of the Alpine wedge, the structural variability
of stacked rocks is largely mirrored by their variability in Vp/Vs ratios.
The Vp/Vs values N1.75 observed in the double-vergence accretion-
ary wedge chiefly including Briançonnais and Schistes lustrés units
(Lardeaux et al., 2006), may reflect low Vs values, possibly associated
to the widespread network of mesoscale faults developed in these
rocks since the Neogene (Malusà et al., 2009; Sue et al., 2007;
Tricart et al., 2004). To the east, low Vp/Vs values even b1.66 ob-
served on the western flank of the Dora-Maira dome (region “j”)
may instead reflect high Vs velocities, suggesting that the poorly
fractured granitic gneisses exposed at the surface (Brossasco granite;
Paquette et al., 1999; Lenze and Stöckhert, 2007)may be also present
at depth. Fracturingmay be also invoked to explain the low Vs values
observed along the eastern boundary of the Dora-Maira dome, where
(U)HP continental rocks are juxtaposed against the eclogitized man-
tle rocks of the Lanzo massif (Kienast and Pognante, 1988; Piccardo
et al., 2007) along the Lis-Trana deformation zone (Perrone et al.,
2010). To the west of the Frontal Pennine Fault, Vp/Vs values b1.68
suggest instead that the European upper crust in the External zones
is poorly deformed, consistent with minor seismicity recorded in
that area (Fig. 7B).

But themost relevant results of the tomographymodel presented in
this work is related to the velocity structure beneath the Dora-Maira
(U)HP dome. This information is critical to discriminate between con-
trasting models of (U)HP rock exhumation (Jamieson and Beaumont,
2013; Malusà et al., 2011, 2015), and to discern between end-member
tectonic reconstructions recently proposed in the light of available geo-
physical data (Malusà et al., 2017). The velocity structure of the mantle
wedge region “a”, showing Vp velocity of ~7.5 km/s from depths as
shallow as ~10 km down to ~30 km, is largely inconsistent with the
presence of imbricated continental crust units (e.g., Schmid et al.,
2017) or dry mantle peridotite beneath the Dora-Maira (U)HP dome.
Instead, it may suggest a complex evolution of mantle-wedge rocks in
terms of P-T conditions and fluid-rock interaction. Such Vp values
point in fact to widespread serpentinization of mantle rocks (~60%
according to Reynard, 2013), that may locally exceed 90% both in
the uppermost part of anomaly “a” and in the Lanzo massif, although
velocity values in the uppermost crustal levels may be slightly
underestimated, as unravelled by the reconstruction tests of Fig. 3D.
The degree of serpentinization at 30–40 km depth is instead much
lower (b30%), and consistent with the occurrence of intermediate-
depth earthquakes (Fig. 7B). Vp/Vs ratios are in the range of 1.70–1.72
in region “a”, but sharply increase to values N1.74 in region “b”, where
Vp values (~8.0 km/s) are consistent with dry mantle peridotite. The
high Vp/Vs ratios in region “b” point to low shear wave velocities,



Fig. 6. Lateral variations in Vp velocity beneath theDora-Maira (U)HP dome, as shown in a series of N\\S cross-sections from themountain range to the Po Plain. Black circles are projected
hypocentres located within ±3 km distance off the profiles. The high-velocity body labelled with “a” in Figs. 4 and 5 is exclusively found beneath the Dora-Maira dome (see cross section
A) and progressively disappears towards the east. Acronyms as in Fig. 1.
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which are in linewith a potential impact of the Rivoli-Marene deep fault
on the rock fabric. According to previous work, the deepest part of the
mantle wedge beneath the thick blue spot of negative polarity conver-
sions (region “c” in Fig. 7B) may either include serpentinites, or slivers
of (U)HP rocks. On a geophysical ground, serpentinites can be easily dis-
tinguished from other lithologies possibly found in high-pressure mé-
lange zones (e.g., Marschall and Schumacher, 2012) such as eclogitic
metasediments and mafic eclogites (Reynard, 2013). Our results indi-
cate that the velocity values observed in region “c” (Vp ~7.0–
7.5 km/s; Vp/Vs b1.70) are neither consistent with eclogitic
metasediments (Vp ~7.0 km/s; Vp/Vs ~1.75) nor with mafic eclogite
(Vp N 8.0 Vp/Vs ~1.73), but are instead supportive of ultramafic rocks
with a degree of serpentinization ranging between 50% and 75%
(Reynard, 2013; Weiss et al., 1999). However, minor slivers of
eclogitic metasediments could be present at ~40 km depth at the
top of the European slab, in regions showing the highest Vp/Vs ratios
(Fig. 7A).

7. Implication for (U)HP rock exhumation

In the southern Western Alps, the positive gravimetric anomaly
ascribed to the Ivrea body is classically interpreted in terms of upper
mantle indentation (e.g., Béthoux et al., 2007; Lardeaux et al., 2006),
in line with previous tectonic interpretations proposed for the Central
Alps and for the northern Western Alps (e.g., Schmid and Kissling,
2000). According to these interpretations, the uppermost part of the
Adriatic mantle would act as an indenter beneath the Alpine accretion-
ary wedge, and would transfer compression towards the European
foreland. The main geologic implications of this model include major
crustal shortening in the upper plate, and fast erosion focused above

Image of Fig. 6


Fig. 7. Synthesis of geophysical data (A, B) and inferred mantle wedge structure (C). Black lines in A and B are tectonic features based on receiver function analysis (colors in B indicate
positive- and negative-polarity Ps-converted phases, Zhao et al., 2015); contours are isolines of equal Vp/Vs; purple circles in B are earthquakes recorded since 1990 (Malusà et al.,
2017). The amount of serpentinization in C, in the mantle wedge underlying the Dora-Maira (U)HP dome, is inferred from seismic velocities (Reynard, 2013). Note the consistency
between structures unravelled by local (A) and teleseismic (B) events. Acronyms as in Fig. 1, letters a to k as in Fig. 4. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

632 S. Solarino et al. / Lithos 296–299 (2018) 623–636
the indenter (Fig. 2B). These latter features are indeed observed in the
Central Alps, where upper mantle indentation, accommodated by
back-folding of (U)HP domes (Keller et al., 2005) and by backthrusting
of Adriatic units (Zanchetta et al., 2015), triggered the fast erosional ex-
humation of the amphibolite-facies rocks of the Lepontine dome
(Anfinson et al., 2016; Malusà et al., 2016b). However, these features
are not common to the southern Western Alps, where shortening in
the accretionary wedge was minor during and after (U)HP rock exhu-
mation (Dumont et al., 2012; Malusà et al., 2009), and erosion was
much slower compared to the Lepontine dome, as attested by low-
temperature thermochronometers (Fox et al., 2015; Malusà et al.,
2005b; Vernon et al., 2008) and by preserved Oligocene corals uncon-
formably lying on top of Eocene eclogites (Molare Fm; Quaranta et al.,
2009). A tectonic scenario exclusively invoking upper-plate mantle in-
dentation beneath the accretionary wedge would also imply that
seismic velocities in the upper-plate mantle should be quite similar be-
neath the orogenic wedge and in the hinterland (Fig. 2B). Major seismic
velocity changes, e.g., by metamorphic phase changes triggered by
fluids released by the downgoing slab, would remain undetected in
local earthquake tomography models, because they would take place
at much greater depths (Abers et al., 2017; Deschamps et al., 2013).

Our study points to a complex velocity structure in the upper-
plate mantle of the southern Western Alps. The region beneath the
Dora-Maira (U)HP dome is dominated by serpentinized peridotites,
documented from ~10 km depth down to the top of the European
slab. To the east, these rocks are juxtaposed against dry mantle perido-
tites of the Adriatic upper plate along a steeply dipping fault rooted in
the lithospheric mantle (RMF in Fig. 7C). In between, mantle rocks of
the Lanzo massif underwent subduction during the Alpine orogeny,
and were later exhumed and accreted against the Adriatic upper plate
when the Dora-Maira (U)HP rocks were still buried at mantle depths
(Rubatto and Hermann, 2001). This scenario is supportive of (U)HP
rock andmantle-wedge exhumation triggered by upper plate divergent
motion (Fig. 2C).

Serpentinized peridotites with Vp ~7.5 km/s that are found beneath
the Dora-Maira dome may have favoured the exhumation of (U)HP
rocks across the upper crust, in the depth range where eclogitized con-
tinental crust rocks may have become neutrally buoyant (Schwartz
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et al., 2001). According to Agard et al. (2009), exhumation of eclogitized
ophiolites would be favoured by accretion of continental material. Our
results point instead to a decisive role played by buoyant serpentinites
(e.g., Hermann et al., 2000; Schwartz et al., 2001) during continental
(U)HP rock exhumation, within a broadly extensional tectonic frame-
work that is common to many recent tectonic reconstructions of the
Central Mediterranean area (e.g., Malusà et al., 2015; Vignaroli et al.,
2008) (Fig. 8).

No exhumed mantle-wedge serpentinites are recognized so far at
outcrop in the southern Western Alps (Deschamps et al., 2013; Hattori
and Guillot, 2007; Piccardo et al., 2004; Scambelluri et al., 1995).
However strong fluid-rock interactions are recognized in subducted
serpentinites and associated ophiolitic rocks (Lafay et al., 2013;
Plümper et al., 2017; Scambelluri and Tonarini, 2012), suggesting
that fluid release may have occurred during oceanic and even during
continental subduction (e.g., Castelli et al., 2007; Ferrando et al.,
2009), possibly triggering the partial serpentinization of the Adriatic
mantle wedge. Part of the Adriatic mantle wedge was then exhumed
at shallow crustal levels during late Eocene transtension along the
Western Alps subduction zone (Malusà et al., 2015) and coeval rapid ex-
humation of the Dora-Maira (U)HP rocks (Rubatto andHermann, 2001)
(step 1 in Fig. 8). The exhumed mantle wedge was finally indented be-
neath the Alpine belt during early Oligocene tectonic shortening
(Dumont et al., 2012; Jourdan et al., 2012, 2013) (step 2 in Fig. 8).
Along the Adria-Europe plate boundary, the divergent component of
Eocene transtension progressively decreased towards the north to be-
come negligible in the Central Alps (Fig. 8A), where Adria was indented
more deeply beneath the accretionary wedge compared to theWestern
Alps, and rocks now exposed in the Lepontine dome were exhumed at
lower rates through the upper crust (Fig. 8B). We speculate that, north
of the Dora-Maira dome, upper plate divergence was probably insuffi-
cient to allow an effective exhumation of the mantle wedge (Fig. 8C).
However, testing this hypothesis would require a high resolution tomo-
graphic image of the northern Western Alps, which may be precluded
by the lack of deep earthquakes.

Our results demonstrate that recent geologic cross-sections postu-
lating a thick wedge of Briançonnais eclogites beneath the Dora-Maira
dome (e.g., Schmid et al., 2017) are likely incorrect. The palinspastic
reconstructions derived from such geologic cross-sections, and exclu-
sively considering a Cenozoic evolution within a broadly compressional
framework, should be reconsidered at the advantage of palinspastic
reconstructions also including major episodes of divergence within
Fig. 8. Geodynamic framework of mantle wedge exhumation. A) Trench-normal component of
Alpine subduction zone (Malusà et al., 2015). B) Pressure-time exhumation paths (Dora-Maira:
1996; Brouwer et al., 2004; Nagel, 2008). C,D) Late Eocene transtension leading to (U)HP rock a
grey arrows indicate Adria motion relative to Europe (modified after Malusà et al., 2015).
the plate boundary zone (e.g., Malusà et al., 2015; Vignaroli et al.,
2008). Mantle wedge exhumation is in fact more consistent
with a late Eocene transtensional tectonic framework (Fig. 8C)
followed by early Oligocene convergence (Fig. 8D), accommodated
by orogen-perpendicular shortening in the external Alps (Dumont
et al., 2012) and by transpressional tectonics in the Alps-Apennines
transition zone (Malusà and Balestrieri, 2012).

The occurrence of mantle-wedge serpentinites exhumed at shallow
depth within a continental subduction zone is not specific of the
southern Western Alps. Mantle wedge serpentinites associated with
(U)HP rock are described, for example, in the Indus Suture Zone in
the Himalaya, in the Caribbean (Deschamps et al., 2012; Guillot et al.,
2001), in the Western Gneiss Region in Norway (Scambelluri et al.,
2010), and are inferred by geophysical evidence under the Dabie-Sulu
(Liu et al., 2015). Our findings suggest that orogen-scale exhuma-
tion of the mantle wedge may represent a prominent, but still
underestimated feature of the deep structure of many orogenic belts.
As such, it should be integrated in more advanced theoretical models of
subduction and exhumation. Moreover, widespread mantle-wedge ex-
humation may explain the common occurrence of boudinaged mantle-
wedge rocks within continental UHP rocks in the roots of old orogenic
belts now unroofed by erosion. In pre-Cenozoic orogenic belts such as
the Dabie-Sulu or the Western Gneiss Region, where the evidence of
minor erosion during UHP exhumation, if any, is no longer preserved,
the occurrence of mantle wedge rocks at shallow depth may represent
the only evidence supporting (U)HP rock exhumation triggered by
divergent motion between upper plate and accretionary wedge.

8. Conclusions

The new local earthquake tomography model of the southern
Western Alps, independently validated by receiver function analysis,
unravels a complex seismic velocity pattern consistentwith a composite
structure of the mantle wedge above the subducted European litho-
sphere. Seismic velocities indicate that the Dora-Maira (U)HP dome
lays directly above serpentinized peridotites, documented from
~10 km depth down to the top of the eclogitized lower crust of the
European plate. We propose that peridotite serpentinization was the
result of fluids released to the Adriatic mantle wedge during Alpine
subduction. During late Eocene transtension, when the subduction
wedge was largely exhumed at the Earth's surface, part of the mantle
wedgewas also exhumed at shallow crustal levels, to befinally indented
Adria-Europe relative motion in the Central (CA) andWestern Alps (WA) segments of the
Chopin et al., 1991; Rubatto andHermann, 2001; Lepontine dome: Becker, 1993; Gebauer,
ndmantle wedge exhumation, and subsequent tectonic shortening in the early Oligocene;
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under the Alpine metamorphic units in the early Oligocene. Our results
suggest that mantle wedge exhumation may represent an important
feature of the deep structure of exhumed continental subduction
zones. Deep orogenic levels, as those imaged by local earthquake to-
mography in the southern Western Alps, may be exposed today in
older continental subduction zones, where mantle wedge serpentinites
are commonly associated to continental (U)HP metamorphic rocks.
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