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Enstrophy transfers in helical turbulence
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In this paper we study the enstrophy transfers in helical turbulence using direct numerical
simulation. We observe that the helicity injection does not have significant effects on the
inertial-range energy and helicity spectra (∼k−5/3) and fluxes (constants). We also calculate
the separate contributions to enstrophy transfers via velocity-to-vorticity and vorticity-to-
vorticity channels. There are four different enstrophy fluxes associated with the former
channel or vorticity stretching, and one flux associated with the latter channel or vorticity
advection. In the inertial range, the fluxes due to vorticity stretching are larger than that
due to advection. These transfers too are insensitive to helicity injection.
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I. INTRODUCTION

Turbulence is a classic and still open problem in fluid dynamics. The energetics of homogeneous
and isotropic turbulence were explained through the celebrated works of Kolmogorov [1,2].
Kolmogorov argued that under statistically steady state, the rate of energy supplied by an external
force is equal to the rate at which energy cascades from large to smaller scales, which is equal to
the rate of energy dissipation. Obukhov [3] and Corrsin [4] generalized Kolmogorov’s theory to
isotropic turbulence with statistically homogeneous fluctuations of the temperature field embedded
in a turbulent flow. The theories of Kolmogorov, Obukhov, and Corrsin, collectively referred to
as Kolmogorov-Obukhov theory, predict that the kinetic energy spectrum E (k) = u2

k/k ∼ k−5/3,
and the spectrum of temperature fluctuations Eζ (k) = ζ 2

k /k ∼ k−5/3, where k = 2π/l is the wave
number with l as the length scale, and uk and ζk are respectively the velocity and temperature
fluctuations at wave number k. Researchers have also studied the spectra of density and other passive
scalars in the same framework. Refer to Lesieur [5] and Verma [6] for detailed references. It is
important to note that the effect of helicity is absent in the above-described works.
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Energy and helicity are two inviscid conserved quantities in three-dimensional (3D) turbulent
flows. The effect of helicity in fully developed 3D turbulence has been extensively studied [7–25].
André and Lesieur [9] studied the effect of helicity on the evolution of isotropic turbulence at
high Reynolds numbers using a variant of Markovian eddy-damped quasinormal (EDQNM) theory.
Polifke and Shtilman [10] showed that the energy decay is slowed down by large initial helicity.
Waleffe [11] introduced helical decomposition of the velocity field and discussed triadic interactions
in helical flows. Yokoi and Yoshizawa [12] reported the effects of helicity in 3D incompressible
inhomogeneous turbulence with the help of a two-scale direct-interaction approximation (DIA).
Zhou and Vahala [13] showed that helicity does not alter renormalized viscosity. Ditlevsen and
Giuliani [14], Chen et al. [15], and Lessinnes et al. [16] studied helicity fluxes for different types
of helical modes. Chen et al. [17] studied intermittency in helical turbulence. Teitelbaum and
Mininni [18] explored the effect of helicity in rotating turbulent flows, while Pouquet et al. [19]
reported evidence for three-dimensionalization recovered at small scales. Stepanov et al. [20]
explored the helical bottleneck effect in 3D isotropic and homogeneous turbulence using a shell
model. Maximum helicity states have been studied by Biferale et al. [21], Kessar et al. [22], and
Sahoo and Biferale [23]. Mode-to-mode and shell-to-shell helicity transfers have been studied
by Avinash et al. [24] and Teimurazov et al. [25]. Helicity may also play a crucial role in
magnetohydrodynamics [26–28] and dynamo action [29–32].

In this paper we derive formulas for mode-to-mode enstrophy transfers and their associated
fluxes. These quantities arise due to the nonlinear interactions. In Sec. II we derive the expressions
of mode-to-mode enstrophy transfers and the corresponding fluxes. In Sec. III, after introducing
the helical forcing that we use, the enstrophy fluxes are calculated from direct simulations of 3D
turbulence using the pseudospectral code TARANG [33,34]. We conclude in Sec. IV.

II. ENSTROPHY TRANSFERS AND FLUXES

The motion of an incompressible fluid is described by the Navier-Stokes equations

∂u
∂t

= −(u · ∇ )u − ∇p + ν∇2u + F, (1)

∇ · u = 0, (2)

where u and p are the velocity and pressure fields, ν the kinematic viscosity, and F an external force.
The vorticity ω = ∇ × u obeys the following equation:

∂ω

∂t
= (ω · ∇ )u − (u · ∇ )ω + ν∇2ω + ∇ × F, (3)

where the first two terms in the right-hand side correspond to vorticity stretching and vorticity
advection respectively. In Fourier space the vorticity, which is defined as ω(k) = ik × u(k), satisfies

d

dt
ω(k) = i

∑
p

(k · ω(q))u(p) − (k · u(q))ω(p) − νk2ω(k) + ik × F(k), (4)

where q = k − p and k = |k|.

A. Enstrophy transfers

Enstrophy, which is defined as W (k) = |ω(k)|2/2, satisfies

d

dt
W (k) =

∑
p

[Im{[k · u(q)][ω(p) · ω∗(k)]} − Im{[k · ω(q)][u(p) · ω∗(k)]}]

− 2νk2W (k) + k2 Re{u∗(k) · F(k)}, (5)
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where q = k − p. Setting k′ = −k, the above equation can be rewritten in the form

d

dt
W (k′) =

∑
p

[Sωω(k′|p, q) + Sωu(k′|p, q)] − 2νk′2W (k′) + k′2 Re{u∗(k′) · F(k′)}, (6)

where Sωω(k′|p, q) and Sωu(k′|p, q) are the combined transfers of enstrophy from modes p and q
to k′, defined as

Sωω(k′|p, q) = − Im{[k′ · u(q)][ω(p) · ω(k′)]} − Im{[k′ · u(p)][ω(q) · ω(k′)]}, (7)

Sωu(k′|p, q) = + Im{[k′ · ω(q)][u(p) · ω(k′)]} + Im{[k′ · ω(p)][u(q) · ω(k′)]} (8)

with k′ + p + q = 0. Using the incompressibility condition, we can show that

Sωω(k′|p, q) + Sωω(p|q, k′) + Sωω(q|p, k′) = 0, (9)

where Sωω represents the advection of vortices, thus involving enstrophy exchange among the
vorticity modes ω(k′), ω(p), and ω(q). On the other hand we have

Sωu(k′|p, q) + Sωu(p|q, k′) + Sωu(q|k′, p) �= 0, (10)

where Sωu represents the stretching of vortices, thus either increasing or decreasing the enstrophy
Eω. Incidentally (10) implies that enstrophy is not a conserved quantity in 3D hydrodynamics.

Now we can split the above transfers into individual contributions from modes p and q:

Sωω(k′|p, q) = Sωω(k′|p|q) + Sωω(k′|q|p), (11)

Sωu(k′|p, q) = Sωu(k′|p|q) + Sωu(k′|q|p), (12)

with

Sωω(k′|p|q) = − Im{[k′ · u(q)][ω(p) · ω(k′)]}, (13)

Sωu(k′|p|q) = + Im{[k′ · ω(q)][u(p) · ω(k′)]}. (14)

Here Sωω(k′|p|q) and Sωu(k′|p|q) denote two kinds of mode-to-mode enstrophy transfer, both being
from p to k′ with q acting as a mediator. They arise due to advection and stretching respectively.
Here we note that

Sωω(k′|p|q) = −Sωω(p|k′|q) (15)

due to the incompressibility condition, k · u(k) = 0; this result is consistent with (9). Substitution
of (13) and (14) into (5) yields

d

dt
W (k′) =

∑
p

Sωω(k′|p|q) +
∑

p

Sωu(k′|p|q) − 2νk′2W (k′) + k′2 Re{u∗(k′) · F(k′)}, (16)

and q = −(k′ + p).

B. Enstrophy fluxes

Summing the previously discussed mode-to-mode enstrophy transfers over p and k′ and
depending on whether p and k′ belong to the sphere of radius k0 or not, we can define the five
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FIG. 1. Illustration of the five enstrophy fluxes in addition to the kinetic energy flux �u>
u< ≡ �E which is

defined in Eq. (39).

following enstrophy fluxes:

�ω<
ω>(k0) =

∑
|p|�k0

∑
|k′|>k0

Sωω(k′|p|q), (17)

�u<
ω>(k0) =

∑
|p|�k0

∑
|k′|>k0

Sωu(k′|p|q), (18)

�u<
ω<(k0) =

∑
|p|�k0

∑
|k′|�k0

Sωu(k′|p|q), (19)

�u>
ω>(k0) =

∑
|p|>k0

∑
|k′|>k0

Sωu(k′|p|q), (20)

�u>
ω<(k0) =

∑
|p|>k0

∑
|k′|�k0

Sωu(k′|p|q), (21)

where the superscript and subscript of � represent respectively the giver and the receiver modes,
and the symbols < and > denote respectively the inside and outside of the sphere of radius k0.
Accordingly, �x<

y>(k0) denotes the flux of enstrophy from all x modes inside the sphere of radius k0

to all y modes outside the sphere. An illustration of these fluxes is given in Fig. 1.
Customarily a turbulent flux is associated with some conserved quantity [5]. For example, in

two-dimensional hydrodynamic turbulence, the energy and enstrophy fluxes are connected to the
corresponding conservation laws. The concept of turbulent flux could be generalized to a more
complex scenario when a certain quantity is transferred from one field to another. Here, these fluxes
are cross transfers among the two fields. Though enstrophy is not conserved, we define enstrophy
fluxes of Eqs. (18)–(21) as enstrophy transfers from large (small) scale velocity field to large (small)
vorticity field. The enstrophy flux �ω<

ω>(k0) is related to the conservation law related to Eq. (9).
Similar issues arise in magnetohydrodynamic turbulence where fluxes for kinetic and magnetic
energies are defined even though kinetic and magnetic energies are not conserved individually. We
define kinetic-to-magnetic energy fluxes as the energy transfers from large (small) scale velocity
field to from large (small) scale magnetic field; such fluxes are crucial for dynamo action [26,27,35].

Summing (16) over all modes outside the sphere of radius k0, we obtain

∑
|k′|>k0

(
d

dt
+ 2νk′2

)
W (k′) − k′2 Re{u∗(k′) · F(k′)} = (

�ω<
ω> + �u<

ω> + �u>
ω>

)
(k0). (22)
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Performing a sum over all modes inside the sphere of radius k0 yields

∑
|k′|�k0

(
d

dt
+ 2νk′2

)
W (k′) − k′2 Re{u∗(k′) · F(k′)} = (

�ω>
ω< + �u<

ω< + �u>
ω<

)
(k0). (23)

Adding (22) and (23) and noticing that (15) implies �ω<
ω> + �ω>

ω< = 0, we obtain

∑
k′

(
d

dt
+ 2νk′2

)
W (k′) − k′2 Re{u∗(k′) · F(k′)} = (

�u<
ω> + �u>

ω> + �u<
ω< + �u>

ω<

)
(k0). (24)

As the left-hand side of (24) does not depend on k0, it implies

d

dk0

(
�u<

ω> + �u>
ω> + �u<

ω< + �u>
ω<

) = 0, (25)

which is valid at all times. That is, the sum

�u<
ω>(k0) + �u>

ω>(k0) + �u<
ω<(k0) + �u>

ω<(k0) = const (26)

is independent of k0.
Under a steady state, we obtain∑

k′
2νk′2W (k′) −

∑
kF

0 <|k′|�kF
1

k′2 Re{u∗(k′) · F(k′)} = (
�u<

ω> + �u>
ω> + �u<

ω< + �u>
ω<

)
(k0), (27)

where the forcing is employed to the wave number band (kF
0 , kF

1 ]. A physical interpretation of the
above equation is that the enstrophy injected by the external force is transferred to the enstrophy
fluxes and the enstrophy dissipation.

III. SIMULATION METHOD AND RESULTS

The Navier-Stokes equations (1) are solved numerically using the fully dealiased, parallel
pseudospectral code TARANG [33,34] with fourth-order Runge-Kutta time stepping. For dealiasing
purpose, the 3/2 rule has been chosen [36,37]. The viscosity is set to ν = 10−3 and the simulations
are performed with a resolution of 5123.

A. Helical forcing

In Fourier space the velocity field satisfies

d

dt
u(k) = −i

∑
p

[k · u(q)]u(p) − νk2u(k) + F(k), (28)

where q = k − p. Then the energy and helicity, which are defined as

E (k) = |u(k)|2
2

, H (k) = u(k) · ω(k)∗

2
, (29)

satisfy the following equations:

d

dt
E (k′) = −

∑
p

Im{[k′ · u(q)[u(p) · u(k′)]} − 2νk2E (k′) + Re{u∗(k′) · F(k′)}, (30)

d

dt
H (k′) =

∑
p

Re{u(q) · [ω(p) × ω(k′)]} − 2νk2H (k′) + Re{ω∗(k′) · F(k′)}, (31)

where q = −(k′ + p).
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Following Carati et al. [38,39] and Teimurazov et al. [25], the forcing is taken to be of the form

F(k) = αu(k) + βω(k) (32)

such that ∑
kF

0 <|k|�kF
1

Re{u∗(k) · F(k)} = εE (33)

and ∑
kF

0 <|k|�kF
1

Re{ω∗(k) · F(k)} = εH . (34)

Here, the forcing is applied in the wave number band (kF
0 , kF

1 ], and εE and εH are the prescribed
energy and helicity injection rates. From the above three equations (32)–(34) we deduce that

α = 1

2

WF εE − HF εH

EFWF − H2
F

, β = 1

2

EF εH − HF εE

EFWF − H2
F

, (35)

where EF , HF , and WF are respectively the energy, kinetic helicity and enstrophy in the forcing
band,

(EF , HF ,WF ) =
∑

kF
0 <|k|�kF

1

(E (k), H (k),W (k)). (36)

In our simulations, the forcing band corresponds to kF
0 = 2 and kF

1 = 3. The main advantage of
using the forcing given by (32)–(35) is that the injection rates of energy and helicity can be set
independently. The realizability condition |H (k)| � kE (k) directly comes from the definitions of
energy and helicity and is therefore always satisfied, whatever the values of εE and εH . For example
even in the case εE 	 εH , which was studied by Kessar et al. [22], the realizability condition is
satisfied, reaching a state close to the maximal helical state |H (k)| = kE (k).

In Fig. 2 the time evolution of (a) the total energy dissipation 2ν
∑

k k2E (k), (b) the total helicity
dissipation 2ν

∑
k k2H (k), and (c) the total enstrophy dissipation 2ν

∑
k k2W (k) are plotted for

the same energy injection rate εE = 0.1 and three helicity injections εH = 0, 0.1, 0.2. We observe
that a statistical steady state is reached for t � 10. In this steady state we find that, on average,
2ν

∑
k k2E (k) ≈ εE and 2ν

∑
k k2H (k) ≈ εH , which is consistent with the prescribed forcing.

B. Energy and helicity spectra and fluxes

From (30) and (31) and following steps analogous to (5)–(14), the following expression for mode-
to-mode energy and helicity transfers can be derived:

SE (k′|p|q) = − Im{[k′ · u(q)][u(p) · u(k′)]}, (37)

SH (k′|p|q) = + Re{u(q) · [ω(p) × ω(k′)]}, (38)

leading to the flux definitions

�E ,H (k0) =
∑

|k′|>k0

∑
|p|<k0

SE ,H (k′|p|q). (39)

In Fig. 3, the energy and helicity spectra, normalized by respectively εE and εH , show a spectral
scaling close to k− 5

3 in the inertial range, for the three injection rates of helicity εH = 0, 0.1, 0.2.
The normalized fluxes shown in the inset are approximately flat in the inertial range, and again
insensitive to εH .
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FIG. 2. Time evolution of (a) energy dissipation, (b) helicity dissipation, and (c) enstrophy dissipation for
the same energy injection rate εE = 0.1 and three different helicity injections εH = 0, 0.1, 0.2. For t � 10 a
steady state is reached with a mean enstrophy dissipation about 160.9.

In Fig. 3 the black dashed curves correspond to the analytical formulas for spectra and fluxes
derived by Pao [40] for the energy and that are here extended to helicity. They take the following
forms:

E (k)

εE
= KE

ε
1/3
E

k−5/3exp

(
−3

2
KE (k/kd )4/3

)
, (40)

H (k)

εH
= KH

ε
1/3
E

k−5/3exp

(
−3

2
KH (k/kd )4/3

)
, (41)

�E (k)

εE
= exp

(
−3

2
KE (k/kd )4/3

)
, (42)

�H (k)

εH
= exp

(
−3

2
KH (k/kd )4/3

)
, (43)

where KE is Kolmogorov’s constant, KH is another nondimensional constants and kd = (εE/ν3)1/4

is Kolmogorov’s wave number. Note, however, that Pao’s spectrum slightly overestimates the
dissipation range spectrum [41], and we expect similar discrepancies for the kinetic helicity that may
show up in high-resolution simulations. These issues may be related to intermittency and enhanced
dissipation due to the bottleneck effect [42,43].
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FIG. 3. Normalized energy spectra (solid curves) and helicity spectra (dashed curves) with the same color
code as in Fig. 2. In the inset, normalized energy fluxes (solid curves) and helicity fluxes (dashed curves). The
black dashed curves correspond to the analytical formulas (40)–(43).

C. Results of enstrophy fluxes

The enstrophy fluxes given in Eqs. (17)–(21) have been calculated for εH = 0, 0.1, 0.2. They
are found to be insensitive to εH . Therefore only the results corresponding to εH = 0 are presented
in Fig. 4. The manifestation of this independence is consistent with many numerical results which
showed that the forward flux of kinetic energy is also insensitive to kinetic helicity injection at large
scale [44]. Crucial changes can be expected when significant imbalance between helical modes of
different signs is imposed by helicity forced over a wide range of scales [22].

The flux �ω<
ω> is positive, suggesting a direct cascade of enstrophy. In the inertial range it obeys

a k2 scaling law. However, we observe that in the inertial range �u<
ω> is larger than �ω<

ω>, showing
that the enstrophy flux due to stretching is larger than the one due to advection. We also observe that

FIG. 4. The five enstrophy fluxes given in Eqs. (17)–(21) and the sum �u<
ω> + �u>

ω< + �u<
ω< + �u>

ω> are
plotted for εE = 0.1 and εH = 0.
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�u>
ω< is always negative, indicating that the small scale velocity fluctuations squeeze (not stretch)

the large scale vorticity. It also obeys a k2 scaling law in the inertial range.
The flux �u<

ω<(k0) is an accumulated sum of all the enstrophy transferred from u< to ω< up to
the radius k0. All the wave number shells have positive sign for these transfers, hence �u<

ω<(k0) is an
increasing function of k0. Note that �u<

ω<(∞) is the net enstrophy transfer. The complementary flux,
�u>

ω>(k0), has an opposite behavior; that is, it decreases with k0. All the fluxes other than �u<
ω<(k0)

vanish for k0 > kd because the fluctuations vanish in this range.
It is found that (�u<

ω> + �u>
ω< + �u<

ω< + �u>
ω>)(k0) ≈ 157.3, independently of k0 to a precision

of about 10−10. This value is comparable to the enstrophy dissipation which is about 160.9
(Fig. 2); the difference between the two quantities is

∑
kF

0 <|k′|�kF
1
|k′|2 Re{u∗(k′) · F(k′)} ≈ 3.6.;

these computations are consistent with (27).

IV. CONCLUSIONS

Using direct numerical simulations and varying the injection rate of helicity, we find that injecting
helicity does not change the results in terms of energy and helicity spectra and fluxes, and also
in terms of enstrophy fluxes. The energy and helicity spectra and fluxes follow rather well the
formula of Pao [40] that we extended to helicity. Of course, some correction due to intermittency
and bottleneck effect should be added, but these issues are beyond the scope of the present paper.
These results are consistent with the predictions that the inertial range properties of hydrodynamic
turbulence is independent of kinetic helicity [13,24].

The main objective of this paper is to introduce the derivation of mode-to-mode enstrophy
transfers, using which we compute the enstrophy fluxes. There are five different enstrophy fluxes.
Four of them, �u<

ω<, �u<
ω>, �u>

ω<, �u>
ω>, correspond to vorticity stretching; the fifth one �ω<

ω> is due
to the advection of vorticity by the flow. It is remarkable that in the inertial range �u<

ω> is larger
than �ω<

ω>, implying that the enstrophy flux due to vorticity stretching is larger than the one due
to advection of vorticity. The sum of the first four fluxes corresponds to the contribution from all
velocity modes to all vorticity modes and therefore should not depend on the wave number, which
we confirm numerically with a precision better than 10−10.
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