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S U M M A R Y
The discovery of torsional Alfvén waves (geostrophic Alfvén waves) in the Earth’s core (Gillet
et al. 2010) calls for a better understanding of their properties. We present the first experimental
observations of torsional Alfvén waves, performed in the DTS-� set-up. In this set-up, 50 L
of liquid sodium are confined between an inner sphere (ri = 74 mm) and an outer shell (ro

= 210 mm). The inner sphere houses a permanent magnet, imposing a dipolar magnetic field
(Bmax = 345 mT). Both the inner sphere and the outer shell can rotate around the vertical axis.
Alfvén waves are triggered by a sudden jerk of the inner sphere. We study the propagation
of these waves when the fluid is initially at rest, and when it spins at a rotation rate up to
15 Hz. We measure the azimuthal magnetic field of the wave at different radii inside the fluid
with magnetometers installed in a sleeve. We also record the electric potential signature on the
outer shell at several latitudes. Besides, we probe the associated azimuthal velocity field using
ultrasound Doppler velocimetry. With a 15 Hz rotation rate, the dynamical regimes we achieve
are characterized by dimensionless numbers in the following ranges: Lundquist number 0.5 <

Lu < 12, Lehnert number 0.01 < Le < 0.26, Rossby number Ro ∼ 0.1.
We observe that the magnetic signal propagates away from the inner sphere, strongly damped

by magnetic diffusion. Rotation affects the magnetic signature in a subtle way. Its effect is more
pronounced on the surface electric potentials, which are sensitive to the actual fluid velocity
of the wave. The ultrasound Doppler probes provide the first experimental measurement of the
fluid velocity of an Alfvén wave.

To complement these observations, we ran numerical simulations, using the XSHELLS
pseudospectral code with parameters as close as possible to the experimental ones. The
synthetic magnetic and electric signals match our measurements. The meridional snapshots of
the synthetic azimuthal velocity field reveal the formation of geostrophic cylinders expected
for torsional Alfvén waves.

We establish scaling laws for the magnetic and kinetic energies of Alfvén waves with and
without rotation. In both cases, we find that the magnetic energy EM saturates at a level
proportional to Rm2

jerk, where Rmjerk = Ujerkro/η is the magnetic Reynolds number built with
the maximum azimuthal velocity of the inner sphere during the jerk. The Emax

K /Emax
M ratio

(where Emax
K is the maximum kinetic energy), close to 1 for very quick jerks, increases linearly

with the jerk duration.

Key words: Core; Dynamo: theories and simulations; Electromagnetic theory; Geomagnetic
induction; Planetary interiors.

1 I N T RO D U C T I O N

The discovery of torsional Alfvén waves in the liquid core of the
Earth (Gillet et al. 2010) represents a milestone in the exploration
of the Earth’s deep interior. The presence of a dynamo-produced

magnetic field in the electrically conducting liquid iron core allows
for the propagation of hydromagnetic waves (Alfvén 1942). The
Lorentz force is the restoring force for these waves, which are
solutions of the coupled system of the Navier–Stokes equation and
the magnetic induction equation.
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In a rotating system, such as a planetary core, the Coriolis
force inhibits motions that vary along the rotation axis. This is
the Proudman–Taylor theorem. Therefore, rotation inhibits Alfvén
waves that violate the Proudman–Taylor constraint. In a sphere, ax-
isymmetric motions that are purely azimuthal and invariant along
the rotation axis obey the Proudman–Taylor’s constraint. They are
called geostrophic motions. Geostrophic Alfvén waves are thus fa-
vored in a rotating system (Lehnert 1954b; Braginsky 1970; Jault
& Finlay 2015). They are called torsional Alfvén waves or torsional
waves for short.

Gillet et al. (2010) found convincing evidence for such waves in
the Earth’s core. The secular variation of the magnetic field at the
surface of the Earth reflects the motions that take place at the surface
of the liquid core. Core flows reconstructed from the observed
secular variation reveal azimuthal motions on axi-centred cylinders
that propagate across the liquid core. It takes them about 4 yr to
cross the core. The velocity of Alfvén waves being proportional to
the intensity of the magnetic field, these observations yield a crucial
information on the intensity of the magnetic field inside the liquid
core. They also provide a remarkable explanation for the variations
of the length-of-day observed at periods of about 6 yr (Gillet et al.
2010, 2015).

Despite their importance, torsional Alfvén waves have never been
explored in laboratory experiments. In this paper, we present ob-
servations of torsional Alfvén waves triggered in the DTS-� liquid
sodium experiment. We conduct numerical simulations of these
waves, using parameters as close as possible to the experimental
ones, as already done for sustained turbulence in this set-up by
Kaplan et al. (2018).

Only a few laboratory experiments have been performed to study
Alfvén waves in liquid metals. In fact, magnetic diffusion renders
the study of Alfvén waves very difficult in the lab. The very first ex-
perimental hint of Alfvén waves was obtained by Lundquist (1949)
in a cylindrical vessel under a uniform magnetic field. He used mer-
cury as a working fluid and a field intensity of 1 T. He excited Alfvén
waves by oscillating a crenelated disk at the base of the cylinder, and
searched for resonances associated to a standing wave. Lundquist
did not reach the resonance peak and pointed out the strong effect
of magnetic damping in these experiments. Using liquid sodium,
Lehnert (1954a) was able to observe a resonance peak, in agreement
with theoretical predictions. Jameson (1964) devised a more elab-
orate toroidal device and measured a sharp resonance from Alfvén
waves excited by current sheets at the walls of the torus. The Alfvén
waves excited in these devices were all axisymmetric and toroidal.
They were called ‘torsional’ by Lehnert (1954a), a terminology
which is still widely used in the solar corona context (e.g. Spruit
1982). Note that they differ from what we call torsional Alfvén
waves: they are not invariant along the symmetry axis, since they
propagate in that direction. Applying magnetic fields up to 13 T on
a gallium alloy, Alboussiere et al. (2011) were able to document
the propagation of Alfvén waves, while previous studies focused
on standing wave resonances. Their waves were poloidal instead of
toroidal.

One important difference between our experiment and previous
ones is that we apply a dipolar magnetic field instead of a constant
homogeneous magnetic field. Note that the propagation of torsional
Alfvén waves requires a magnetic field component perpendicular
to the axis of rotation.

Global rotation is a required ingredient for torsional Alfvén
waves, and was absent from all laboratory experiments so far. In

contrast, several theoretical studies have considered the influence
of rotation, starting with the pioneer analysis of Lehnert (1954b).
Lehnert showed that the influence of rotation depends upon the ra-
tio of the rotation time to the Alfvén time, which is now called the
Lehnert number, following Jault (2008). For small enough Lehn-
ert number (strong rotation), he found that two families of waves
are present: fast inertial waves modified by the magnetic field, and
slow Alfvén waves modified by rotation. One important property
of Alfvén waves is that their kinetic and magnetic energies are
equal. Lehnert points out that this equipartition is lost in the pres-
ence of rotation. More recently, Sreenivasan & Narasimhan (2017)
have conducted a thorough analysis of the damping of magneto-
hydrodynamic waves with rotation, focused towards liquid metals.
They study the evolution of waves triggered by an initial velocity
perturbation, and determine several characteristic times separating
different dynamic regimes. The time-evolution of the magnetic and
kinetic energies of the two families of waves follow power laws with
different exponents in the propagation and diffusion regimes. Both
studies consider an infinite domain with a homogeneous magnetic
field aligned with the rotation axis. In contrast, Bardsley & Davidson
(2016) investigated the case when the magnetic field is perpendicu-
lar to the rotation axis. Waves leading to quasi-geostrophy are then
observed: they propagate at the Alfvén wave velocity in the direc-
tion of the magnetic field, and at the group velocity of inertial waves
along the rotation axis, and exhibit energy equipartition.

In the Earth’s core, the presence of spherical boundaries has
a strong impact: inertial waves build geostrophic columns, which
carry most of the energy and allow for the propagation of torsional
Alfvén waves in the direction perpendicular to the rotation axis. The
relevant parameters for the Earth’s core yield low magnetic diffusiv-
ity and strong rotation, and this is the regime studied by Jault (2008)
and colleagues (Gillet et al. 2012; Schaeffer et al. 2012). Their
studies demonstrate that quasi-geostrophic (z-invariant) structures
dominate the flows at short timescales, even when the magnetic field
is strong as measured by the Elsasser number (the ratio of Lorentz to
Coriolis forces). Indeed, Jault (2008) demonstrates that geostrophic
torsional Alfvén waves persist for an Elsasser number of order 10
as long as the Lehnert is smaller than 3 × 10−2.

The DTS-� experiment was built to explore the magnetostrophic
regime, with Elsasser number around 1 (Cardin et al. 2002; Nataf
et al. 2006; Brito et al. 2011). Here, we trigger waves mechanically
by sudden jerks of its inner sphere, in order to investigate the for-
mation of Alfvén waves and torsional Alfvén waves in a situation
where magnetic diffusion plays an important role.

The present paper is organized as follows. In Section 2, we
present the experimental set-up of DTS-�, the first raw observa-
tions, the numerical set-up and the governing equations. Section 3
presents the expected ideal Alfvén waves and torsional Alfvén
waves, discusses the effect of magnetic diffusion, and introduces
the relevant dimensionless numbers. The main experimental and
simulation results are presented in Section 4. We examine the role
of rotation through the combined analysis of the magnetic wave-
forms, the electric potentials, and the fluid velocity field mea-
sured by ultrasound Doppler velocimetry (UDV). Detailed com-
parison with the numerical simulations permits deciphering the
behaviour of Alfvén waves and torsional Alfvén waves in a dipo-
lar magnetic field. Section 5 establishes the scaling laws of the
time evolution of the kinetic and magnetic energies. Section 6
summarizes the main conclusions of this work and provides some
perspectives.
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2 E X P E R I M E N TA L A N D N U M E R I C A L
S E T - U P

We first recall the DTS-� experimental set-up and present the first
raw observations of torsional wave signals. We then detail the nu-
merical set-up and the equations we solve.

2.1 Experimental set-up

The DTS experiment produces a rotating spherical Couette flow
in a dipolar magnetic field. It displays all required ingredients
to trigger and observe torsional Alfvén waves. Its recently up-
graded version DTS-� includes an embarked electronics, which
permits the simultaneous acquisition of 200 signals in the ro-
tating frame. Fig. 1(a) shows the DTS-� set-up with its stain-
less steel outer shell (internal radius ro = 210 mm) contain-
ing 50 l of liquid sodium, a good electric conductor. Its inner
sphere (radius ri = 74 mm) consists in a copper shell housing a
strong permanent magnet, which provides a nearly dipolar mag-
netic field with a vertical axis. See Brito et al. (2011) for more
details.

The inner sphere and the outer shell spin independently around
the vertical axis at rotation rates fi and fo, respectively. For this study,
we spun DTS-� up to fo = 15 Hz. Once in solid body rotation (fo

= fi ≡ f), we trigger Alfvén waves by sudden jerks of the inner
sphere. We define the angle �ϕ swept by the inner sphere during a
jerk whose duration is tjerk. We characterize the jerk by its magnetic
Reynolds number Rmjerk = roUjerk/η, with Ujerk = ri�ϕ/tjerk, and η

the magnetic diffusivity.
In the DTS-� experiment, the magnetic field is produced by a

permanent magnet enclosed in the inner sphere. The field is mainly
axisymmetric and dipolar along a vertical axis in the fluid. In spher-
ical coordinates (r, θ , ϕ), we get:

Bd(r, θ ) = μ0M
4πr 3

(2r̂ cos θ + θ̂ sin θ ), (1)

with M � 700 Am2, where r̂ and θ̂ are the unit vectors in the radial
and orthoradial directions, respectively. The intensity of the imposed
field reaches 345 mT at the pole of the inner sphere (r = ri, θ = 0),
decreasing to 7.5 mT at the equator of the outer sphere (r = ro, θ =
π /2). We use this latter value to define our magnetic intensity scale
B0. Table 1 recalls these values and lists the kinematic viscosity ν,
the magnetic diffusivity η, and the magnetic Prandtl number Pm =
ν/η of liquid sodium.

In this paper, we present signals of the azimuthal magnetic field
Bϕ measured in a sleeve installed in one of the two –20◦-latitude
ports, visible in Fig. 1(a). We have also recorded additional signals
at 10◦ and 40◦. Electric potential differences �Vθ are measured
along a meridian between electrodes 10◦-apart, implanted in the
outer stainless steel shell (see Fig. 1a). The position of these mea-
surements is shown in Fig. 1(b).

Let’s have a look at the typical Bϕ and �Vθ signals we obtain.

2.2 Raw observations

Fig. 2 displays the signals recorded for a collection of 99 jerks of
the inner sphere, during 1 s after the jerk start. The rotation rate is
f = 15 Hz. The Bϕ magnetic signal closest to the inner sphere (rBP5

= 94 mm) at a latitude of –20◦ (see Fig. 1b) is shown in Fig. 2(a).
Its maximum amplitude ranges from 3 to 18 mT. Fig. 2(b) is the
corresponding electric potential difference �V−40 at the surface

between latitudes –45◦ and –35◦. Its maximum amplitude ranges
from 0.04 to 0.24 mV.

In both cases, the dispersion of the curves at t = 0 gives an in-
dication of the precision of the measurements. While the electric
signals tend to zero at long times, the Bϕ signals level off at var-
ious values. This is due to non-axisymmetric components of the
magnetic field produced by the magnet inside the inner sphere (see
Appendix A1.1). We also note strong oscillations at a frequency of
about 18 Hz. These are due to rapid oscillations of the inner sphere
triggered by the jerk (see Appendix B). We will deal with these
experimental artefacts later on.

In order to decipher the behaviour of torsional Alfvén waves, we
ran numerical simulations, which we now describe.

2.3 Numerical set-up

We have performed pseudo-spectral numerical simulations of the
generation and propagation of torsional Alfvén waves in a spherical
fluid shell without and with global rotation using the XSHELLS
v1.4 software (Figueroa et al. 2013). XSHELLS simulates MHD
incompressible fluids and time-steps both induction and Navier–
Stokes equations (presented in Section 2.4) in the spherical config-
uration. The code uses second order finite differences in the radial
direction with many points concentrated near the walls (bound-
ary layers) and the spherical harmonic transform library SHTns
(Schaeffer 2013) in the latitudinal direction, as well as hybrid par-
allel execution using OpenMP and/or MPI. XSHELLS v1.4 uses
a semi-implicit time-stepping scheme with diffusive terms treated
by the Crank-Nicolson method, while all other terms (including
non-linear terms) are treated by a second-order Adams–Bashforth
scheme. XSHELLS has been used previously to efficiently simulate
the DTS experiment (Figueroa et al. 2013; Cabanes et al. 2014a),
the DTS-� experiment (Kaplan et al. 2018), as well as unmag-
netized spherical Couette (Barik et al. 2018) and torsional Alfvén
waves (Gillet et al. 2012; Schaeffer et al. 2012; Schaeffer & Jault
2016).

We model torsional Alfvén waves with an imposed dipolar mag-
netic field, keeping parameters as close as possible to those of the
DTS-� experiments. Note that XSHELLS simulations do not in-
clude geometric details of the experiment such as the shaft holding
the inner sphere. We only consider axisymmetric (m = 0) solutions.
All physical properties are the same as in the experiment, except for
the viscosity, which cannot be as low as in the experiment for numer-
ical reasons. Nevertheless, all simulations are in the low magnetic
Prandtl number regime, with Pm ≤ 10−3. The actual simulation
parameters are summarized in Table D2 of Appendix D.

No-slip boundary conditions are used for the fluid velocity field
on the inner and outer surfaces. The magnetic boundary condi-
tions require a special treatment because of the electric conductiv-
ity jumps between the inner sphere, the liquid, and the outer shell,
which we keep the same as in the DTS-� experiment, given in Ta-
ble 2. The procedure is described in detail in Appendix C of Cabanes
et al. (2014a).

We have introduced two types of jerk time-function: the first one
is a boxcar, and the second one closely mimics the actual jerk time-
function of the experiment (see Appendix A2). The angle swept
by the inner sphere during a jerk typically reaches 90◦ or more
in the experiment, yielding Rmjerk values of order unity, implying
Reynolds numbers Rejerk = Rmjerk/Pm larger than 105. Even though
we use larger Pm values in the numerical simulations, we are still
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Figure 1. Sketch of the DTS-� set-up. (a) The spherical shell of DTS-� showing the inner sphere and its shaft viewed through the 5-mm-thick stainless steel
outer shell. Little holes on the outer shell host electrodes. Ultrasound beams used for Doppler velocimetry are shot from two ports. A sleeve (not shown)
penetrating radially from a port hosts Hall magnetometers. (b) Sketch of the positions of the Bϕ magnetometers in the sleeve, and of the �Vθ electric potential
measurements at the surface, in a meridional section of the DTS-� experiment (lower quadrant).

Table 1. Main relevant properties of the sodium-filled DTS-� experiment.

ri ro Bd(ri, π /2) Bd(ro, π /2) η ν Pm
mm mm mT mT m2 s–1 m2 s–1 ν/η

74 210 175 7.5 8.8 × 10−2 6.5 × 10−7 7.4 × 10−6

Figure 2. (a) Magnetic (BP5) and (b) electric (�V−40) signature of 99 different jerks of the inner sphere. The rise time trise of these jerks ranges from 16 to
56 ms, and the angle �ϕ swept by the inner sphere during a jerk ranges from 16◦ to 190◦.

Table 2. Electric conductivity shells in the sodium-filled DTS-�
experiment.

Shell material Radial extent Electric conductivity
mm 106 �−1m−1

Stainless steel 210: 215 1
Liquid sodium 74: 210 9
Copper ∼63: 74 38

in a non-linear regime. A group of simulations considers smaller
jerk-angles corresponding to quasi-linear regimes.

2.4 Equations

The dynamical behaviour of the fluid motion and magnetic induction
are described by the Navier–Stokes eqs (2) and (3) and the induction
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eqs (4) and (5),

∂u

∂t︸︷︷︸
Fdt

+ (u · ∇)u︸ ︷︷ ︸
Fadv

+ 2� × u︸ ︷︷ ︸
FCor

= − 1

ρ
∇ P︸ ︷︷ ︸

FP

+ 1

ρμ0
(∇ × b) × Bd︸ ︷︷ ︸

Flin
Lor

+ 1

ρμ0
(∇ × b) × b︸ ︷︷ ︸

F N L
Lor

+ ν∇2u︸ ︷︷ ︸
Fdi f f

(2)

∇ · u = 0 (3)

∂b

∂t︸︷︷︸
Gdt

= ∇ × (u × Bd)︸ ︷︷ ︸
Glin

ind

+∇ × (u × b)︸ ︷︷ ︸
G N L

ind

+ η∇2b︸ ︷︷ ︸
Gdi f f

(4)

∇ · b = 0, (5)

where u and b are the fluid velocity and magnetic fields of the
perturbation, respectively, and ρ, ν and η are the density, viscosity
and magnetic diffusivity of the fluid. The magnetic diffusivity is
defined by η = 1/σμ0, where σ and μ0 are the electrical conductivity
and the magnetic permeability of the fluid.

We choose the outer shell radius ro as a typical length scale, and
the magnetic diffusion time tη = r 2

o /η for timescale. As mentioned
in Section 2.3, the jerk magnetic Reynolds number Rmjerk is of or-
der unity in the experiments and simulations. Therefore we expect
|b| 	 |Bd|, implying that F N L

Lor and G N L
ind are not dominant com-

pared to, respectively, Flin
Lor and Glin

ind . The kinetic Reynolds number
Rejerk is large implying that the viscous term Fdiff is always small at
large scale. In the absence of rotation, the inertial term Fadv cannot
be neglected. With rotation, this term can be compared with the
Coriolis term FCor, using the Rossby number Ro = Ujerk/(2π fro) ∼
0.1 for f = 15 Hz. Thus, at large scales the non-linear term Fadv is
expected to be non-significant compared to the linear term FCor or
Flin

Lor . Therefore, in the experimental conditions the fluid accelera-
tion Fdt is, at large scales, mainly due to the Coriolis force FCor and
the Lorentz force Flin

Lor , leading to (6). The induction derivative Gdt

is mainly due to the electromotive force Glin
ind and the dissipation

Gdiff, leading to (7). We note that the pressure P plays a passive role,
as it can be removed taking the curl of (6).

∂u

∂t︸︷︷︸
Fdt

+ 2� × u︸ ︷︷ ︸
FCor

= − 1

ρ
∇ P︸ ︷︷ ︸

FP

+ 1

ρμ0
(∇ × b) × Bd︸ ︷︷ ︸

Flin
Lor

(6)

∂b

∂t︸︷︷︸
Gdt

= ∇ × (u × Bd)︸ ︷︷ ︸
Glin

ind

+ η∇2b︸ ︷︷ ︸
Gdi f f

. (7)

Ideal waves result from (6) and (7) without the ohmic dissipa-
tion Gdiff. The generation of Alfvén waves versus torsional Alfvén
waves depends on whether in (6) the Coriolis acceleration FCor

can be neglected or not compared to the Lorentz acceleration Flin
Lor

(Section 3.1). In the non ideal case when Ohmic dissipation Gdiff

cannot be neglected, two characteristic timescales can be defined, a
magnetic diffusion time tη and a Joule time tJ, derived from (7) by
comparing Gdiff to, respectively, Gdt and Glin

ind (Section 3.2).

3 A L F V É N WAV E S V E R S U S T O R S I O NA L
A L F V É N WAV E S

3.1 Ideal waves

3.1.1 Ideal Alfvén waves

Ideal (i.e. non-dissipative) Alfvén waves are non-dispersive waves
that follow magnetic field lines in a fluid or plasma. The corre-
sponding dispersion relation can be derived from (6) and (7) with
� = 0 and neglecting the magnetic dissipation term Gdiff. The local
velocity of Alfvén waves VA(r) is given by:

VA(r) = Bd(r)√
μ0ρ

, (8)

where Bd(r) is the magnetic field at position r defined in (1). In this
case we have |u|/|b| ≈ 1/

√
μ0ρ and the characteristic timescale of

Alfvén waves is given by tA(r) = ro
√

μ0ρ/|Bd(r)| (see Table 3).
The travel time of ideal Alfvén waves is determined by integrating

d�/VA(r, θ ) along field lines from the source (the surface of the
inner sphere, r = ri) to all (r, θ ) points. The resulting wavefronts are
shown in Fig. 3(a). Ideal Alfvén waves reach the outer sphere in only
120 ms (at the pole) to 420 ms (at the equator). Note that we have
only drawn wavefronts emitted from the upper hemisphere, and do
not consider reflexions at the boundaries. Following the dipolar field
lines, some waves cross the equator and reach the opposite side of
the inner sphere. We will see a consequence of this behaviour in
Section 4.2.

3.1.2 Ideal torsional Alfvén waves

In a rapidly rotating sphere, such that FCor cannot be neglected in
(6), the Coriolis force inhibits velocity variations along the rotation
axis ẑ. Torsional Alfvén waves are geostrophic and propagate along
the cylindrical radius direction s = rsin θ , with a velocity given by:

VTA(s) = ŝ

√
1

2h(s)μ0ρ

∫ h

−h
B2

s (s, z)dz, (9)

with h(s) = √
r 2

o − s2 being half the height of the geostrophic cylin-
der at s (e.g. Gillet et al. 2010; Jault & Finlay 2015). We only
consider torsional Alfvén waves propagating outside the cylinder
tangent to the inner sphere, which represents the source of the wave,
and we do not consider reflexions at the boundaries. We obtain the
travel time of torsional Alfvén waves by integrating ds/VTA(s) from
that source (s = ri) to all s > ri. The resulting wavefronts are shown
in Fig. 3(b). Ideal torsional Alfvén waves reach the equatorial region
of the outer sphere in about 420 ms.

3.1.3 The Lehnert number

Torsional Alfvén waves appear provided that the Coriolis force is
sufficiently strong compared to the Lorentz force, which corre-
sponds in (6) to strong enough FCor compared to Flin

Lor . Introducing
a typical rotation time t� = �−1 such condition corresponds to
t� 	 tA. Lehnert (1954b) was the first to study the effect of the
Coriolis force on Alfvén waves. Following Jault (2008), we define
the Lehnert number as:

Le = t�
tA

= Bd (r )

�ro
√

μ0ρ
. (10)

Jault (2008) showed that clearly z-invariant torsional Alfvén waves
form when the Lehnert number is smaller than about 3 × 10−2. As
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Table 3. Magnetic diffusion time, Alfvén time, Joule time (all in milliseconds) and key dimensionless numbers for torsional Alfvén waves in the DTS-�
experiment, calculated taking either Bd(ri, π /2) or Bd(ro, π /2) ≡ B0 as the intensity of the imposed magnetic field. The rotation rate is f = 15 Hz, and the jerk
sweeps an angle �ϕ = 180◦, over a time tjerk = 100 ms (trise = 50 ms).

tη tA tJ Lu Le  Eη Rmjerk Rejerk
r2
o
η

ro
√

μ0ρ

Bd (r ) t2
A/tη

ro Bd (r )
η
√

μ0ρ
Bd (r )

2π f ro
√

μ0ρ
Lu Le Le/Lu

Ujerk ro

η
Rmjerk/Pm

Bd(ri, π /2) 500 41 3.4 12 0.26 3.15 0.021 5.52 751 000
Bd(ro, π /2) 500 960 1840 0.53 0.011 0.0058 0.021 5.52 751 000

Figure 3. Wavefronts of (a) ideal Alfvén waves and (b) ideal torsional Alfvén waves in a dipolar magnetic field. The waves are triggered by a jerk of the inner
sphere (in brown). The colour scales give the traveltimes in milliseconds for the DTS-� parameters.

shown in Table 3, we reach values of the Lehnert number between
1.1 × 10−2 and 2.6 × 10−1 in our experiment at our highest rotation
rate f = �/2π = 15 Hz, depending on whether we pick for Bd(r) the
intensity of the equatorial magnetic field at r = ro or r = ri.

3.2 The effect of magnetic diffusion

While dissipation can often be neglected in natural systems such
as planetary cores and stars, it plays a major role in laboratory
experiments.

3.2.1 The Lundquist number

One can measure the role of magnetic diffusion by comparing the
Alfvén time tA to the magnetic diffusion time tη. This yields the
Lundquist number:

Lu = tη
tA

= ro Bd (r )

η
√

μ0ρ
. (11)

Table 3 shows that in our experiment the Lundquist number de-
creases from a value of 12 at r = ri to 0.53 at r = ro. Therefore, we
expect an important magnetic dissipation.

3.2.2 The Joule damping time

The quasistatic approximation is widely used in studies of MHD
flows in liquid metals (e.g. Roberts 1967; Sommeria & Moreau
1982; Siso-Nadal & Davidson 2004). It is a high magnetic diffusion
limit, which assumes that Gdt is negligible in (7). For a large imposed
magnetic field, the fluid acceleration Fdt is dominated by the Lorentz

force Flin
Lor in (6). This yields a characteristic time tJ = ρ/(σ B2

d (r )),
which is called the Joule damping time. The values of tJ are listed
in Table 3 for the DTS-� set-up.

It only amounts to tJ = 3.4 ms when we pick Bd(ri) as the rele-
vant magnetic field intensity. One might therefore infer that Joule
damping controls the flow dynamics near the inner sphere. This is
not the case. Indeed, the Joule damping time can be written as tJ =
tA/Lu, showing that it will always be small at large Lundquist num-
bers, which is in contradiction with the fact that magnetic diffusion
is small at large Lu. Physically, what happens is that the presence
of the Gdt term reduces the electric currents j needed to produce
b, making the induction term Glin

ind much smaller than assumed for
deriving tJ. The quasistatic approximation cannot be used when
dealing with Alfvén waves.

4 E X P E R I M E N TA L A N D S I M U L AT E D
S I G NA L S : T H E E F F E C T O F RO TAT I O N

4.1 Early signals

Let’s first consider signals arriving within 80 ms from the jerk start.
The large range of the raw signals illustrated by Fig. 2 is due to the
variety of the inner sphere jerks we produced. Indeed, we cannot
control precisely the duration and amplitude of the jerks we trigger.
We characterize the jerks by the total angle �ϕ they swept, and their
rise time trise, as described in Appendix A. Here, we select 29 jerks
of similar size (�ϕ = 110◦ ± 20◦), with a rise time between 35 and
46 ms, and we stack the corresponding records. Fig. 4(a) shows
the resulting Bϕ signals at latitude –20◦ at all five radial positions
displayed in Fig. 1(b). We see a clear time progression of the signals,
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Torsional Alfvén waves in a dipolar magnetic field S89

Figure 4. Magnetic and electric waveforms of torsional Alfvén waves in the DTS-� experiment for a rotation rate f = 15 Hz. Observed (a) and simulated (c)
Bϕ azimuthal magnetic signals inside the liquid at a latitude of –20◦ for five radii colour-coded as in Fig. 1(b). Observed (b) and simulated (d) �Vθ electric
potential differences at the surface of the stainless steel outer shell at four latitudes. All signals are normalized to their maximum amplitude, and plotted versus
time normalized by the magnetic diffusion time tη .

in excellent agreement with the simulation with �ϕ = π /2 and trise

= 40 ms shown in Fig. 4(c). Only � 16 ms separate the BP5-signal
from the BP1-signal (measured at mid-height) in the experiment,
compared to 20 ms (= 0.04 tη) in the simulation, while an ideal
torsional Alfvén wave would have taken 160 ms. This illustrates the
key role of magnetic diffusion in the experiment. Fig. 4(b) shows
the electric potential differences at the surface of the sphere at the
four latitudes displayed in Fig. 1(b). They compare very well with
their simulation counterparts shown in Fig. 4(d). In both cases, the
signals have the same shape at all four latitudes, and superpose
almost exactly with the BP1 magnetic signal.

We note that all experimental signals arrive tlag � 10 ms =
0.02 tη late compared to the simulations. This is due to a short
delay between the initiation of the jerk on the inner sphere pulley
and the reaction of the inner sphere itself. Indeed, the inner sphere
of DTS-� is entrained via a magnetic coupler, as described in Brito
et al. (2011). In Appendix B, we use tlag to compute the angle lag
δϕlag of the inner sphere with respect to its pulley by integrating
the instantaneous rotation rate of the pulley during the constant
acceleration rise, and get: δϕlag � 1.2◦.

We now examine the complete waveforms over two magnetic
diffusion times, and compare the rotating case (f = 15 Hz) with
the non-rotating one (f = 0). We select stronger jerks than in the
previous section, in order to minimize the contribution of the inner
sphere oscillations to the signals.

4.2 Magnetic waveforms

Fig. 5(a) shows the Bϕ stacks of a selection of 18 jerks of similar
size (�ϕ = 155◦ ± 25◦), with a rise time between 50 and 56 ms,
for f = 0. By stacking the signals, we get rid of the offsets that were
visible after the jerks in Fig. 2(a). They only show up in the rms
fluctuations (shaded area) around the mean. In contrast with Fig. 4,
we retain the amplitudes of the different signals, and we clearly see
the strong attenuation of the magnetic field (from BP5 to BP1) as
the wave moves away from the inner sphere.

Fig. 5(b) shows Bϕ stacks for a similar selection of 22 jerks at f =
15 Hz. The differences with Fig. 5(a) are subtle, but we note slightly
larger amplitudes, a wider positive pulse, and almost no negative
overshoot. These differences are also met in the corresponding sim-
ulations (�ϕ = π and trise = 50 ms) shown in Figs 5(c) and (d),
which use the same jerk time-function as the experiments (see Ap-
pendix A2).

The negative overshoot of Bϕ near the inner sphere is somewhat
unexpected. The numerical simulations help us get a better under-
standing when we examine the isolines of the azimuthal magnetic
field in a meridional plane. Figs 6(a) and (b) show such snapshots
at t = 0.3 tη for f = 0 and f = 15 Hz, respectively, while Figs 6(c)
and (d) show the corresponding Uϕ isolines. The sudden positive
jerk (Uϕ > 0, red in Fig. 6c) entrains the feet of the field lines of the
imposed dipole on the inner sphere, producing a negative (green)
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Figure 5. Azimuthal magnetic field Bϕ of the wave as a function of time at a latitude of −20◦ at 5 radii colour-coded as in Fig. 1(b). Time is given in magnetic
diffusion time tη units. Magnetic field is normalized by B0 Rmjerk. (a) stack of Bϕ for 18 similar jerks with no rotation (f = 0). The shaded region represents the
rms around the mean. (b) stack of Bϕ for 22 similar jerks with rotation (f = 15 Hz). (c) numerical simulation for f = 0. (d) numerical simulation for f = 15 Hz.

Bϕ in the upper hemisphere and positive (violet) Bϕ in the lower
hemisphere.

However, a patch of reversed Bϕ polarities shows up clearly near
the equator of the inner sphere. This is the signature of an Alfvén
wave that originated in the opposite hemisphere (see Fig. 3a): it
retains its original polarity throughout. Diffusion strongly smears
both the magnetic and the velocity signals, and we can better see
this phenomenon if we reduce the diffusion by two orders of mag-
nitude, as in the simulations displayed in Fig. 7. In the latter, we
also see the signature of Alfvén waves reflected on the inner sphere.
Reflection of an Alfvén wave on a rigid conducting wall (our cop-
per inner sphere) reverses the polarity of velocity while the mag-
netic perturbation retains its polarity (Alfvén & Fälthammar 1963,
p. 86).

Torsional Alfvén waves do not travel from one hemisphere to the
other (see Fig. 3b); hence the absence of Bϕ negative overshoot.

We note that the differences between the rotating and non-rotating
cases are subtle for the magnetic field (Figs 5a, b, 6a and b), while
the velocity fields appear clearly different in Figs 6(c) and (d). The
flow is dominated by an equatorial ring for f = 0, while it rapidly
takes the shape of geostrophic cylinders for f = 15 Hz.

4.3 Electric potentials

Within some limits, surface electric potentials can serve as a proxy
of the fluid velocity (Lehnert 1954a). From Ohm’s law, following
Brito et al. (2011), we can write:

Uϕ = 1

Br

�Vθ

ro�θ
, (12)

where Uϕ represents some fluid azimuthal velocity in the bulk, Br is
the radial component of the imposed dipole at colatitude θ and �Vθ

is the finite electric potential difference between points at latitude θ

+ �θ /2 and θ − �θ /2.
Figs 8(a) and (b) display the waveforms of the surface electric

potential differences �Vθ at latitudes from −10◦ to −40◦, for f =
0 and 15 Hz, respectively. The selection of jerks is the same as for
Fig. 5.

The maximum amplitude increases with latitude, a consequence
of the increase of Br in eq. 12. We note that for f = 15 Hz the
amplitudes of the electric potentials decay much more slowly than
that of the magnetic signals.

Figs 8(c) and (d) show the corresponding synthetic electric poten-
tial differences computed in our simulations. We recover the same
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Figure 6. Comparison of meridional snapshots of computed Alfvén waves
(left; f = 0) versus computed torsional Alfvén waves (right; f = 15 Hz) for
the Bϕ azimuthal magnetic field (a, b), and Uϕ azimuthal velocity field (c, d)
at time t = 0.3 tη . Magnetic field Bϕ is normalized by B0 Rmjerk. Azimuthal
fluid velocity Uϕ is normalized by Ujerk = ri�ϕ/tjerk.

behaviour as in the experiments, except that the simulated signals
last longer than we observe for f = 0. Note the much broader initial
pulse for f = 15 Hz in both the experiments and the simulations.
Surprisingly, the simulated electric potentials show some wiggles
for f = 15 Hz. In fact, these are the signature of inertial modes,
which are excited by the jerk. There is a hint of their presence in
the observed signals as well, somewhat obscured by the presence of
inner sphere oscillations (see Appendix B).

Note that the amplitudes of the simulated waveforms for both
Bϕ and �Vθ match fairly well those of the experiments. For that,
we had to reduce the electric conductivity of the inner sphere shell
from that of copper down to that of liquid sodium. This accounts
for electric coupling issues as discussed in Appendix C. Similarly,
the electric potentials in the upper hemisphere (not shown) are
somewhat weaker than in the lower one when f = 0.

4.4 Time evolution of the magnetic and velocity fields

The numerical simulations enable us to better understand the com-
bined time evolution of the magnetic and velocity fields. Going back
to Fig. 6, we can first stress the differences between the case with-
out rotation (Figs 6a and c) versus the case with rotation (Figs 6b
and d). The main difference is the organization of the velocity field
in geostrophic cylinders around the inner sphere in the presence
of rotation. This characteristic signature of torsional Alfvén waves

Figure 7. Meridional snapshots of Alfvén waves for simulations with a
Lundquist number 100 times larger than in DTS-�. (a, c) without rotation at
time t = 0.001 tη . (b, d) with rotation rate f = 15 Hz at time t = 0.001 tη . Uϕ

and Bϕ/
√

ρμ0 both in units of ro/tη . See parameters for these simulations
in Table D2.

appears to be present in the experimental conditions, despite the
important magnetic diffusion.

In the case without rotation, we note that the maximum of the
Uϕ velocity occurs in the equatorial plane and propagates outwards,
while no magnetic field line points in that direction. The radial ve-
locity is also strong there. As the Alfvén wave velocity blob propa-
gates away from the inner sphere, it experiences a smaller magnetic
field and inertia takes over. The tip of the resulting equatorial sheet
progressively evolves into a typical mushroom shape, as shown in
movies Up-0.mp4 and Bp-0.mp4 (see Supporting Information). Al-
though Alfvén waves are linear by definition, we observe a clear
nonlinear behaviour in this simulation. This is not surprising given
the large value of the hydrodynamic Reynolds number Re ∼ 105

in this simulation (and even larger in the corresponding experiment
Re ∼ 2 × 106).

In the rotating case, we observe that jerks of the inner sphere trig-
ger inertial waves. Some of them end up building the geostrophic
cylinder that carries the torsional wave. Others reflect on the outer
shell and form oscillating inertial modes, which modulate the ve-
locity field (Fig. 6d) and the surface electric potentials (Figs 8 b
and d). This is best seen in movies Up-15.mp4, Bp-15.mp4 and
Up-15-modes.mp4 (see Supporting Information). The shorter the
jerk duration tjerk, the stronger the inertial modes.
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Figure 8. Orthoradial electric potential differences �Vθ as a function of time at the surface of the outer sphere, at 4 latitudes colour-coded as in Fig. 1(b). Time
is given in magnetic diffusion time tη units. Electric potential difference is normalized by B0 Ujerk ro �θ , where �θ = 10◦ is the latitudinal distance between
the two electrodes. (a) stack of �Vθ for 18 similar jerks with no rotation (f = 0). The shaded region represents the rms around the mean. (b) stack of �Vθ for
22 similar jerks with rotation (f = 15 Hz). (c) numerical simulation for f = 0. (d) numerical simulation for f = 15 Hz.

4.5 Velocity measurements

None of the previous studies of Alfvén waves in liquid metals that
we know of, provided measurements of the fluid velocity. Here, we
use ultrasound Doppler velocimetry as pioneered by Brito et al.
(2001) and Eckert & Gerbeth (2002) in liquid sodium. There are
several problems that render the measurement particularly difficult:
(i) the acquisition time must be as short as 10 ms to capture the
wave; (ii) expected fluid velocities are only a few centimeters per
second. Additional issues arise when the outer sphere spins: (iii)
particles that scatter ultrasounds back to the probe become scarce
as they get centrifuged; (iv) small unbalance of the rotating sphere
creates signals at the rotation frequency and its overtones and (v)
the electric signals to and from the embarked ultrasound probes
pass through slip rings, where they get polluted by electromagnetic
noise.

In order to measure angular velocities—the expected main com-
ponent of our Alfvén waves—we shoot ultrasound beams from ports
in the outer shell with an angle of 24◦ from the radial direction, as
in Brito et al. (2011). We could retrieve satisfactory data from two

beams, drawn in Fig. 1(a). Fig. 9 shows the projection of their
(straight) rays in an (s, z) plane, where s is the cylindrical radius.
Drawn dots are separated by a constant distance along the ray of
0.1 ro. Ray 1 is symmetric with respect to the equatorial plane, while
ray 2 retains a constant latitude of −20◦. To keep the acquisition
time as short as possible, we measure fluid velocities only along a
portion of the ray straddling its midpoint, which is closest to the
inner sphere. We use the trigger mode of our Signal Processing
DOP3010 ultrasound velocimeter to start the acquisition at the in-
stant we trigger the jerk, which is in turn related to the actual start
of the jerk deduced from the torque of the inner sphere motor drive,
as described in Appendix A.

Fig. 10(a) shows a surface rendering of the Alfvén wave angular
velocity as a function of time and distance along ultrasound ray 1,
when the outer sphere is at rest (f = 0). We have stacked 5 records
of jerks similar to those of Sections 4.2 and 4.3, with �ϕ = 170◦

± 9◦ and trise � 55 ms. The probed region only extends from a
distance along the ray dray/ro = −0.13 to 0.18 around the midpoint,
and the time resolution is 16 ms. We see the rapid rise of the angular
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Figure 9. Projections of ultrasound rays 1 (red) and 2 (green) in the (s, z)
plane of the DTS-� experiment. Dots are drawn at the midpoint of the ray,
and every 0.1 ro away from it along the ray where data shown in Fig. 10 is
collected.

velocity at the Alfvén wave front, followed by a slow decrease. The
peak velocity is slightly offset from the midpoint of the ray.

Synthetics of our measurements, computed from the same simu-
lation as in Sections 4.2 and 4.3, are shown in Fig. 10(c). We recall
that this simulation uses the experimental jerk time-function, and
has a reduced inner sphere conductivity. The simulation shows a
similar behaviour, with two important differences: (i) the maximum
amplitude in our measurements is about twice smaller than simu-
lated and (ii) measured velocities decay with time about six times
more slowly than predicted.

Ray 2 looks more promising to probe the presence of the
geostrophic velocity column that marks the constraint of rotation
(see Fig. 6). Symptomatic of the difficulties mentioned earlier, we
could only get a handful of records for this ray geometry for f =
−10 Hz. We stacked 8 jerks with �ϕ = 143◦ ± 1◦ and trise = 45 ms.
The result is shown in Fig. 10(b). The time resolution is 20 ms, but
we had to to apply a 3 points median-filter in time to remove some
spurious peaks at the rotation frequency.

The corresponding simulation synthetics are shown in Fig. 10(d),
Again, the measured velocities are about twice smaller than simu-
lated, and they do not peak at the same dray.

For the short ray portions we could measure, the synthetics do
not show huge differences between the rotating versus non-rotating
case. Overall, our harvest of velocity measurements is somewhat
disappointing. On the sunny side, we obtain clear and reproducible
signals that nicely show the sudden rise and slow decay of angular
velocity of the Alfvén and torsional Alfvén waves. On the dark side,
our records do not clearly identify the influence of rotation, and
the velocities we measure are about twice smaller than predicted.
We think that the latter problem is due to coupling issues, which
are discussed in Appendix C. Indeed, Table D1 indicates that the
coupling was lower for these runs.

5 S C A L I N G L AW S

We ran a series of numerical simulations with DTS-� parameters,
varying the swept angle �ϕ from 1◦ to 180◦, and the jerk duration
tjerk from 0.05 to 0.6 tη. The time-function of the jerk rotation rate
was a simple boxcar, and we set the magnetic Prandtl number to
Pm = 10−3. The electric conductivities were those of Table 2. The
simulations covered both linear (Re 	 1) and non-linear (Re � 1)
regimes, without or with rotation, but all were axisymmetric.

5.1 Time evolution of the kinetic and magnetic energies

We integrate the energy densities over the volume of the spherical
shell to obtain the total instantaneous kinetic EK(t) and magnetic
EM(t) energies of the waves.

Fig. 11 displays the time evolution of the kinetic and magnetic
energies for simulations without rotation (left-hand panel) and with
rotation (right-hand panel). Both jerks sweep a �ϕ = 90◦ angle with
a boxcar time function with tjerk = 0.15 tη. We see that the kinetic
and magnetic energies initially build up at similar rates, but that the
magnetic energy levels off after t � 0.05 tη while the kinetic energy
continues rising until the jerk stops. Magnetic energy is leaking out
of the sphere because of magnetic diffusion while kinetic energy
accumulates. After that, both energies decrease, magnetic energy
decreasing more rapidly than kinetic energy.

In the absence of rotation, the damping reaches a power law,
with EK ∼ t−1.3 and EM ∼ t−2.2. For torsional Alfvén waves, the
behaviour is not strikingly different, but we observe that the energies
decay exponentially with time rather than with a power law. The
maximum magnetic energy is slightly larger than in the no-rotation
case, yielding almost energy equipartition for the shortest jerks.
The wiggles that show up in the magnetic energy curves are the
magnetic signature of inertial waves.

The geometry of our experiment prevents comparing with avail-
able theoretical predictions. To give some context, we refer to the
thorough study of Sreenivasan & Narasimhan (2017), dealing with
the time-evolution of fast and slow waves generated by a localized
Gaussian vortex subject to background rotation and a coaxial uni-
form magnetic field in an infinite domain. For large Lehnert number,
they find that Alfvén waves first decay with EK = EM ∼ t−5/2, and
then enter a diffusive regime with EK ∼ t−1/2 and EM ∼ t−3/2, re-
covering well-known behaviours (see Moffatt 1967, and references
therein). For small Lehnert numbers, they find that slow (Alfvén)
waves are strongly damped, with EK ∼ t−7/2 and EM ∼ t−9/2.

5.2 Maximum energies

We now examine how the maximum magnetic Emax
M and kinetic

Emax
K energies scale with the jerk parameters. Fig. 12 compiles

Emax
M versus Rm2

jerk for several numerical simulations and experi-
ments. For the latter, we convert the BP5 (Bϕ closest to the inner
sphere) amplitude to Emax

M , assuming the same relationship as in
the corresponding simulations. For all runs, we find that Emax

M is
proportional to the square of the magnetic Reynolds number Rmjerk

= Ujerkro/η, irrespective of the Lehnert number and jerk duration.
More specifically, expressing the energies in ρU 2

jerkr 3
o units, we get:

Emax
M � 5 × 10−2.
We find that the Emax

K /Emax
M ratio increases almost linearly with

tjerk for torsional Alfvén waves, with Emax
K /Emax

M � 22 tjerk/tη, inde-
pendent of Rmjerk.

Reducing the conductivity of the inner sphere reduces the mag-
netic and kinetic energies of the wave. Finally, we note that the
surface electric potentials follow the trend of the fluid velocity,
confirming that they can be used as a proxy of the latter, as in
Section 4.3.

It is interesting to compare the kinetic and magnetic energies of
Alfvén waves to their equivalent when the inner sphere spins at a
constant rate �f with respect to the outer sphere. Nataf (2013) and
Cabanes et al. (2014a) report values obtained from global recon-
structions of the mean axisymmetric velocity and magnetic fields
in the DTS experiment. Both energies scale with U2 = (2π�fri)2 at
first order. Expressing the energies in ρU 2r 3

o units, they range from
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Figure 10. Colour surface rendering of the fluid angular velocity ωfluid, as a function of time (normalized by tη) and distance along the ray (normalized by ro),
with dray = 0 at the midpoint of the ray. Angular velocities are normalized by �ϕ/tjerk. (a) Ray 1. Stack of 5 records for f = 0. (b) Ray 2. Stack of 8 records for
f = −10 Hz. (c) Ray 1. Synthetics for f = 0, with the same parameters as in figure 5(c). (d) Ray 2. Synthetics for f = −10 Hz.

EK � 3.6 and EM � 1.6 × 10−3 for Rm = 3.5 to EK � 2.8 and EM �
3.5 × 10−3 for Rm = 10, after converting to our definition of U. The
magnetic energy achieved in the steady state is thus some 25 times
smaller than the magnetic energy of the waves. We can see this as
the ability of the flow to adjust for limiting magnetic induction, as
in Ferraro’s law (Ferraro 1937).

6 D I S C U S S I O N

We have presented the first experimental evidence for torsional
Alfvén waves, that is geostrophic Alfvén waves, which obey the
Proudman–Taylor constraint imposed by rapid rotation. We have
measured both the induced azimuthal magnetic field inside the fluid
shell (Fig. 5) and the electric potentials at the surface of the container
(Fig. 8). The signature of rotation is best seen on surface electric
potentials, which are sensitive to the velocity field through Ohm’s
law. The velocity field is indeed strongly modified by rotation, as
shown by meridional maps of the azimuthal velocity field from
numerical simulations (Fig. 6). We have also performed the first
measurements of the velocity perturbation associated with Alfvén

waves, using ultrasound Doppler velocimetry (Fig. 10), but we could
not use them to clearly identify the role of rotation.

The effect of rotation also shows up in the magnetic waveforms
we record (Fig. 5). Indeed, the case with no rotation displays a nega-
tive overshoot, which is nearly absent in the rotating case. Numerical
simulations (Fig. 6) indicate that the negative overshoot is the signa-
ture of an Alfvén wave that originated in the opposite hemisphere, a
consequence of the dipolar nature of the imposed magnetic field (see
Fig. 3). This phenomenon is best seen on snapshots of the meridional
maps of the azimuthal magnetic field for simulations with a much
reduced magnetic diffusion (Fig. 7). Geostrophic Alfvén waves,
which travel in the s-direction, do not show this phenomenon. How-
ever, magnetic diffusion introduces an additional twist in that case.
The meridional map of the azimuthal velocity in Fig. 6(d), shows
that the geostrophic cylinder is smeared. It extends back around the
inner sphere, and persists after the end of the jerk, producing a weak
reversed shear in that region, inducing a weak negative overshoot
for the magnetic field.

With global rotation, both experiments and simulations show
that sudden jerks trigger inertial waves in the fluid. In contrast with
earlier studies dealing with the interaction of inertial waves with an
imposed magnetic field (Bardsley & Davidson 2016; Sreenivasan
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Figure 11. Log–log plots of the time-evolution of the kinetic (blue) and magnetic (orange) energies of Alfvén waves and torsional Alfvén waves from numerical
simulations. (a) f = 0; (b) f = 15 Hz. Inner sphere jerks sweep a �ϕ = 90◦ angle. Boxcar jerk of duration tjerk = 0.15 tη . Both EM and EK are normalized by
ρr5

o /t2
η .

Figure 12. Evolution of the maximum magnetic energy Emax
M with Rm2

jerk
in simulations (connected points) and experiments (symbols). The rotation
rate is f = 15 Hz for all data shown, but non-rotating cases show a very
similar behaviour. The curve labelled ’dts-jerk’ uses σ i = σNa and a dts-jerk
time function.

& Narasimhan 2017), inertial waves encounter boundaries in our
study. In doing so, they create geostrophic cylinders (Fig. 6d), which
are the key feature of torsional Alfvén waves. The interferences of
other inertial waves build inertial modes, as best seen in Fig. 13 and
movie Up-15-modes.mp4.

The Lundquist number in our experiment is only 12 at the equa-
tor of the inner sphere, decreasing to 0.5 at the outer sphere. The
effect of magnetic diffusion is therefore larger than in the sodium
experiments of Jameson (1964), or in the gallium alloy experiments
of Alboussiere et al. (2011), which both reached Lu = 60. We
note that the propagation velocity of the resulting damped Alfvén
wave appears larger than that of ideal waves when we observe the
signals in the time domain (Fig. 4). We get the opposite answer

Figure 13. Inertial mode signatures in a meridional snapshot of azimuthal
fluid velocity Uϕ at time t = 0.421 tη for a numerical simulation with Pm =
10−5, f = 15 Hz, �ϕ = 1◦, boxcar jerk time-function with tjerk = 0.05 tη .

when we compare the position of the wave in space, as illustrated
by comparing Figs 6 (Lu = 12) and 7 (Lu = 1200). The core
of the waves has travelled farther away in the latter case, while
the snapshot is taken at a time three times shorter in Alfvén time
units.

There are several properties of our set-up that make it interesting,
besides the possibility to study the effect of rotation. As noted by
Jameson (1964), the vertical walls of the container were respon-
sible for a large dissipation in the early experiments (Lundquist
1949; Lehnert 1954a). In our set-up, Alfvén waves propagate freely
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from the inner sphere outwards, without meeting any wall, ex-
cept for the inner sphere itself, were interesting reflexions do
occur.

Another interesting feature of our set-up is the way we trigger
the Alfvén wave by a jerk of the inner sphere. It produces simulta-
neously an azimuthal velocity impulse and an azimuthal magnetic
field impulse, the latter being proportional to the imposed magnetic
field. The simple and smooth geometry of the inner body permits
quantitative comparisons with axisymmetric numerical simulations
in spherical geometry. And we found indeed a good quantitative
agreement between the experiments and the simulations for the
amplitudes of the magnetic field and of surface electric potentials,
provided we reduce the electric conductivity of the inner sphere
from that of copper to that of sodium, because of coupling issues
(see Appendix C).

Schaeffer & Jault (2016) emphasize the role of the electrical
conductivity of the walls for inhibiting the reflexion of torsional
waves when they reach the equator. They show that the reflexion

coefficient R can be approximated by R = 1−Q−√
Pm

1+Q+√
Pm

, where Q =
VAδw/ηw, for a wall of thickness δw and magnetic diffusivity ηw,
with VA the velocity of Alfvén waves near the wall. In our set-up,
we get Q � 1 so that torsional Alfvén waves would hardly reflect,
were their amplitudes not already heavily diminished by magnetic
diffusion in the bulk.

Finally, we note that none of the diagnostics we used in the exper-
iment (induced azimuthal magnetic field, surface electric potentials,
in situ fluid velocities) is accessible in the study of torsional waves
in the Earth’s core. Instead, it is only the surface fluid velocities de-
duced from the magnetic field secular variation that enabled Gillet
et al. (2010) to detect and study torsional waves in the core. This
works well in the Earth because: (i) the Lundquist number is large
enough (Lu ∼ 104) for the frozen-flux approximation to be valid
and (ii) the Lehnert number is small enough (Le ∼ 10−4) for tor-
sional waves to be really z-invariant. In the DTS-� experiment, we
have recorded the ’secular variation’ of the magnetic field at the
surface, but magnetic diffusion prohibits using the frozen-flux ap-
proximation. Nevertheless, we might try to disentangle the effects
of advection and diffusion in a follow-up study, as in Cabanes et al.
(2014a).
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A P P E N D I X A : T R A C K I N G J E R K S O F
T H E I N N E R S P H E R E

In order to better describe the source of our Alfvén waves, we
need to retrieve a few properties of the impulsive inner sphere
rotation achieved in our DTS-� experiment. We produce this ‘jerk’
by ordering a sudden jump of the rotation rate to the motor driving
the inner sphere, followed by a sudden drop to its original value. We
do not control the exact timing of these two orders, and therefore,
we obtain jerks of various sizes. In this appendix, we describe how
we retrieve the two properties needed to compare with simulations:
the total angle �ϕ swept by the inner sphere (in the rotating frame)
and the jerk time-function.

A1 Obtaining �ϕ

We use two different methods to measure �ϕ, depending on
whether the outer sphere is at rest (Alfvén waves) or spins (torsional

Alfvén waves). The �ϕ produced by our jerks range from 10◦ to
190◦.

A1.1 Obtaining �ϕ for Alfvén waves

Fig. A1(a) shows magnetic field records for a succession of 8 inner
sphere jerks, when the outer sphere is at rest. The three components
Br, Bθ , Bϕ are measured (in a sleeve) ∼20 mm above the surface
of the inner sphere. The dipole field has been subtracted. The jerks
show up as very thin impulses, separated by long plateaus of differ-
ent heights. During a jerk, the inner sphere changes from angular
position ϕ0 to ϕ0 + �ϕ with respect to the outer sphere (hence the
sleeve). The plateaus indicate that the magnetic field produced by
the inner magnet is not perfectly axisymmetric. In fact, this prop-
erty was used by Cabanes et al. (2014b, 2015) to probe the effective
magnetic diffusivity in DTS, and Cabanes et al. (2014a) provide
the scalar magnetic potential of this non-axisymmetric component
(see their figure 13a). The combination of the height of the plateaus
for the 3 B-components unequivocally characterizes the angular po-
sition of the inner sphere, hence the �ϕ angle swept by the inner
sphere during a jerk.

A1.2 Obtaining �ϕ for torsional Alfvén waves

We use a different method when the outer sphere spins. We can time
precisely when the outer sphere reference longitude matches the lab
frame reference, and similarly for the inner sphere. This provides
the rotation rates of both spheres. We can also determine the time
delay, and hence the phase lag, between the two spheres at each
turn. Fig. A1(b) illustrates the determination of �ϕ for a subset of
7 inner sphere jerks for f = 15 Hz.

A2 Jerk time-function

The first thing is to get the precise starting time of each jerk. We
obtain this from the record of the torque applied to the inner sphere
provided by its motor drive. It rises abruptly from some initial value
to values in excess of 100 Nm, and we can pin-point the rise start
with a precision of about 1 ms. It drops very abruptly as well, and
we pin-point the time at which it crosses its initial level to within
1 ms as well. This defines the rise time trise of the jerk. It ranges
from 15 to 60 ms.

The motor drive also provides the instantaneous rotation rate
�f(t) of the motor. Fig. A2 displays a typical record of that sig-
nal. It is somewhat noisy, but one clearly sees a linear rise be-
tween the two vertical lines that mark the rise and fall of the
torque. It is followed by a quasi-exponential decay, with a time
constant tdecay � 75 ms. Knowing the total angle �ϕ of the jerk
from our previous analysis, we can calculate the peak rotation rate
�fmax by the integration of this rise-and-decay time-function. We
get:

2π� fmax = �ϕ

tdecay + trise/2
. (A1)

Fig. A2 shows that the synthetic jerk time-function thus obtained
provides a good fit. We define tjerk = tdecay + trise/2. We implemented
this time-function in the simulations.

�fmax is used in the estimate of the magnetic Reynolds number
of the jerk: Rmjerk = roUjerk/η, with Ujerk = 2π�fmaxri = ri�ϕ/tjerk.
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Figure A1. Determination of the angle �ϕ swept by each jerk. (a) no rotation case: the figure shows the three components (Br, Bθ , Bϕ) of the induced magnetic
field close to to the inner sphere as a function of time. Eight jerks are visible. �ϕ is obtained from the difference between the inner sphere longitudes after and
before each jerk, deduced from their specific (Br, Bθ , Bϕ ) combination. (b) rotating case (f = 15 Hz): the longitude difference between the inner sphere and
the outer sphere is plotted as a function of the turn index of the outer sphere. A constant residual drift of the inner sphere of about 1◦/turn has been subtracted.
The figure illustrates how �ϕ is retrieved for each jerk.
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Figure A2. Typical time-function of a jerk in DTS-�. The figure displays
the torque (green curve in Nm) and differential rotation rate (red curve in
Hz) of the inner sphere motor drive during a jerk, for f = 15 Hz. The sudden
rise of the torque to a value of about 150 Nm (off scale) yields the jerk
origin time. The rotation rate increases linearly until the torque suddenly
drops to negative values, here at about 50 ms after the jerk start. This defines
trise for this jerk. Then, the differential rotation rate decreases exponentially
back to zero, with tdecay � 75 ms. This jerk swept an angle �ϕ � 135◦.
The blue piecewise curve is the synthetic jerk we use in the numerical
simulations.

A P P E N D I X B : O S C I L L AT I O N S O F T H E
I N N E R S P H E R E

The above procedure provides the jerk time-function of the pulley
that drives the inner sphere of DTS-�. However, the pulley entrains
the inner sphere through a magnetic coupler. Sudden jerks create a
small phase lag δϕlag between the pulley and the inner sphere, which
we can estimate from the time lag tlag of the observed magnetic
signal compared to our simulation (see Section 4.1):

δϕlag = 2π

∫ tlag

0
� f (t)dt = 2π� fmax

trise

t2
lag

2
, (B1)

where �fmax is calculated in Appendix A2. We get δϕlag � 1.2◦.
The magnetic coupler-inner sphere system then behaves as a

damped oscillator, with a characteristic frequency νosc � 18 Hz.
The actual jerk waveform thus combines the pulley time-function
and the oscillations resulting from the magnetic coupler, which
have a clear signature on the measured magnetic (Figs 5a and b)
and electric (Figs 8a and b) signals.

We have not included these oscillations in our simulations, but
we can estimate their expected signature from our scaling laws. The
magnetic Reynolds number of the oscillations is:

Rmosc = 2π νosc δϕlag ri ro

η
� 0.42. (B2)

This is about 13 times smaller than the magnetic Reynolds number
of the jerks selected in Figs 5(a) and (b). We should find the same
ratio between the signature of the oscillations and the jerk’s main
signal, since the scaling laws we found in Section 5 predict that Bϕ is
proportional to Rm. This is roughly what we find. The oscillations
are slightly smaller for the electric potentials, consistent with an
expected additional

√
tosc/trise � 0.5 factor.

A P P E N D I X C : C O U P L I N G I S S U E S

As in the early experiments of Lehnert (1954a), our Alfvén waves
are produced by shearing the magnetic field lines at the copper–
sodium interface at the inner sphere surface. The electric coupling
between the liquid sodium and the copper inner shell therefore plays
a crucial role. During its 12 yr of operation, the DTS experiment has
seen its coupling vary substantially, for reasons which have not been
really understood. While it was good and stable in the experiments
reported on by Brito et al. (2011), Schmitt et al. (2013), Nataf (2013)
and Cabanes et al. (2014a,b, 2015), it was partly impaired in those
of Nataf et al. (2006, 2008) and Schmitt et al. (2008). The coupling
was good again in the first runs of the upgraded version DTS-�,
but it deteriorated and remained imperfect even after a complete
replacement of our sodium performed in September 2016.

However, Nataf et al. (2008) show that surface electric poten-
tials provide a good proxy for the quality of the coupling for a
given differential rotation rate. In order to get the good quantitative
agreement between our measurements and our numerical simula-
tions shown in Figs 5 and 8, we had to reduce the conductivity of
the inner sphere shell from that of copper to that of liquid sodium
in the numerical simulations. The coupling was not as good when
we succeeded obtaining the ultrasound Doppler velocity profiles
shown in Fig. 10, with �V−40 electric potentials three to five times
smaller. Note that some coupling inhomogeneity between the upper
and lower hemispheres is also revealed by the electric potentials in
some cases.

A P P E N D I X D : E X P E R I M E N TA L A N D
N U M E R I C A L PA R A M E T E R S

Table D1 summarizes the parameters of the experiments and Ta-
ble D2 those of the numerical simulations presented in this article.
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Table D1. Parameters of the experiments. Le(ro) is the Lehnert number of eq. 10 evaluated using the intensity of the
magnetic field at the equator of the outer shell (r = ro). Rmjerk is the magnetic Reynolds number of the jerk. ‘coupling’
is the ratio of the measured �V−40 over its value simulated with an inner sphere with copper electric conductivity.

Fig. # f (Hz) �ϕ (◦) trise/tη Coupling Le(ro) Rmjerk

2(a) and (b), 12(c) 15 14–190 0.04–0.12 0.5 0.011 0.5–5.6
4(a) and (b) 15 110 ± 20 0.08 0.5 0.011 2.9
5(a),8(a) 0 155 ± 25 0.1 0.5 ∞ ∼4.9
5(b),8(b) 15 155 ± 25 0.1 0.5 0.011 ∼4.9
10(a) 0 167–185 0.1 0.1 ∞ ∼5.6
10(b) −10 143 0.08 0.15 0.017 ∼4.6
A1(a) 0 0.5 ∞
A1(b) 15 0.5 0.011
A2 15 135 0.1 0.5 0.011 4.2

Table D2. Parameters of the numerical simulations. The ‘dts’ jerk time-function is described in Appendix A2. σ i is the electric conductivity of the shell
housing the magnet of the inner sphere, while σNa is the electric conductivity of liquid sodium. The σ i/σNa ratio is 4.2 for a copper shell. Lu(ri) is the Lundquist
number of eq. 11 evaluated using the intensity of the magnetic field at the equator of the inner sphere (r = ri). �max is the maximum harmonic degree of the
simulation, and NR the number of radial grid points.

Figure number and movie name f �ϕ trise/tη Jerk time σ i/σNa Lu(ri) Pm �max NR
Hz ◦ -function

4(c) and (d) 15 90 0.08 dts 1 12 10−4 300 1000
5(c),8(c),6(a) and (c),10(c), Up-0.mp4,
Bp-0.mp4

0 180 0.1 dts 1 12 10−4 300 1000

5(d),8(d),6(b) and (d), Up-15.mp4, Bp-15.mp4 15 180 0.1 dts 1 12 10−4 300 1000
10(d) −10 180 0.1 dts 1 12 10−4 300 1000

tjerk/tη
7(a) and (c) 0 0.1 2 × 10−4 boxcar 4.2 1200 10−3 120 550
7(b) and (d)† 15 0.1 2 × 10−4 boxcar 4.2 1200 10−1 460 1200
11(a), (b) and (d) 0,15 90 0.05,0.15 boxcar 4.2 12 10−3 120 550
12(a), (b) and (d) 0,15 1–180 0.05–0.6 boxcar 4.2 12 10−3 120 550
13, Up-15-modes.mp4 15 1 0.05 boxcar 4.2 12 10−5 120 550

†This simulation had ro = 21 m in order to get the same Elsasser number as in the experiment at 15 Hz, implying a Lehnert number 100 times smaller than in
the experiment.
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