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Using direct numerical simulation of hydrodynamic turbulence with helicity forcing
applied at all scales, a near-maximum helical turbulent state is obtained, with an
inverse energy cascade at scales larger than the energy forcing scale and a forward
helicity cascade at scales smaller than the energy forcing scale. In contrast to
previous studies using decimated triads, our simulations contain all possible triads.
By computing the shell-to-shell energy fluxes, we show that the inverse energy
cascade results from weakly non-local interactions among homochiral triads. Varying
the helicity injection range of scales leads to necessary conditions to obtain an inverse
energy cascade.
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1. Introduction

Inverse cascade of energy is a well-known feature of two-dimensional homogeneous
isotropic turbulence (HIT). It is generally understood as a consequence of the
positive-definiteness of two ideally conserved quantities, energy and enstrophy,
the enstrophy cascade being forward (Kraichnan 1967). In three-dimensional HIT,
in addition to energy, the other quantity conserved in the inviscid limit is helicity
(Moreau 1961; Moffatt 1969), which is not positive-definite. Accordingly only forward
cascades of both energy and helicity are expected (Brissaud et al. 1973; Chen, Chen
& Eyink 2003a; Chen et al. 2003b; Mininni, Alexakis & Pouquet 2006; Alexakis
2017). However, projecting the velocity field on a basis of homochiral modes, e.g.
positive helical modes, helicity thus becomes positive-definite, and an inverse cascade
of energy is expected together with a forward cascade of helicity. This has been
shown numerically by solving a decimated model of the Navier–Stokes equations
(NSE) in which the negative helical modes have been arbitrarily set to zero (Biferale,
Musacchio & Toschi 2012, 2013). Limited to interactions among positive helical
modes, the energy flux has been found to be negative at infrared scales, i.e. scales
larger than the energy forcing scale, leading to an inverse cascade of energy.

† Email address for correspondence: Franck.Plunian@univ-grenoble-alpes.fr
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Although such a homochiral framework is theoretically interesting, it is not yet
clear whether it could be applied to the NSE that involve both homochiral and
heterochiral triadic interactions. Kessar et al. (2015) solved the NSE numerically,
with energy injected at large scales and positive helicity injected over the entire
inertial range of the energy cascade. The energy of the positive helical modes was
found to be higher than the energy of the negative helical modes by several orders of
magnitude, corresponding to a near-maximum helical state of turbulence. They found
that the energy flux resulting from the positive helical mode interactions was indeed
negative, as predicted by the homochiral phenomenology. However, the energy flux
resulting from the heterochiral interactions was found to be positive and dominant,
leading to a positive total energy flux, and therefore to a forward energy cascade.
Finally, the energy spectrum was found to satisfy a power law close to k−7/3, related
to the forward cascade of helicity in homochiral turbulence.

In Sahoo, Alexakis & Biferale (2017), the nonlinear operator of the NSE has
been modified in order to control the relative weight of homochiral to heterochiral
triadic interactions. In the high-Reynolds-number limit, by increasing the weight of
homochiral triadic interactions, they found a sharp transition from forward to inverse
energy cascade at infrared scales. It remains to be seen whether such an inverse
cascade can occur dynamically from the direct numerical simulation of the NSE,
without any type of decimation, which is the subject of this paper.

We report results obtained from the direct simulation of the NSE, with positive
helicity injected at all scales, as in Kessar et al. (2015), but now including the
scales larger than the energy forcing scale, namely the infrared scales. Although the
flow is again not in an ideal state of maximum helicity because it contains both
positive and negative helical modes interacting dynamically, an inverse cascade of
energy is nevertheless found. This is the first evidence of inverse energy cascade in
three-dimensional homogeneous isotropic turbulence, in a framework more general
than that of homochiral triads.

2. Helical forcing
We solve the NSE

∂tu=−(u · ∇)u−∇P+ ν∇2u−µ∇−4u+ f , (2.1)

where u denotes the velocity field, P the pressure normalized by the mass density, ν
the fluid viscosity and f the flow forcing. We consider an incompressible fluid such
that ∇ · u = 0. We introduce the additional term µ∇−4u, which mimics large-scale
friction in order to avoid large-scale energy accumulation in case an inverse cascade
occurs.

In Fourier space, equation (2.1) becomes

∂tu(k)=−F [(u · ∇)u](k)− iP(k)k− (νk2
+µk−4)u(k)+ f (k), (2.2)

where F [(u ·∇)u](k) denotes the Fourier transform of the nonlinear term (u ·∇)u, and
k= |k|. In (2.2) u(k), P(k) and f (k) denote the Fourier coefficients of, respectively, u,
P and f at wavenumber k. The same notation will be used throughout the paper.

A crucial issue is to derive a forcing f (k) such that helicity H(k)= 1
2 u(k) · w(k)∗,

where w(k) = ik × u(k) is the vorticity, can be injected independently from energy
E(k)= 1

2 u(k) · u(k)∗. Therefore f (k) has to satisfy

f (k) · u(k)∗ = εE(k), f (k) ·w(k)∗ = εH(k), (2.3a,b)

where εE(k) and εH(k) are the injection rates of, respectively, energy and helicity.
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2.1. Helical mode decomposition
Each velocity Fourier coefficient is split into helical modes (Craya 1958; Herring
1974; Cambon & Jacquin 1989; Waleffe 1992; Lessinnes et al. 2011),

u(k)= u+(k)h+(k)+ u−(k)h−(k)≡ u+(k)+ u−(k), (2.4)

where u±(k) are complex scalars and h±(k) are the two eigenvectors of the curl
operator, satisfying ik× h±(k)=±kh±(k). The latter are defined as

h±(k)=
1
√

2

(zk × k)× k
k|zk × k|

±
i
√

2

zk × k
|zk × k|

, (2.5)

where at each time step the vector zk is generated randomly for each wavenumber k,
keeping zk× k 6= 0 (Waleffe 1992). Note that h+(k) and h−(k) are complex conjugate
of each other, h±(k) = h∓(k)∗. They are vectors of unit norm, |h±(k)|2 = h+(k) ·
h−(k)= 1, and the scalar product of each of them with itself is equal to zero, h+(k) ·
h+(k) = h−(k) · h−(k) = 0. Then the helical modes u±(k) can be derived from (2.4)
according to

u±(k)= u(k) · h∓(k). (2.6)

The vorticity can also be expressed in terms of helical modes,

w(k)= k(u+(k)h+(k)− u−(k)h−(k)). (2.7)

Then, the energy and helicity take the form

E(k)= E+(k)+ E−(k), H(k)= k(E+(k)− E−(k)), (2.8a,b)

with E±(k)= 1
2 |u
±(k)|2.

2.2. Dynamical forcing
Looking for a flow forcing of the form

f (k)= c+(k)u+(k)h+(k)+ c−(k)u−(k)h−(k), (2.9)

from (2.3), (2.4) and (2.7), we obtain

c±(k)=
εE(k)± εH(k)/k

4E±(k)
. (2.10)

As our purpose is to study strongly helical turbulence, one type of helical mode, here
u−(k), is expected to have a small energy E−(k), possibly leading to high values of
c−(k). To avoid using a very small time step, which would be numerically intractable,
we integrate analytically the equations ∂u±(k, t)/∂t= c±(k, t)u±(k, t), leading to

u±0 (k, t+1t)= ei arg u±(k,t)
([
εE(k, t)±

εH(k, t)
k

]
1t+ |u±(k, t)|2

)1/2

. (2.11)

Then u0(k, t + 1t) = u+0 (k, t + 1t)h+(k) + u−0 (k, t + 1t)h−(k) is taken as an initial
condition in the calculation of the NSE at time step t + 1t. To achieve the desired
state of high helicity, we use the following asymptotic quenching:

εH(k, t)= ε̃H

(
1−
|E+(k, t)− E−(k, t)|
E+(k, t)+ E−(k, t)

)
, (2.12)

where ε̃H is the strength of helicity injection rate.
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FIGURE 1. Total energy Etot, total helicity Htot, energy dissipation rates Dν
E,Dµ

E and Dν
E +

Dµ
E , and helicity dissipation rates Dν

H,Dµ
H and Dν

H +Dµ
H , plotted versus time for εE = 0.2

and ε̃H = 25. The time range t ∈ [180, 280] over which the statistics are calculated is
indicated, for each curve, by a thicker line.

3. Energy and helicity
3.1. Integral quantities

The simulations are performed with the pseudo-spectral code TARANG (Verma et al.
2013; Stepanov et al. 2018; Teimurazov et al. 2018), in a triply periodic domain of
size (2π)3. Energy is injected at the permanent rate εE(k)= 0.2, over |k| = kE ∈ ]9, 10].
The viscosity and large-scale friction values are taken as ν = 1.5 × 10−3 and µ =

5 × 10−2, for which a resolution of 5123 is sufficient. The simulations differ by the
values chosen for ε̃H , which is applied over |k| = kH ∈ [1, 102

]. Some variations of the
parameters ν and kH will be discussed in § 4.3.

In figure 1, several integral quantities are plotted versus time for ε̃H = 25. We
define Xtot =

∫
X(k) dk, with X = E for total energy and X = H for total helicity.

The molecular dissipation rate of X is given by Dν
X = 2ν

∫
k2X(k) dk, and the friction

dissipation rate by Dµ
X = 2µ

∫
k−4X(k) dk. In figure 1 we see that Htot varies on a

time scale much smaller than Etot, suggesting a turbulence governed by helicity rather
than energy. On average, we have Dν

E + Dµ
E = 0.2, which corresponds to the total

injection rate of energy εE=
∫
εE(k) dk. Both Dµ

E and Dµ
H are mostly identical. This is

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
8.

22
1.

39
.5

7,
 o

n 
25

 M
ay

 2
02

0 
at

 0
9:

07
:4

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.307


Inverse cascade of energy in helical turbulence 895 A13-5

because friction is dominated by the largest scale k = 1 where turbulence is close
to maximum helicity, implying H(k = 1) ≈ kE(k = 1). In the rest of the paper, the
spectra and fluxes are obtained by averaging over frames spread over 50 to 100 time
units. For ε̃H = 25, this time window is represented in figure 1 by the thick part of
the curves.

An estimate of the Taylor-microscale Reynolds number, Rλ= u′λ/ν, can be obtained
with u′=

√
2Ētot/3 and λ=

√
15νu′2/εE (Pope 2000). From figure 1 the mean kinetic

energy is Ētot ≈ 1.35, which gives u′ ≈ 0.95 and λ ≈ 0.32, thus leading to Rλ ≈
200, which compares well with other numerical simulations of the same resolution
(Okamoto et al. 2007).

3.2. Energy and helicity spectra and fluxes
Taking the dot product of (2.2) with x(k)∗, we obtain the equations for modal energy
and helicity,

∂tX(k) = −Re{x(k)∗ ·F [(u · ∇)u](k)}
− 2(νk2

+µk−4)X(k)+ εX(k), (3.1)

where (X, x)= (E, u) or (X, x)= (H,w), F standing for Fourier transform, and εX(k)
satisfying (2.3). Rewriting (3.1) for k′, and taking the sum over k′ such that k< |k′|6
k+ dk (Verma 2019), leads to

∂tX(k)=−∂kΠX(k)−DX(k)+ εX(k), (3.2)

with

X(k) dk=
∑

k<|k′|6k+dk

X(k′), (3.3)

ΠX(k)=
∑
|k′|6k

Re{x(k′)∗ ·F [(u · ∇)u](k′)}, (3.4)

DX(k) dk=
∑

k<|k′|6k+dk

2(νk′2 +µk′−4
)X(k′), (3.5)

εX(k) dk=
∑

k<|k′|6k+dk

εX(k′). (3.6)

The energy spectral density E(k) and flux ΠE(k) in figure 2, and the helicity
spectral density H(k) and flux ΠH(k) in figure 3, are plotted for ε̃H ∈ S, with
S = {1; 5; 7; 8; 10; 13; 20; 25}. For ε̃H = 1, the fluxes of energy and helicity are
non-zero only for k > 10. As both fluxes are positive, they correspond to forward
cascades of energy and helicity, as expected in three-dimensional turbulence. In
figure 3, the shape of the helicity flux obtained for ε̃H = 1, with a maximum at
k ≈ 20, is similar to the one obtained by Kessar et al. (2015) in which helicity was
injected only at scales smaller than the energy injection scale.

With the increase of ε̃H from 1 to 25, the energy flux is shifted downwards. It
then becomes negative in the infrared domain k 6 9, leading to an inverse cascade
of energy. With the increase of ε̃H , the scale at which the helicity flux is maximum
is also shifted, towards the energy injection scale. For k > 10 the helicity flux is
positive, corresponding to a forward cascade of helicity. Such a dual cascade is
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FIGURE 2. Energy spectra and fluxes (inset). The energy injection rate εE= 0.2 is applied
at kE ∈ ]9, 10]. The helicity injection rate ε̃H ∈ {1; 5; 7; 8; 10; 13; 20; 25} is applied at
kH ∈ [1, 102

].
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FIGURE 3. Helicity spectra and fluxes (inset) for the same parameters as in figure 2.

consistent with the homochiral phenomenology. For ε̃H = 25, in the infrared domain
k 6 9, the energy spectrum obeys a k−5/3 scaling law. For k > 10 the energy spectral
slope is approximately E(k)∝ k−4.3, which is steeper than the E(k)∝ k−7/3 predicted
by the homochiral phenomenology. Most probably this is due to the fact that, at
scales smaller than the energy injection scales, the viscous dissipation cannot be
neglected, implying that an inertial range can hardly be identified.

A measure of chirality is given by the relative helicity Hr(k) = H(k)/kE(k),
which satisfies the realizability condition 0 6 |Hr(k)| 6 1. A non-helical turbulence
corresponds to |Hr(k)| = 0. A maximum helical turbulence corresponds to |Hr(k)| = 1,
which can be obtained only in the homochiral framework. In figure 4, 1 − Hr(k) is
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FIGURE 4. Deviation to maximum chirality, 1 − Hr(k), for the same parameters as in
figure 2.

plotted for ε̃H ∈ S. We find that increasing ε̃H leads to lower values of 1− Hr(k) in
broader ranges of scales. The turbulent state is then closer to maximum chirality. We
note that the lower bound of 10−3 for 1−Hr(k) is prescribed by a restriction on εH
in order to avoid a negative value under the square root in (2.11).

4. Helical modes
4.1. Energy fluxes

The energy equation for each helical mode is obtained by taking the real part of the
dot product of (2.2) with u±(k)∗. Then the energy equation is given by (3.1) with
(X, x)= (E±, u±) and 2εE±(k)= εE(k)± εH(k)/k. The equation satisfied by the energy
spectral density of each helical mode is given by (3.2) with (3.3)–(3.6). Of course,
the flux of total energy satisfies

ΠE(k)=ΠE+(k)+ΠE−(k). (4.1)

In addition, each flux ΠE±(k) can be decomposed into

ΠE+(k)=Π+<+ (k)+Π+<
−
(k), (4.2)

ΠE−(k)=Π−<+ (k)+Π−<
−
(k), (4.3)

where Π a<
b (k), with a, b≡±, denotes the energy flux from ua<(k), meaning that ua(k)

is taken at wavenumbers inside a sphere of radius k (the k-sphere), to ub(k) taken at
all wavenumbers. It is defined by

Π a<
b (k)=

∑
|k′|6k

Re{ua(k′)∗ ·F [(u · ∇)ub
](k′)}, (4.4)

where ub
=F−1

[ub(k)] is the inverse Fourier transform of ub(k) (Verma 2004; Kessar
et al. 2015; Plunian, Stepanov & Verma 2019; Sadhukhan et al. 2019). We can further
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u+< u+>

u-< u->

Ô+<
   (k)

Ô-
+<(k)

Ô+
-<(k)

+>

Ô-<
   (k)->

FIGURE 5. Illustration of the fluxes among helical modes. The notation u±< and u±>
corresponds to u±(k) taken at wavenumbers, respectively, inside and outside the k-sphere.
The non-horizontal arrows denote energy fluxes from one helical mode taken inside the
k-sphere towards the opposite helical mode taken at all scales.

1 5 10 50 100
k

1 5 10 50 100
k
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0.05

0

-0.05

-0.10
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-0.05
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Ô-
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Ô+
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Ô-
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Ô+
-<

-Ô+
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Ô+
+<

+Ô+
+<

ÔE

(a) (b)

FIGURE 6. Helical mode fluxes for εE = 0.2 and ε̃H = 25. In (a), the four fluxes
Π+<
+
(k), Π+<

−
(k), Π−<

+
(k) and Π−<

−
(k), illustrated in figure 5, are plotted together with

the total energy flux ΠE(k) already plotted in figure 2. In (b), the flux Π+<
+
(k) is split

into the homochiral flux +Π+<
+
(k) and the heterochiral flux −Π+<

+
(k).

decompose Π+<
+
(k) as Π+<

+
(k)=Π+<

+< (k)+Π
+<
+> (k), where Π+<

+< (k) denotes the energy
flux from u+< to u+<, and Π+<

+> (k) the energy flux from u+< to u+>. Here, again, u+<
and u+> denote u+(k) taken at wavenumbers, respectively, inside and outside the k-
sphere (similar notation applies to u−< and u−>). By definition Π+<

+< (k)= 0, implying
that Π+<

+
(k)=Π+<

+> (k) (similarly Π−<
−< (k)= 0 implies Π−<

−
(k)=Π−<

−> (k)).
An illustration of the four fluxes Π+<

+
(k), Π+<

−
(k), Π−<

+
(k) and Π−<

−
(k) is given

in figure 5. They are plotted in figure 6(a) for ε̃H = 25, together with ΠE(k), which
is equal to the sum of the four. In the infrared domain k ∈ [1, 9], Π+<

+
(k) is clearly

negative and close to ΠE(k), suggesting that it is mostly this flux that is responsible
for the inverse energy cascade.

It is thus interesting to further decompose the flux Π+<
+
(k) as Π+<

+
(k)= +Π+<

+
(k)+

−Π+<
+
(k) with

±Π+<
+
(k)=

∑
|k′|6k

Re{u+(k′)∗ ·F [(u± · ∇)u+](k′)}, (4.5)

where ±Π+<
+
(k) is interpreted as the energy flux from u+< to u+, with u± acting as

a mediator.
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FIGURE 7. Ratio of the energy flux due to homochiral triads to the energy flux due to
heterochiral triads, versus k and for the same parameters as in figure 2.

The three fluxes Π+<
+
(k), +Π+<

+
(k) and −Π+<

+
(k) are plotted in figure 6(b). In

the infrared domain k ∈ [1, 9], +Π+<
+
(k) 6 0 and −Π+<

+
(k) > 0, suggesting that the

homochiral triadic interactions (+, +, +) are mostly responsible for the inverse
energy cascade. At scales smaller than the energy injection scales, k > 10, we
observe that +Π+<

+
(k) > 0, which is in striking difference with previous simulations

in which energy was injected at large scales (Kessar et al. 2015). In addition
|
+Π+<
+
(k)| > |−Π+<

+
(k)|, which contradicts the assumptions of the phenomenological

model by Stepanov et al. (2015).
From figure 2 we observe that the inverse cascade is continuously greater for

increasing values of ε̃H . This is in contrast with Sahoo et al. (2017) in which a sharp
transition between the cases with and without inverse cascade is reported. There are at
least two main reasons to explain this discrepancy. First, in Sahoo et al. (2017) such
a sharp transition is only expected within the limit of high Reynolds numbers, which
we are not studying here. Second, in Sahoo et al. (2017), the ratio of heterochiral
to homochiral triadic interactions is imposed, and it is imposed in the same way
at all scales. This was done by solving a modified version of the NSE including a
prescribed weighting between the homochiral and heterochiral nonlinear terms. Here,
as we solve the NSE (2.2), the importance of homochiral versus heterochiral triadic
interactions is not prescribed, and remains scale-dependent.

To contrast the strengths of heterochiral and homochiral triadic interactions, we
calculate the ratio of their energy fluxes, which is given by

ΠHom(k)
ΠHet(k)

=

+Π+<
+> (k)+

−Π−<
−> (k)

ΠE(k)− (+Π+<+> (k)+ −Π−<−> (k))
. (4.6)

In figure 7, this ratio is plotted versus k, for ε̃H ∈ S. This ratio is negative at scales
larger than the energy injection scales, and positive at scales smaller than the energy
injection scales. This is in agreement with the dual inverse energy cascade at large
scales and forward helicity cascade at small scales. It is also clearly k-dependent.
Finally, with the increase of ε̃H , the ratio |ΠHom(k)|/|ΠHet(k)| increases without sharp
transition.
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FIGURE 8. In (k1, k2) maps, two representations of fluxes from a k1 inner sphere to a
k2 outer sphere Π<k1

>k2
, for εE = 0.2 and ε̃H = 25. In (a) the fluxes are calculated among

positive homochiral triads only. In (b) the fluxes are calculated among all other triads,
namely heterochiral and negative homochiral. The range of values taken by the fluxes is
[−15; 15] in (a) and [−5; 5] in (b).

4.2. Non-local energy transfers
In order to investigate the degree of locality of the cascades, we further introduce the
energy flux from an inner sphere of radius k1 to an outer sphere or radius k2, which
is defined as

Π
<k1
>k2
=

∑
|k′|>k2

Re{u(k′)∗ ·F [(u · ∇)u<k1](k′)}, (4.7)

with
u<k1 =

∑
|k′|6k1

F−1
[u(k′)] (4.8)

and k1 6 k2. For k1= k2= k the two spheres are adjacent, implying that Π<k
>k =ΠE(k).

Increasing the value of k2− k1 corresponds to moving the two spheres apart, and then
to investigate non-local fluxes.

In figure 8, two (k1, k2) maps of Π<k1
>k2

are given, figure 8(a) giving the flux
among positive homochiral triads, figure 8(b) giving the flux among all other triads
(heterochiral and negative homochiral). In figure 8(a) the diagonal coincides with
the flux +Π+<

+
(k) represented in figure 6(b). In figure 8(b) the diagonal coincides

with ΠE(k) − +Π+<
+
(k). In both cases the further away from the diagonal, the

more non-local the fluxes are. In figure 8(a) the fluxes are mostly negative, with a
minimum at (k1, k2)≈ (7, 9). This shows that the energy cascade is inverse, and due
to weakly non-local interactions. In figure 8(b) the fluxes are positive and maximum
on the diagonal, implying a forward cascade due to local interactions. In figure 8(b)
the fluxes are approximately three times smaller than in figure 8(a), implying that
the sum of both is qualitatively similar to figure 8(a). Therefore the inverse cascade
obtained in the infrared domain is mainly due to weakly non-local interactions among
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kH ∊ [1, 10],    5123

kH ∊ ]5, 20],    5123

FIGURE 9. Energy spectra and fluxes (inset). The energy injection rate εE= 0.2 is applied
at kE ∈ ]9,10]. From bottom to top of the energy spectra, the helicity injection rate ε̃H=25
is applied at kH ∈ [1, 10], ]9, 102

], ]5, 20], [1, 20], [1, 102
] and [1, 102

] again. For the last
curve the viscosity is twice as small and the resolution is equal to 10243.

positive homochiral triads (+,+,+). The sum of the other triadic interactions leads
to forward cascade, mainly local. The aforementioned non-local interactions leading to
inverse energy cascade are also observed in two-dimensional hydrodynamic turbulence
(Gupta et al. 2019; Verma 2019).

4.3. Varying the helicity injection range of scales
In contrast to previous studies (Biferale et al. 2012, 2013; Sahoo et al. 2017), here
we can vary the range of scales in which helicity is injected. We already know that
injecting helicity at scales smaller than the energy injection scales leads to a forward
cascade of energy (Kessar et al. 2015). Here this would correspond to injecting
helicity in the range kH ∈ ]9, 102

]. From § 3.2, we also know that injecting helicity in
the range kH ∈ [1, 102

] leads to an inverse energy cascade at large scales.
We now investigate additional cases injecting helicity in different scale ranges, kH ∈

[1, 20], ]5, 20] and [1, 10], keeping all other parameters the same. The results of these
three cases are plotted in figure 9, together with the case kH ∈ [1, 102

], already shown
in figure 2, and the case kH ∈ ]9, 102

].
The inverse cascade is obtained for kH ∈ [1, 20] but not for kH ∈ [1, 10], suggesting

that a sufficiently broad range of scales smaller than the energy injection scales
is necessary to produce the inverse cascade. This emphasizes the role of non-local
transfers identified in § 4.2. For kH ∈ ]5, 20] the energy flux is negative for k ∈ ]5, 10]
with an inverse cascade limited to these scales. This emphasizes the role of helicity
injection at scales larger than the energy injection scale, i.e. the inverse energy
cascade stops at scales where helicity is not injected. In summary, to obtain an
inverse cascade it is necessary to inject helicity in a sufficiently broad range of scales
on both sides of the energy injection range of scales.

Finally, the case kH ∈ [1, 102
] with a twice smaller viscosity ν = 0.75× 10−3 and a

resolution 10243 is also plotted in figure 9. It corresponds to a mean kinetic energy
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FIGURE 10. Snapshots of velocity (a) and helicity (b) on the three faces of the cubic
resolution domain for εE = 0.2 and ε̃H = 25. In (a) the colours represent the isovalues
of the velocity component perpendicular to each face, and the arrows the velocity field
parallel to each face. In (b) the colours represent the isovalues of helicity.

Ētot ≈ 2.1, thus leading to λ≈ 0.28, and a Taylor-microscale Reynolds number Rλ ≈
440. The energy spectrum and flux are qualitatively similar to the case shown in
figure 2, with again an inverse energy cascade at large scales.

5. Conclusions
The mechanism responsible for the inverse cascade of energy obtained at infrared

scales agrees well with the homochiral framework described by Biferale et al. (2012).
In order to generate a strongly helical turbulence, a positive helicity is injected at
all scales, including the infrared scales. We observe a gradual amplification of the
inverse cascade with the increase of helicity injection, reaching some saturation at a
sufficiently large level of helicity injection. The negative energy flux is due to weakly
non-local homochiral triadic interactions. A necessary condition for inverse cascade is
to inject helicity in a sufficiently broad range of scales on both sides of the energy
injection range of scales.

We note that this inverse cascade mechanism is different from the one acting
in rotating turbulence (Mininni & Pouquet 2009) or in a thin layer (Musacchio &
Boffetta 2019). Indeed, in both these cases, the flow becomes quasi-two-dimensional,
which is not the case here.

In figure 10, snapshots of both velocity and helicity are represented on the three
faces of the resolution domain. We see large-scale structures due to the inverse
cascade, but the flow is clearly three-dimensional.

Our results are consistent with the dual cascade phenomenology characterized by
an inverse cascade of energy with E(k)∝ k−5/3 for k < kE and a forward cascade of
helicity for k> kE (Alexakis & Biferale 2018). Finally our study is also consistent with
the experimental results of near-maximum helical turbulence by Herbert et al. (2012),
in which a non-local inverse cascade was identified, but for which an alternative
explanation based on axisymmetric turbulence was also invoked (Qu, Naso & Bos
2018).
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