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1 Governing (aero-acoustic) linearized equations

Considering a homogeneous basic (background) state of density ρ0, pressure p0, velocity u0, and
temperature T0, we study small perturbations [ρ, p,u, T ] of these respective quantities. In a frame
rotating at Ω, we can thus linearize the governing flow equations for a Newtonian fluid, leading to the
so-called aero-acoustic linearized equations (Blackstock, 2001)

∂tρ+∇ · (ρ0u+ ρu0) = M (1)

ρ0 [∂tu + u0 · ∇u+ u · ∇u0 + 2Ω× u]

+ ρ [(u0 · ∇u0) + 2Ω× u0 + Ω× (Ω× r)]

= ∇ ·
(
−pI + µ[∇u+ (∇u)>] + µ2(∇ · u)I

)
+ ρg + F (2)

ρ0Cp [∂tT + u0 · ∇T + u · ∇T0] + ρCp u0 · ∇T0

− αT0 [∂tp+ u0 · ∇p+ u · ∇p0]− αT u0 · ∇p0

= ∇ · (λ∇T ) +Q, (3)

with the position vector r, and with the usual linearized equation of state ρ = ρ0(βT p−αT ) for a gas,
with the (isobaric) coefficient of thermal expansion α, the identity I , the specific heat at constant
pressure Cp, the thermal conductivity λ, and where M , F , Q are possible source terms (g being the
gravity). In these equations, µ is the dynamic (shear) viscosity and the second coefficient of viscosity
µ2 is related to the bulk viscosity µB by µ2 = µB−2µ/3. In these equations also appears the isothermal
compressibility βT = γβs, where γ is the specific-heat ratio and βs is the isentropic compressibility
(also called fluid compressibility). The speed of sound is then c = (ρ0βs)

−1/2 = [γ/(ρ0βT )]1/2, and
the heat capacity at constant volume Cv is Cv = Cp/γ. For the air in standard condition, we have
typically µB = 0.6µ for air (p. 315 of Blackstock, 2001), γ = 1.4, and βT = 1/p0 (for an ideal gas).
Note also that we assume diffusion coefficients to be uniform and constant in all our study.

Noting the gravity acceleration g, one can define a local gravity force as

(ρ0 + ρ)gl = (ρ0 + ρ)[g −Ω× (Ω× r)]. (4)

Since the force term ρ0gl is directly balanced by the pressure term ∇p0 in the diffusionless version of
equation (2), we choose to neglect the effects of gl on the background state and on the perturbation
dynamics. These usual assumptions allow (i) to consider a homogeneous background state, and (ii) to
neglect the gravity as well as the centrifugal acceleration in equation (2). The hypothesis (i) is valid if
the scale height Hs = 1/(βTρ0gl) is large compared to the size req = 0.2 m of the experiment (Tritton,
2012). This is the case since Hs ≈ 12 m for a rotation rate of fΩ = 30 Hz, using βT = 1/p0 and
the ambient atmospheric pressure p0 = 105 Pa. The assumption (ii) is valid if, in equation (2), the
centrifugal term ρgl is small compared to the Coriolis term 2ρ0Ωu, where ωρ ≈ ρ0u/req according to
equation (1). This is valid when ω/Ω� 1 and g/(Ωωreq)� 1, which is true in our case since fΩ ≤ 30
Hz and the fundamental eigenfrequency is larger than 500 Hz, leading to g/(Ωωreq) ≤ 10−4.

In our work, we also neglect in equation (3) the viscous heating, i.e. the viscous dissipation
function φ = (∇u) : τ , where τ = µ[∇u + (∇u)>] + µ2(∇ · u)I is the dissipative part of the stress
tensor σ = −pI + τ . One can wonder if this is valid in our case. The viscous heating power Pµ can
be estimated by Pµ ≈ φr3

eq ≈ ρ0ωu
2r3
eq, where u ≈ reqωρ/ρ0 according to equation (1). In all our

experiments, our pressure measurements remain below pmax = 0.1 Pa, obtained around fΩ = 1 kHz,
which gives ρ/ρ0 ≤ 10−6 and then Pµ = ρ0r

5
eqω

3(ρ/ρ0)2 ≤ 0.1 mW. Compared to the speakers input
power of 3 W, this confirms that Pµ is negligible in all our experiments.
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2 Ellipticity perturbation theory

We follow the approach detailed in Mehl (2007)’s brilliant paper that applies the formalism of Morse
and Feshbach (1953) to infer the frequency shift experienced by spherical acoustic modes in a slightly
deformed sphere. Mehl extended the perturbation theory to the second order, focusing on l = 0 and
l = 1 modes.

The shape of the aspherical cavity is given by the evolution of the radius rs of its boundary with
θ and ϕ as:

rs = req[1− εF(θ, ϕ)], (5)

where F is a smooth positive function of order 1 and ε is a small positive parameter, which serves as
the expansion parameter. The shape function F itself is expanded in ε as:

F = F0 + εF1 +O(ε2). (6)

We have adapted Mehl’s method to obtain the first-order and second-order frequency perturbations
for modes of any l in an axisymmetric spheroid.

2.1 Shape functions of an oblate spheroid

Given the equatorial radius req and the polar radius rpol of an oblate axisymmetric spheroid (such as
ZoRo), the cross-sections are elliptical with:(

x

req

)2

+

(
y

rpol

)2

= 1, (7)

which can be written as
rs =

rpol√
1 + (2ε+ ε2) cos2 θ

, (8)

correcting a typo for equation (53) of Mehl (2007). with ε here defined as ε = req/rpol−1 = e/(1−e) =
e req/rpol, using the ellipticity e defined in the main text.

Combining with equations (5) and (8), we get

F = cos2 θ + ε

(
1

2
cos2 θ − 3

2
cos4 θ

)
+O(ε2), (9)

i.e. equation (54) of Mehl (2007).
The perturbation method of Mehl (2007) uses an expansion of the shape functions into spherical

harmonics. We thus expand the functions F0, F1 and F2
0 into fully normalised spherical harmonics as

F0 =
2

3

√
π Y0

0 +
4

3

√
π

5
Y0

2 ,

F1 = − 4

15

√
π Y0

0 −
22

21

√
π

5
Y0

2 −
8

35

√
π Y0

4 ,

F2
0 =

2

5

√
π Y0

0 +
8

7

√
π

5
Y0

2 +
16

105

√
π Y0

4 .

(10)

The averages over solid angle, noted 〈·〉, are given by equation (55) of Mehl (2007), after correcting
his value for 〈F1〉, yielding

〈F0〉 =
1

3
, 〈F1〉 = − 2

15
, 〈F2

0 〉 =
1

5
. (11)

2.2 First-order ellipticity correction

At first-order in ε, the radial eigenvalue k
(1)
nlm of mode nSml in an aspherical cavity defined by (8) and

(6) is given by:

[k
(1)
nlm]2 − k2

nl

k2
nl

= ε SC
(1)
nlm, (12)
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where the first-order self-coupling term is given by

SC
(1)
nlm = 2

∫ [
z2
nl |Yml |2F0 − |r∇Yml |2F0

]
dΩ

z2
nl − l(l + 1)

, (13)

where
∫

dΩ represents the integral over solid angle, and znl = knla is the nth root of j′l the first
derivative of jl the spherical Bessel function of the first kind, and a the radius of the reference sphere.
A term equal to −2〈F0〉 must be added to the right hand-side of equation (13) if one uses a reference

sphere with the same volume as the aspherical cavity, i.e. with a = 3

√
rpolr2

eq (Mehl, 2007).

The shape function F0(θ, ϕ) can be expanded in spherical harmonics as

F0 =
∑
l0,m0

Fm0
l0
Ym0
l0
, (14)

transforming the integrals over solid angle of equation (13) into a sum of Gaunt integrals. It is
convenient to introduce the following functions:

Amm
′

ll′ (F0) = 2
∑
l0,m0

Fm0
l0

∫
Ym0
l0

[
Ym′
l′

]∗
Yml dΩ, (15)

Bmm′
ll′ (F0) = −2

∑
l0,m0

Fm0
l0

∫
Ym0
l0

[
r∇Ym′

l′

]∗
· r∇Yml dΩ. (16)

where ∗ stands for the complex conjugate. Then, we rewrite equation (13) as

SC
(1)
nlm =

z2
nlA

mm
ll (F0) +Bmm

ll (F0)

z2
nl − l(l + 1)

. (17)

While Mehl (2007) used symbolic algebra to combine the contributions of the non-zero coefficients in
equation (13), we choose to express the solid angle integrals of equations (15) and (16) as Gaunt-type
integrals, which are related to Wigner 3j symbols by:∫
Ym1
l1

(
Ym2
l2

)∗
Ym3
l3

dΩ = (−1)m1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 −m2 m3

)
(18)

and∫ (
r∇Ym1

l1

)
·
(
r∇Ym2

l2

)∗
Ym3
l3

dΩ = −−l1(l1 + 1)− l2(l2 + 1) + l3(l3 + 1)

2

∫
Ym1
l1

(
Ym2
l2

)∗
Ym3
l3

dΩ

(19)
with the fully normalised spherical harmonics defined in Dahlen and Tromp (1998), p. 917.

For an oblate spheroid, equations (10) show that the first-order shape function F0 only contains
Y0

0 and Y0
2 contributions. Dahlen (1968) showed that the first-order frequency shift of an m-singlet is

then proportional to m2, yielding

δgeom
fnl

=

(
1

2
− 3m2

2l(l + 1)

)
ε
[
SC

(1)
nl0 − 2〈F0〉

]
, (20)

so that the SC
(1)
nlm term only needs being calculated for m = 0. Dahlen (1968) also provides integral

expressions to calculate γnl ≡ − 3
2l(l+1)

(
SC

(1)
nl0 − 2〈F0〉

)
in the more general situation of Earth’s normal

modes. However, Dahlen and Tromp (1998) recall that they contain errors, which have been corrected
in Dahlen (1976). We checked that we obtain the same values, using the expressions of either Mehl
(2007) or Dahlen (1976), taking into account their different definitions of ellipticity.

However, as shown in the main text, first-order corrections are not sufficient to provide a fair
estimate for the frequencies of the acoustic singlets, for the flattening of our ZoRo experiment.
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2.3 Second-order ellipticity correction

The formalism presented by Morse and Feshbach (1953) extends to second-order. Mehl (2007) de-
veloped the mathematical tools to calculate these terms for spheroids. He provided a very elaborate
assessment of all required terms, and we closely follow his approach again. The aspherical eigenvalues
correct at second-order in ε are given by

[k
(2)
nlm]2 − k2

nl

k2
nl

= εSC
(1)
nlm + ε2

(
SC

(2)
nlm + CC

(2)
nlm

)
. (21)

In contrast to first-order, second-order corrections for a given nSml mode involve coupling with
several n′Sm′

l′ modes. Thus, second-order corrections stem from both the second-order self-coupling

term SC
(2)
nlm and the CC

(2)
nlm cross-coupling term.

Expanding F1 and F2
0 in spherical harmonics as in equation (14), the self-coupling second-order

contribution can be written, using functions defined in equations (15)–(16), as

SC
(2)
nlm =

z2
nlA

mm
ll (F1 −F2

0 ) +Bmm
ll (F1)

z2
nl − l(l + 1)

+
z2
nlA

mm
ll (F0) +Bmm

ll (F0)

z2
nl − l(l + 1)

·
z2
nlA

mm
ll (F0)

z2
nl − l(l + 1)

. (22)

A term equal to −〈F0〉2 +2〈F2
0 〉−2〈F1〉−2〈F0〉SC(1)

nlm must be added to SC
(2)
nlm if one uses a reference

sphere with the same volume as the aspherical cavity. The cross-coupling contribution is

CC
(2)
nlm =

∑
l′m′
|z2
nlA

mm′
ll′ (F0) +Bmm′

ll′ (F0)|2Snll′

z2
nl − l(l + 1)

+
|z2
nlA

m0
l0 (F0) +Bm0

l0 (F0)|2

2z2
nl

[
z2
nl − l(l + 1)

] , (23)

where the Snll′ sums up the contribution of all l′-modes with radial mode number n′ 6= n.
The Slnl′ sums are the only elements that are linked to the radial functions, and they are evaluated

explicitly by Mehl (2007). For completeness, we recall their expressions in the following. For l′ 6= 0,
we have

Slnl′ = − jl′(znl)

2 znl j
′
l′(znl)

for l′ 6= l,

Slnl =
z2
nl − 3l(l + 1)

4
[
z2
nl − l(l + 1)

]2 for l′ = l,

(24)

For l′ = 0, we have

Sln0 = − 1

2 z2
nl

− j0(znl)

2 znl j
′
0(znl)

for l 6= 0,

S0n0 = − 1

4 z2
n0

for l = 0.

(25)

They correspond to equations (26) and (27) of Mehl (2007), after correcting the sign of the second
term of Sln0, as pointed out by Mehl (2010).

2.4 MATLAB package

We have written a MATLAB package to compute acoustic modes in a gas-filled rotating spheroid,
using perturbation theory. It is available under open-source license at https://www.isterre.fr/

annuaire/member-web-pages/henri-claude-nataf/.
In order to save time for researchers who would like to apply Mehl’s beautiful results, we list below

our corrections to the main typos we found in the published version of Mehl (2007).
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equation number published version corrected version

19 jl [(ξln)]2 [jl (ξln)]2

27 − 1
2ξ2ln

+ j0(ξln)
2ξlnj

′
0ξln

− 1
2ξ2ln
− j0(ξln)

2ξlnj
′
0(ξln)

35 ... multiply the second member by −1

41 r = a√
1+(2ε+ε2) sin2 θ

r = a√
1+(2ε+ε2) sin2 θ

44 B
(n)
0020 = 2

√
5

15
ξ2

0n B
(n)
0020 = −2

√
5

15
ξ2

0n

45 S0n0 = 1
4ξ20n

S0n0 = − 1
4ξ20n

47 for Aln0ln0 ... multiply the last term before O(ε3) by ε2

47 for Aln±1ln±1
4(ξ2ln−3)
5(ξ2ln−2)

ε
4(2ξ2ln−3)
5(ξ2ln−2)

ε

51 (denominator of ε2 term) 7875
(
ξ2
ln − 2

)2
7875

(
ξ2
ln − 2

)3
53 r = a√

1+(2ε+ε2) cos2 θ
r = a√

1+(2ε+ε2) cos2 θ

55 〈F1〉 = −2
5

〈F1〉 = − 2
15

57 (denominator of ε2 term) 7875
(
ξ2
ln − 2

)2
7875

(
ξ2
ln − 2

)3
78 − 1

2ξ2ln
+ j0(ξln)

2ξlnj
′
0(ξln)

− 1
2ξ2ln
− j0(ξln)

2ξlnj
′
0(ξln)

(as noted in Mehl (2010))
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3 Elastic effects of the container

The finite elasticity of the ZoRo container allows a coupling between acoustic and elastic modes, mod-
ifying their eigenfrequencies (Moldover et al., 1986). Elastic eigenfrequencies of the ZoRo spheroidal
shell container have been estimated with finite-element (COMSOL Multiphysics) and analytical cal-
culations. In the latter case, the elastic influence on acoustic eigenfrequencies can be calculated with
the thin-shell approximation (Rand and DiMaggio, 1967). This allows us to consider spherical and
spheroidal containers. In the spherical geometry, this calculation can also be done without the thin-
shell approximation by following Mehl (1985) or Lonzaga et al. (2011), who corrected some typos and
gave also the modification of elastic modes due to the fluid coupling. The two approaches give very
similar results and predict frequency shifts δshell from 0.1 to 1 Hz far from the eigenfrequencies, but
δshell can reach 10 Hz near acoustic resonances. We have successfully compared those predictions with
finite element calculations.

Further comparison with the experiment is difficult, due to the complex shell geometry (sensors
holes, shafts, equatorial bulge, etc.) and the influence of the frame supporting the spheroid. Neverthe-
less, finite-element calculations confirm that these complexities do not modify the order of magnitude
of elastic effects. Near acoustic resonances, elastic resonances can thus be one of the cause to the
shifts left in the experimental spectrum that are unexplained by the finite-element computations. It
can be noted that the sign of acoustic frequency shifts due to the shell elasticity is not uniform (it
can either lower or raise acoustic frequencies). Yet, since the shifts are very small compared to the
flattening effect, no mode switching should occur.

Coupling between the elastic shell and the outer surrounding fluid is expected to also possibly
have an influence on the complex eigenfrequency, i.e. both on the frequency and on the damping rate
of modes. Theoretical calculations on the modes l = 0 can be performed (Moldover et al., 1986),
confirming finite-element predictions. This suggests that this effect is very small in ZoRo. Sound
radiation in the surrounding air can thus be discarded in the interpretation of the ZoRo experimental
results.
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4 Numerical values for ZoRo’s acoustic modes

For a selection of modes labelled by the radial mode number n and the angular mode number l, we
give below: the mode frequency fnl, the Ledoux coefficient Cnl, the ellipticity coefficient γnl, and the
imaginary part of mode frequency due to dissipation gnl.

n l f (Hz) Cnl γnl gnl (Hz)

0 0 0.00 NaN 0.0000 NaN
0 1 578.41 0.8573 −0.9144 0.2340
0 2 928.67 0.3869 −0.1505 0.3731
0 3 1254.34 0.2387 −0.0604 0.5135
0 4 1569.06 0.1683 −0.0325 0.6568
0 5 1877.42 0.1278 −0.0204 0.8030
0 6 2181.59 0.1018 −0.0140 0.9519
0 7 2482.73 0.0839 −0.0102 1.1035
0 8 2781.59 0.0709 −0.0078 1.2574
0 9 3078.65 0.0611 −0.0061 1.4136
0 10 3374.25 0.0534 −0.0049 1.5720
0 11 3668.63 0.0473 −0.0041 1.7323
0 12 3961.98 0.0423 −0.0034 1.8946

1 0 1248.59 0.0991 0.0000 0.0956
1 1 1650.66 0.0601 −0.4360 0.1311
1 2 2025.66 0.0424 −0.1013 0.1714
1 3 2385.18 0.0324 −0.0466 0.2145
1 4 2734.38 0.0260 −0.0270 0.2596
1 5 3076.09 0.0216 −0.0176 0.3063
1 6 3412.07 0.0184 −0.0125 0.3543
1 7 3743.49 0.0159 −0.0093 0.4035
1 8 4071.16 0.0140 −0.0072 0.4538

2 0 2146.63 0.0335 0.0000 0.1283
2 1 2558.04 0.0242 −0.4145 0.1519
2 2 2949.29 0.0188 −0.0979 0.1795
2 3 3326.88 0.0152 −0.0455 0.2094
2 4 3694.45 0.0128 −0.0265 0.2411
2 5 4054.30 0.0109 −0.0174 0.2742

3 0 3029.94 0.0168 0.0000 0.1568
3 1 3446.84 0.0132 −0.4079 0.1761
3 2 3847.44 0.0108 −0.0968 0.1984
3 3 4236.01 0.0091 −0.0450 0.2229

Table 1: For an air-filled sphere reference model with a sound speed c = 343.2638 m/s and a radius
a = 0.1966 m.
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5 Finite-element calculations with COMSOL Multiphysics

5.1 Built-in COMSOL (version 5.4) capabilities and limitations

Finite-element calculations, on which relies the commercial software COMSOL Multiphysics, allow
calculating acoustic modes in arbitrary geometries, in particular in the exact geometry of ZoRo. In
this section, we show how one can determine accurately the effects, on modes, of rotation and thermo-
viscous diffusion with COMSOL. Indeed, these effects cannot be simply calculated using the acoustic
(scalar) equation governing the pressure p, and require thus to consider the more complex (vectorial)
Navier-Stokes equations governing the velocity field u. This can be done using the aeroacoustics
interface of COMSOL, but three-dimensional (3D) calculations are too costly to resolve the thin
acoustic boundary layers, and the built-in axisymmetric interface discard any possible azimuthal
dependency of the fields.

In order to perform efficient axisymmetric calculations with a 2D mesh and a possible azimuthal
dependency, we have thus exploited the axisymmetry of our spheroidal geometry by assuming a peri-
odic dependency exp[i(ωt+ mϕ)], with the imaginary unit i, the cylindrical coordinates (r, ϕ, z), the
azimuthal wavenumber m, the time t and the angular eigenfrequency ω. Built-in COMSOL interfaces
allow such 2D calculations for the acoustic equation but not for the Navier-Stokes equations, for which
the built-in interface is limited to m = 0.

The scripts taking into account the following modified equations are available at https://www.

isterre.fr/annuaire/member-web-pages/david-cebron/.

5.2 How to calculate COMSOL axisymmetric aero-acoustic modes with m 6= 0 ?

To consider a possible azimuthal flow v using the built-in COMSOL axisymmetric interface for aeroa-
coustics, we need an additional equation governing v, and the ansatz exp[i(ωt + mϕ)] will add sup-
plementary terms in every equation. Note also that additional terms are also required to take into
account the rotation of the frame.

In practice, we have used two sets of axisymmetric COMSOL aero-acoustics interfaces in the
frequency domain, such that equations (1)-(3) are solved for two sets of unknowns named (u, T, p)
and (u2, T2, p2), where u = (u,w) is the built-in unknown velocity field in the cylindrical coordinates,
with the cylindrico-radial velocity component u, and the axial velocity w along the z axis. Note that
the interface ’Heat transfer in Fluids’ is not well suited since eigensolvers are not built-in COMSOL for
this interface, while using the PDE interface is difficult since the axisymmetric interface is not built-
in (r and z are surprisingly treated as Cartesian coordinates in the built-in PDE interface). Then,
noting with a subscript 2 the quantities associated with the set of equations governing (u2, T2, p2),
the required additional equation is given by the equation governing the unknown T2, which is formally
the same as equation (3). Indeed, the (scalar) equation governing v is the same as the one governing
T2 provided that (i) the velocity u2 is replaced by u, (ii) the density ρ2 is replaced by ρ, (iii) we set
λ2 = µ2 = 0, such that the velocity u2 does not contribute to the eigenmode damping calculation, and
λ2 = µ, α2 = 0, Cp2 = 1, T02 = v0, with the basic state u0 = (u0, w0). Then, in the frame rotating
at Ω = Ωẑ = 2πfΩẑ, the following source terms (due to m 6= 0 and rotation) have been calculated
using the commercial software MAPLE (symbolic computations) and added in the COMSOL built-in
equations. In cylindrical coordinates (r, ϕ, z), these source terms read

M = − iρ0mv

r
− iρmv0

r
, (26)

Fr = −ρ0

[v0

r
(imu− 2v)− 2Ωv

]
+ ρ

[
v2

0

r
+ 2Ωv0 + Ω2r

]
− µ
r2

(
2imv +m2u

)
+ im

(
µB +

µ

3

)(∂rv
r
− v

r2

)
, (27)

Fz = − iρ0mv0w

r
− µm

2

r2
w +

(
µB +

µ

3

) im∂zv

r
, (28)
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and

Q = −Cp
i

r
ρ0mv0T + α

i

r
T0mv0p− λ

m2

r2
T , (29)

Q2 = −ρ0

[
v0(imv + u) + u0v

r
+ 2Ωu

]
− ρ

[u0v0

r
+ 2Ωu0

]
− im

r
p+

µ

r2

[
2imu− (1 +m2)v

]
+
(
µB +

µ

3

)[ im(∂ru+ ∂zw)

r
+

imu−m2v

r2

]
, (30)

where the azimuthal velocity v is actually governed by the built-in temperature equation of COMSOL
for T2, and where Q2 is the source term to add in the set of equations governing (u2, T2, p2). Note
that these supplementary terms have been simply obtained by subtracting, from the full equations,
the equations in the particular case v = m = Ω = 0 corresponding to the COMSOL built-in equations.

In all our calculations, we have actually considered a homogeneous basic state (we have checked
that the centrifugal forces are negligible in the context of the ZoRo experiment) at 20◦C, using the
parameters of table 2. Note also that global rotation, via the Coriolis force, adds a supplementary
family of eigenmodes named inertial modes (Greenspan, 1968). However, since the global rotation
rate for ZoRo is small compared to the sound speed, there is no hybridization between acoustic and
inertial modes (Vidal et al., 2020).

Table 2: Parameter values used in the COMSOL calculations, for homogeneous ambient pressure
p0 = 1 atm and temperature T0 = 20◦ (see p. 315 of Blackstock, 2001, for the chosen value of µB).

ρ0 µ µB Cp α λ βT γ c
kg.m−3 Pa.s Pa.s J.kg−1.K−1 K−1 W.K−1.m−1 Pa−1 m.s−1

1.204 1.81 · 10−5 0.6 µ 1005.42 3.41 · 10−3 2.58 · 10−2 9.87 · 10−6 1.4 343.194

5.3 Boundary conditions and details on the numerics

To be as close as possible to the experiment, we impose at the fluid boundary a no-slip condition,
i.e. (u, v, w) = (0, 0, 0) in the frame attached to the rigid container, and a constant temperature.
These conditions leads to a modification of the (complex) eigenvalue due to respectively the viscous
and thermal boundary layers. Because of the large thermal conductivity of the metallic container of
ZoRo compared to the one of air, the COMSOL calculations neglect the finite thermal conductivity of
the container (which would modify the boundary heat loss and thus the thermal damping of acoustic
modes). In the main calculations shown in the article, the finite elasticity of the boundary is also
neglected (the boundary is assumed to be perfectly rigid, preventing any radiation of sound in the sur-
rounding fluid). However, calculations with an elastic boundary (with and without a sound radiation
in a surrounding fluid) have also been performed in order to validate the elasto-acoustic estimates of
the theoretical perturbative calculation (see section 5.4 for details on these calculations).

In addition to eigenvalue calculations, COMSOL also allows us to calculate, in the frequency
domain, the fluid response for a given excitation source. At the locations of the experiment audio
speakers and taking into account the finite size of the audio speaker, we have thus prescribed a velocity
iω at the boundary, both in the normal and tangential directions. Then, the pressure is recorded, in
the COMSOL calculation, at the point where the electrets are positioned in the experiment (the finite
size of electrets is neglected in COMSOL calculations). Finally, the fluid response is calculated for
a large number of m, and the complete response is then simply obtained by summing the results
obtained for each m.

In order to give an idea of the CPU time required for such calculations, one can consider the
numerical calculations we have done to reproduce the acoustic spectrum measured experimentally
between 500 Hz and 2335 Hz. For this calculation, the fluid response has been calculated for each m
between 0 and 6 for ∼ 3000 well-chosen frequencies, with a step of 0.2 Hz near the resonance peaks
and with typically 15 calculated frequencies between the acoustics peaks. To capture correctly the
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thin boundary layers, we have used a fine mesh model with ∼ 160 000 degrees of freedom. Even if the
calculation of a unique fluid response takes only ∼ 12s on a 6 cores desktop computer, we had to do
∼ 20 000 calculations, leading to a CPU time of 3 days on this computer. Thus, the calculation of the
complete spectrum between 500 Hz and 3000 Hz (typical resolution of 0.2 Hz near the resonances),
which requires to consider all the values of m between 0 and 8, has taken a full week of calculation
(or 1 day using a 64 cores cluster).

Note finally that careful tests of numerical convergence have been systematically performed. We
have checked that the boundary layers are well resolved, with several mesh points within the boundary
layer thickness

√
ν/ft = 100µm, with ft = 2 kHz the typical acoustic frequency and ν = µ/ρ0 =

2·10−5 m2.s−1 the typical air kinematic viscosity in experiments (the thermal boundary layer thickness
is similar since the air Prandtl number is Pr = ρCpν/λ = 0.7). Our tests of numerical convergence
(see appendix C of Vidal et al., 2020) show that, for a given number of degrees of freedom, increasing
the elements order decreases (respectively increases) the accuracy of the calculated eigenfrequency
(respectively damping). We have thus used systematically Lagrange elements of order 3 for the
pressure and order 4 for the velocity and temperature.

5.4 Elastic container, boundary coupling and sound radiation in the surrounding
outer fluid

COMSOL also allows built-in calculations of pure elastic modes of the container. Even without any
shell model approximation, such calculations are not costly, which allows 3D calculations. Considering
a linear elastic container with completely free boundaries, such 3D calculations give a (degenerate)
fundamental mode at 2853 Hz for a 1 cm thick sphere of internal radius 0.2 m, with a Young modulus
of 71 GPa, a Poisson’s ratio of 0.33 and a density of 2810 kg.m−3. Considering now the 1 cm thick
spheroidal geometry of ZoRo, of internal semi-axes 0.2 m and 0.19 m, this mode is split into a mode
at 2807 Hz and another (degenerate) mode at 2854 Hz.

Now, if we consider the COMSOL built-in axisymmetric calculations of elastic modes with arbi-
trary m and the previously developed axisymmetric model for acoustic modes, one can modify the
boundary condition to take into account the two-way coupling between elastic and acoustic modes.
However, built-in axisymmetric models do not allow any axial boundary displacement on the symme-
try axis. While this is not a problem for acoustic modes with a rigid boundary, this axial displacement
constraint only allows us to recover the 3D elastic modes verifying this condition, but also leads to
additional elastic modes (e.g. m = 1 additional modes). Having this issue in mind, we have per-
formed axisymmetric calculations of elasto-acoustic (diffusive) modes to obtain insights and order of
magnitude estimates, but we have also done 3D calculations of the diffusionless counterparts of these
modes by considering the cheaper scalar acoustic equation (which neglects diffusion and rotation).
For instance, both approaches give that, for a 1 cm thick sphere of internal radius 0.2 m, the elastic
coupling leads to a 0.1% increase of the fundamental acoustic frequency (around 568 Hz), while the
next acoustic eigenfrequency (around 912 Hz) is decreased by 0.01%. Calculations in the spheroidal
geometry of ZoRo give similar results.

Finally, one can also add a surrounding fluid in order to allow sound radiation in the outer fluid. To
do so, we have solved the scalar acoustic equation in the outer fluid, coupled to the outer boundary of
the elastic container. In order to mimic a sound radiation in an infinite domain, we have to prevent any
sound reflection at the outer (computational) boundary of the outer fluid domain. To do so, we have
used the built-in perfectly matched layer (PML) of COMSOL, which is an additional surrounding
domain where the acoustic waves are absorbed. Using the advised structured mesh for the PML
region, we have thus performed elasto-acoustic calculations with sound radiation. These calculations
have confirmed that the sound radiation can be largely neglected in the discussion of the experimental
results of ZoRo.
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6 Mode identification on experimental spectrum (complement to
Fig. 2 of the main text)

Figure 1: Experimental acoustic spectrum at rest, averaged over all electrets of one hemisphere. The
spectrum is continued from top to bottom frame. Acoustic resonances are excited by speakers with a
continuous linear chirp from 400 to 5000 Hz. Groups of peaks can be labelled with nSl according to
theoretical prediction of a sphere of same volume (labels on brackets). Using the symmetry technique
developed in III B, peaks can be systematically identified by their m numbers (dashed lines) up to
2500 Hz. Above this threshold, we can only identify some modes among those that are not too close.
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7 Comparison of acoustic spectra from experiment, theory and finite-
element calculations (complement to Fig. 6 of the main text)

Figure 2: Acoustic spectra for ZoRo configuration at rest obtained with perturbation theory (top),
experimental data (middle) and finite-element calculations (bottom). Mode frequencies and labels
from the theory are given for comparison across the three spectra (vertical lines, different line types
are used for n, different colours for m).
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8 Examples of spectral fitting (complement to Fig. 8 of the main
text)

We give here two examples of the fits of acoustic spectra performed for obtaining rotational splittings
with the method described in the main text, and used to construct Fig. 8 of the main text.

Figure 3: Experimental spectra (blue) for a selection of equatorially-symmetric acoustic modes for
fΩ = 10 Hz, and synthetic spectra built with the method described in the main text. The thick
magenta line is the best fit provided by the grid search, yielding the rotational splitting. The thin
‘min’ and ‘max’ lines are the spectra yielding the min and max acceptable splitting. The ‘ori’ green
spectra is built with the ‘nominal’ parameters, used as a starting point of the grid search. Mode 0S5

5

is not considered as well fit and is thus discarded.
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Figure 4: Same as Fig. 3 for a selection of equatorially-antisymmetric acoustic modes for fΩ = 30 Hz.
Experimental spectra are much more noisy that at lower rotation rates, but can still be fitted. Mode

2S2
3 is not considered as well fit and is thus discarded.
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9 Ledoux coefficients for a collection of symmetric and anti-symmetric
modes (complement to Fig. 9 of the main text)
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Figure 5: Comparison between the theoretical Ledoux coefficients (connected by lines for n = 0, 1, 2)
and their experimental counterparts deduced from the mode splitting measured in ZoRo (spinning at
20 Hz) for several l-modes of various m. Top: symmetric modes with respect to the equator (ES,
triangles), bottom: anti-symmetric modes with respect to the equator(EA, circles). When possible,
several ±m pairs are included for one n, l pair. Note that we show (l + 1)Cnl on the vertical axis.
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