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In the limit of large magnetic Reynolds numbers, it is shown that a smooth differential
rotation can lead to fast dynamo action, provided that the electrical conductivity or
magnetic permeability is anisotropic. If the shear is infinite, for example between two
rotating solid bodies, the anisotropic dynamo becomes furious, meaning that the magnetic
growth rate increases toward infinity with an increasing magnetic Reynolds number.
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1. Introduction

Dynamo action is a magnetic instability that converts part of the kinetic energy of a
moving material into magnetic energy, without the aid of a magnet, but provided of
course that the material is electrically conducting (Rincon 2019; Tobias 2021). One of the
simplest kinematic dynamos is the anisotropic dynamo, which relies on the anisotropy of
electromagnetic properties, and for which an exponentially growing magnetic field can
be generated by a velocity field as simple as a shear (Ruderman & Ruzmaikin 1984;
Lortz 1989). Anisotropic electrical conductivity means that the electric current density
J is no longer parallel to the electric field E, even in the absence of a velocity field U .
Similarly, an anisotropic magnetic permeability means that the magnetic field H and
the induction field B are no longer parallel. In natural objects, anisotropy in electric
conductivity may result, in the Earth’s core from the anisotropic crystallization of the inner
core (Deuss 2014; Ohta et al. 2018), in plasmas from the presence of an external magnetic
field (Braginskii 1965) and in spiral galaxies (Brandenburg & Subramanian 2005) from
their spiral geometries. In contrast, anisotropy of magnetic permeability seems unlikely,
at least at large scale. However, at the laboratory scale, among the few experiments that
succeeded in reproducing a dynamo effect, one involved soft iron (Lowes & Wilkinson
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1963, 1968), while another worked only in the presence of soft iron propellers (Miralles
et al. 2013; Kreuzahler et al. 2017; Nore et al. 2018), highlighting the crucial role that
magnetic permeability can play. In this paper, the medium is taken as homogeneous, which
excludes any source of dynamo action based on spatial variations of electrical conductivity
or magnetic permeability (Gallet, Pétrélis & Fauve 2012; Gallet, Pétrélis & Fauve 2013;
Pétrélis, Alexakis & Gissinger 2016; Marcotte et al. 2021).

The anisotropic dynamo has several features making it unique.

(i) Defeating Cowling’s antidynamo theorem (Cowling 1934), it was shown that
fully axisymmetric dynamo action is possible in cylindrical geometry (Plunian
& Alboussière 2020). The counterpart in Cartesian geometry makes the dynamo
possible for two-dimensional plane motion (Ruderman & Ruzmaikin 1984;
Alboussière, Drif & Plunian 2020), defeating Zel’dovich’s antidynamo theorem
(Zel’dovich 1957). This reduces the validity of these two antidynamo theorems to
the case of isotropic magnetic diffusivity, which was in fact implicitly assumed by
Cowling and Zel’dovich.

(ii) For a sliding motion corresponding to infinite shear, in Cartesian geometry the
opposite motions of two superimposed plates (Alboussière et al. 2020), in cylindrical
geometry the opposite rotations of two coaxial cylinders (Plunian & Alboussière
2020), an exact dynamo threshold can be explicitly derived. Furthermore, it was
found that the dynamo threshold is small enough to be experimentally tested.

(iii) The effect on dynamo action of the anisotropy of the magnetic permeability is
opposite to that of the electrical conductivity, which even makes the dynamo
impossible if the two anisotropies are identical (Plunian & Alboussière 2021).

(iv) In Cartesian geometry the anisotropic dynamo is found to be fast if the shear
is smooth (Ruderman & Ruzmaikin 1984), and furious if the shear is infinite
(Alboussière et al. 2020), the meaning of these two types of dynamo action, fast
and furious, being explained below. In cylindrical geometry, there is a priori no
reason why it should be different. However, this remains to be proven, which is the
subject of this paper, for the two cases, a smooth differential rotation and an infinite
shear.

A kinematic dynamo is said to be fast if, in the limit of large magnetic Reynolds
numbers, the magnetic growth rate tends towards, or oscillates around, a positive limit.
In this case, the magnetic energy grows on a time scale smaller than that of magnetic
diffusion, typically the advective time scale. In contrast, a kinematic dynamo is said to be
slow if, in the limit of large magnetic Reynolds numbers, the magnetic growth rate tends
towards zero, meaning that the dynamo occurs on the magnetic diffusion time scale, or on
a time scale between those of advection and magnetic diffusion. This distinction between
slow and fast dynamos was first made by Vainshtein & Zel’dovich (1972) for astrophysical
objects like the Sun, where the magnetic Reynolds number in the convection zone is large.
Subsequently it was shown that a necessary condition for a velocity field to produce a fast
dynamo action is to exhibit Lagrangian chaos or singularities (Soward 1994; Childress &
Gilbert 1995), as can be expected, for example, in a turbulent flow. Extending the previous
definitions, a dynamo is said to be furious (‘very fast’ in Alboussière et al. 2020) if the
magnetic growth rate increases without upper bound with the magnetic Reynolds number,
corresponding to magnetic growth on an even smaller time scale than advection. The three
types of dynamo, slow, fast and furious are illustrated in figure 1.

Besides the anisotropic dynamo, among the simplest dynamos are the multicellular flow
studied by Roberts (1972) and the monocellular flow studied by Ponomarenko (1973),
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Fast and furious anisotropic dynamo

Slow

Fast

Furious

γ

Rm

Figure 1. Illustration of possible growth rate γ vs the magnetic Reynolds number Rm, for slow, fast and
furious dynamos.

both being helical. In the Roberts dynamo, the fluid motion is smooth and not chaotic,
leading to slow dynamo action. However, by adding singularities at the stagnation points
of the flow it is possible to introduce an additional time scale which, if small enough,
can lead to fast dynamo action (Soward 1987). In the Ponomarenko dynamo, depending
on whether the flow shear between the inner cylinder and the outer cylinder is smooth
or infinite, the dynamo is either slow (Ruzmaikin, Sokoloff & Shukurov 1988) or fast
(Gilbert 1988). Even in the fast case, magnetic diffusion appears to be a crucial ingredient
of the Ponomarenko dynamo, as it is the only way to generate the radial component of the
magnetic field from its azimuthal component (Gilbert 1988). Similarly, in the anisotropic
dynamo, magnetic diffusion is also crucial. However, as will be shown below, anisotropy
now helps to generate both the radial and azimuthal components of the magnetic field,
turning the dynamo into a fast or furious process depending on the type of shear that is
considered.

2. General formulation

We will consider two velocity fields, corresponding to differential rotation with either
smooth or infinite shear, as illustrated in figures 2(a) and 2(b). In cylindrical coordinates
(r, θ, z), the smooth velocity field is given by

U = (0, rΩ(r), 0), (2.1)

where the angular velocity Ω(r) is a continuous and differentiable function of r. The
velocity field with infinite shear is given by

U =
{

rΩeθ , for r < R
0, for r > R (2.2)

where (er, eθ , ez) is the cylindrical coordinate system. The motion described by (2.2)
corresponds to a solid body rotation of an inner cylinder of radius R with the angular
velocity Ω , surrounded by a medium at rest.

The assumption that electrical conductivity, or magnetic permeability, is anisotropic
means that it takes a different value depending on the direction considered. Following
Ruderman & Ruzmaikin (1984), the electrical conductivity and magnetic permeability
are defined by σ‖ and μ‖ in a given direction q, and by σ⊥ and μ⊥ in the directions
perpendicular to q, with q a unit vector. In the direction parallel to q, Ohm’s law and the
relation between H and B are written in the form J · q = σ‖(E · q) and B · q = μ‖(H · q),
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Figure 2. (a,b) Illustration of the velocity field given by differential rotation in the horizontal plane, with (a)
a smooth shear and (b) an infinite shear. (c) Sketch of the logarithmic spirals tangential to the vector q.

while in the directions perpendicular to q, they are written as J − (J · q)q = σ⊥(E − (E ·
q)q) and B − (B · q)q = μ⊥(H − (H · q)q). This leads to two symmetric tensors, [σij]
for the electrical conductivity and [μij] for the magnetic permeability, defined by

[σij] = σ⊥δij + (σ‖ − σ⊥)qiqj, [μij] = μ⊥δij + (μ‖ − μ⊥)qiqj. (2.3a,b)

In the magnetohydrodynamic approximation, Maxwell’s equations and Ohm’s law take
the following forms:

H = [μij]−1B, (2.4a)

∇ · B = 0, (2.4b)

J = ∇ × H , (2.4c)

∂tB = −∇ × E (2.4d)

J = [σij](E + U × B), (2.4e)

leading to the equation for the magnetic induction B

∂tB = ∇ × (U × B) − ∇ × ([σij]−1∇ × ([μij]−1B)), (2.5)

where
[σij]−1 = σ−1

⊥ (δij + σqiqj), [μij]−1 = μ−1
⊥ (δij + μqiqj), (2.6a,b)

with
σ = σ⊥

σ‖
− 1, μ = μ⊥

μ‖
− 1. (2.7a,b)

As in Plunian & Alboussière (2020, 2021), we choose q as a unit vector in the horizontal
plane defined by

q = cer + seθ , (2.8)

where c = cos α, s = sin α, with α a prescribed angle. The vector q is tangent to
logarithmic spirals in the horizontal plane (er,eθ ), as illustrated in figure 2(c).

Since the velocity is stationary and independent of z, and as we are considering only
axisymmetric solutions, we can look for the magnetic induction in the form

B = B(r) exp(γ t + ikz), (2.9)

where B(r) is the axisymmetric magnetic mode at vertical wavenumber k. In (2.9) a
positive value of the real part (Re) of the magnetic growth rate γ is the signature of dynamo
action, the dynamo threshold corresponding to Re{γ } = 0.
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Replacing (2.1) and (2.9) in (2.5), and after some algebra (see Appendix A), one obtains
the following equations for Br(r) and Bθ (r):

γ Br = −ε[μc2k2Br + (1 + σ s2)Dk(Br) − cs(σ − μ)k2Bθ ], (2.10a)

γ Bθ = −ε[σc2k2Bθ + (1 + μs2)Dk(Bθ ) − cs(σ − μ)Dk(Br)] + rΩ ′(r)Br, (2.10b)

where ε = (σ⊥μ⊥)−1, and

Dk(X) = k2X − ∂r

(
1
r
∂r(rX)

)
. (2.11)

Normalizing the distance by some value a, and time by |Ω−1(a)|, corresponds in (2.10a,b)
to replacing ε by the inverse of the magnetic Reynolds number

Rm = σ⊥μ⊥a2|Ω(a)|, (2.12)

the fast dynamo problem referring to Rm � 1, or equivalently to ε � 1.
In § 3, an asymptotic analysis of (2.10a,b) for ε � 1, will allow us to estimate the leading

order of the magnetic growth rate in the case of a smooth shear given by (2.1). On the
other hand, this cannot be done as easily for the case of a solid body rotation given by
(2.2). Indeed, as Ω ′(r) = 0 in both regions r < R and r > R, the system (2.10a,b) reduces
to two anisotropic diffusion equations, without a velocity term. Reminding that dynamo
action is a conversion of kinetic into magnetic energy, the system (2.10a,b) is therefore
not sufficient to describe the dynamo process. In fact, we will see that the velocity is only
involved in the boundary conditions across r = R. Therefore, it will be necessary to solve
(2.10a,b) with appropriate boundary conditions, in order to derive the magnetic growth
rate γ and study its behaviour for ε � 1. This will be the subject of § 4.

3. Fast dynamo for smooth differential rotation

Here, we follow a similar line of arguments to the one developed for the smooth
Ponomarenko dynamo (Gilbert 1988, 2003), essentially based on a boundary analysis.
In the asymptotic limit ε � 1 we expand γ , Br and Bθ in powers of ε1/2, such that

γ = γ0 + ε1/2γ1 + εγ2 + · · · , (3.1)

Br = Br0 + ε1/2Br1 + εBr2 + · · · , (3.2)

Bθ = Bθ0 + ε1/2Bθ1 + εBθ2 + · · · , (3.3)

and we set
k = Kε−1/2 and r = a + ε1/2ζ, (3.4a,b)

meaning that we search for a magnetic mode at some radius r = a within a magnetic
boundary layer. The r-derivative takes the form ∂r = ε−1/2∂ζ , leading to

1
r
∂r(rX) = X

a
+ ε−1/2 ∂X

∂ζ
and Dk(X) = ε−1

(
K2 − ∂2

∂ζ 2

)
X − ε−1/2 1

a
∂X
∂ζ

+ X
a2 ,

(3.5a,b)
where X can be any variable, e.g. Br or Bθ . Rewriting (2.4b) as

Bz = ik−1 1
r
∂r(rBr), (3.6)
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and using (3.5a,b), we find

Bz = Bz0 + ε1/2Bz1 + εBz2 + · · · , (3.7)

where, at leading order, Bz = Bz0 = iK−1∂Br0/∂ζ . A striking difference from the
Ponomarenko dynamo is that, at leading order, none of the three components Br0, Bθ0
and Bz0 is identically zero, whereas in the Ponomarenko dynamo Br0 = 0.

Assuming that the variations in r are of the same order of magnitude as those in z,
we can approximate Dk(X) ≈ ε−1K2X0. Replacing ((3.1)–(3.3)) in (2.10a,b) then leads, at
leading order, to the equations

[γ0 + (1 + σ s2 + μc2)K2]Br0 − cs(σ − μ)K2Bθ0 = 0, (3.8a)

[cs(σ − μ)K2 + aΩ ′(a)]Br0 − [γ0 + (1 + σc2 + μs2)K2]Bθ0 = 0. (3.8b)

In (3.8a,b), looking for non-zero Br0 and Bθ0 leads to the following expression for the
leading-order growth rate:

γ0 = K2

2

[
−(σ + μ + 2) ± |σ − μ|

(
1 + 4csaΩ ′(a)

K2(σ − μ)

)1/2
]

. (3.9)

A necessary condition for dynamo action is γ0 > 0, which corresponds to

aΩ ′(a) >
K2(σ + 1)(μ + 1)

cs(σ − μ)
≡ K2

cs

(
μ‖
μ⊥

− σ‖
σ⊥

)−1

. (3.10)

In (3.10), we note that, from (2.7a,b), we have σ + 1 > 0 and μ + 1 > 0. Then, assuming
cs(σ − μ) > 0, (3.10) implies that the derivative of Ω(r) at r = a must be positive and
sufficiently large. This can be achieved in different ways, one of them being Ω(r) < 0
and limr→∞ Ω(r) = 0. Although here the differential rotation is smooth, this picture is
consistent with the one obtained for an infinite shear (Plunian & Alboussière 2021). We
note that, in (3.9), swapping σ and μ, and changing Ω(r) in −Ω(r), does not change
the result, extending the duality argument put forward by Favier & Proctor (2013) and
Marcotte et al. (2021) to the cases of anisotropic electrical conductivity and anisotropic
magnetic permeability.

From (3.9) and (3.10) we conclude that, in the limit Rm � 1, the magnetic growth rate
at leading order can be positive and independent of Rm, making the smooth anisotropic
dynamo a fast dynamo. This is true only if σ /=μ, meaning that the degree of anisotropy of
electrical conductivity must be different from that of magnetic permeability. An additional
condition is that cs /= 0, which means that the two limiting cases of geometry anisotropy,
namely straight radii and circles, must be excluded.

4. Furious dynamo for infinite shear

4.1. Renormalization and boundary conditions
In the case of an inner cylinder in solid body rotation surrounded by a medium at rest, given
by the velocity (2.2), the system to solve is identical in each region r < R and r > R, given
by (2.10a,b) with Ω ′(r) = 0. Again, normalizing the distance and time by, respectively, R
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and |Ω|−1, leads to

γ̃ Br = −[μc2k2Br + (1 + σ s2)Dk(Br) − cs(σ − μ)k2Bθ ], (4.1a)

γ̃ Bθ = −[σc2k2Bθ + (1 + μs2)Dk(Bθ ) − cs(σ − μ)Dk(Br)], (4.1b)

where
γ̃ = γ Rm, (4.2)

with Rm defined by (2.12), replacing a by R and Ω(a) by Ω . The system of (4.1a,b) must
be completed by the appropriate boundary conditions for r = 0 and r → ∞

Br(r = 0) = Bθ (r = 0) = lim
r→∞ Br = lim

r→∞ Bθ = 0, (4.3a–d)

and by the continuity across r = 1 of the normal component of B, and of the tangential
components of H and E

[Br]r=1+
r=1− = [Hθ ]r=1+

r=1− = [Hz]r=1+
r=1− = [Eθ ]r=1+

r=1− = [Ez]r=1+
r=1− = 0, (4.4a–e)

where [X]r=1+
r=1− = X(r = 1+) − X(r = 1−). From (2.4a) and (3.6), (4.4a–c) can be

rewritten as
[Br]r=1+

r=1− = [Bθ ]r=1+
r=1− = [∂rBr]r=1+

r=1− = 0, (4.5a–c)

meaning that Br, Bθ and the derivative of Br are continuous across r = 1. From (2.4d) we
have Eθ = −ik−1γ̃ Br, implying that the two conditions (4.4a) and (4.4d) are redundant.
As for the last one (4.4e), using (2.4e) it can be rewritten as

[Jz]r=1+
r=1− = RmBr(r = 1), (4.6)

where J has been normalized by (μ⊥R)−1, and Rm is still the magnetic Reynolds number
except that it is signed, keeping track of the direction of the rotation, anticlockwise (Rm >

0) or clockwise (Rm < 0). It is defined by Rm = sign(Ω)Rm.

4.2. Resolution
The resolution of the system (4.1a,b) follows the same line of reasoning as that of Plunian
& Alboussière (2021) except that, here, instead of the dynamo threshold corresponding to
γ̃ = 0, we solve the system for any value of γ̃ .

Introducing

kσ = k
(

1 + σ + γ̃ /k2

1 + σ s2

)1/2

, kμ = k
(

1 + μ + γ̃ /k2

1 + μs2

)1/2

, (4.7a,b)

and with the help of the identity

Dk1(X) = Dk2(X) + (k2
1 − k2

2)X, (4.8)

the system (4.1a,b) takes the following form:

(1 + σ s2)Dkσ (Br) = (σ − μ)ck2(cBr + sBθ ), (4.9a)

(1 + μs2)Dkμ(Bθ ) = (σ − μ)c(sDk(Br) − ck2Bθ ). (4.9b)
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Then, we can show that (see Appendix B)

Dkμ(cBr + sBθ ) = Dkσ (sDk(Br) − ck2Bθ ) = 0. (4.10a,b)

Then, using (4.10a,b) and (4.9a,b) leads to

(Dkμ ◦ Dkσ )(Br) = (Dkσ ◦ Dkμ)(Bθ ) = 0. (4.11a,b)

The two operators Dkσ and Dkμ being commutative, Br and Bθ satisfy the same linear
differential equation of fourth order. As the solution of Dν(X) = 0 is a linear combination
of I1(νr) and K1(νr), where I1 and K1 are first and second kind modified Bessel functions
of order 1, the solutions of (4.11a,b) are a linear combination of I1(kσ r), K1(kσ r), I1(kμr)
and K1(kμr). Applying the boundary conditions (4.3a–d) and (4.5a,b), Br and Bθ can be
written in the following form:

Br =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, −s
(
λσ

I1(kσ r)
I1(kσ )

+ λμ I1(kμr)
I1(kμ)

)

r > 1, −s
(
λσ

K1(kσ r)
K1(kσ )

+ λμ K1(kμr)
K1(kμ)

) , (4.12)

Bθ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, c
(
λσ

I1(kσ r)
I1(kσ )

+ μs2 + (γ̃ s2)/(c2k2)

1 + μs2 λμ
I1(kμr)
I1(kμ)

)

r > 1, c
(
λσ

K1(kσ r)
K1(kσ )

+ μs2 + (γ̃ s2)/(c2k2)

1 + μs2 λμ
K1(kμr)
K1(kμ)

) , (4.13)

where Bθ has been obtained from Br by replacing (4.12) in (4.9a). To do this, we need to
calculate Dkσ (Br), which is derived in Appendix C.

The continuity of ∂rBr (calculated in Appendix D) across r = 1, given by (4.5c), leads
to the additional identity between λσ and λμ

λσΓ (kσ ) + λμΓ (kμ) = 0, (4.14)

with

Γ (x) = x
(

I0(x)
I1(x)

+ K0(x)
K1(x)

)
≡ (I1(x)K1(x))−1, (4.15)

the last identity being the Wronskian relation

Im(x)Km+1(x) + Im+1(x)Km(x) = 1/x. (4.16)

Finally, to apply the last boundary condition (4.6) we need to calculate the z-component
of the current density, that is derived by replacing Br and Bθ given by (4.12) and (4.13), in
(2.4a) and (2.4c), leading to (see Appendix E)

J z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, c
[

kσλσ
I0(kσ r)
I1(kσ )

+ s2γ̃

c2k2λμkμ

I0(kμr)
I1(kμ)

]

r > 1, −c
[

kσλσ
K0(kσ r)
K1(kσ )

+ s2γ̃

c2k2λμkμ

K0(kμr)
K1(kμ)

] . (4.17)

Replacing (4.12) and (4.17) in (4.6), and using (4.14), leads to the following dispersion
relation:

Rm = c
s

(
1 − s2γ̃

c2k2

)
(I1(kσ )K1(kσ ) − I1(kμ)K1(kμ))−1. (4.18)
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Fast and furious anisotropic dynamo

The dynamo threshold obtained for γ̃ = 0 has been the subject of a previous paper
(Plunian & Alboussière 2021).

4.3. Asymptotic behaviour of γ̃ in the limit of large magnetic Reynolds numbers
We note that in (4.18), as kσ and kμ given by (4.7a,b) also depend on γ̃ , we cannot derive an
explicit expression for γ̃ . Therefore, to determine the asymptotic behaviour of γ̃ for Rm �
1, two approaches are possible, either by solving numerically (4.18) that we postpone to
§ 4.4, or to carry out an asymptotic study, assuming that kσ � 1 and kμ � 1. In the latter
case, since (Abramowitz & Stegun 1968)

for |z| � 1, I1(z)K1(z) = 1
2z

+ O
(

1
z3

)
, (4.19)

the dispersion relation (4.18) can be written as

Rm ≈ 2c
s

(
1 − s2γ̃

c2k2

)
kσ kμ

kμ − kσ

. (4.20)

In (4.20), replacing kσ and kμ by their expressions (4.7a,b) leads to the following
expression:

Rm ≈ −2k
cs(σ − μ)

g(
γ̃

k2 ), (4.21)

where g(x) is the function defined by

g(x) = (1 + σ s2)1/2(1+σ +x)1/2(1+μ + x) + (1 + μs2)1/2(1 + μ + x)1/2(1 + σ + x).
(4.22)

For a given value of Rm, as γ̃ depends on k, the maximum growth rate is obtained
for ∂γ̃ /∂k = 0. Therefore, differentiating (4.21) vs k, we find that this maximum is
characterized by

g(x0) = 2x0g′(x0), (4.23)

where g′ is the derivative of g, and x0 the solution of the following equation:(
1 + σ s2

1 + σ + x0

)1/2

[2x2
0 + (1 + σ)x0 − (1 + σ)(1 + μ)]

+
(

1 + μs2

1 + μ + x0

)1/2

[2x2
0 + (1 + μ)x0 − (1 + μ)(1 + σ)] = 0. (4.24)

In figure 3(a), the solution x0 of (4.24) is plotted vs σ , for α = 0.16π and several values of
μ. The value α = 0.16π is chosen in reference to the dynamo threshold minimum obtained
for σ � 1 when μ = 0 (Plunian & Alboussière 2020). For μ = 0 and σ = 106 we find
that x0 = 2.1665, that will be used for comparison with the numerical results of § 4.4.
Replacing x0 in (4.22), (2/cs(σ − μ))g(x0) is calculated and plotted in figure 3(b) vs σ

for α = 0.16π and μ = 0. It takes the value 15.65715 for σ = 106 which, again, will be
used for comparison with the numerical results of § 4.4.

As x0 is entirely determined by σ, μ and s, we conclude from (4.21) that the maximum
growth rate corresponds not only to γ̃ = x0k2 but also to k ∝ Rm, implying that γ̃ ∝ Rm2.
From (4.2), we then conclude that

for Rm � 1, γ ∝ Rm, (4.25)

making the anisotropic dynamo with infinite shear a furious dynamo.
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(a) (b)

Figure 3. (a) Plot of x0 vs σ for several values of μ and α = 0.16π. (b) Plot of (2/cs(σ − μ))g(x0) vs σ for
μ = 0 and α = 0.16π.

100 101

20 30 40
50

60 80
100 150 200

300

Rm = 

14.7

100

10–2

102

102

k

γ̃

Figure 4. Plot of γ̃ vs k for μ = 0, σ = 106, α = 0.16π and several values of Rm. For each curve, the
maximum γ̃0 of γ̃ , obtained for k = k0, is denoted by a circle.

Assuming cs(σ − μ) > 0, we note that (4.21) implies that k and Rm have opposite signs,
meaning that the dynamo action corresponds to a clockwise rotation of the inner cylinder.
For Rm � 1, as k ∝ Rm and γ̃ /k2 → x0, from the definition of kσ and kμ given in (4.7a,b),
the two assumptions kσ � 1 and kμ � 1 made at the beginning of § 4.3, are satisfied.

4.4. Numerical solution of the dispersion relation (4.18)
In figure 4, the growth rate γ̃ obtained from (4.18) is plotted vs k, for μ = 0, σ = 106,
α = 0.16π and several values of Rm. As mentioned above, σ is taken as sufficiently large
in order to reach asymptotically the minimum dynamo threshold which, for μ = 0, is equal
to Rm = 14.7 (Plunian & Alboussière 2020). For other values of μ, σ or α, the curves will
be different, without, however, changing the asymptotic behaviour of γ̃ as Rm � 1. As
found in § 4.3, the values of Rm are found negative.

In figure 4, for each curve, the maximum of γ̃ is denoted by a circle. The dotted
straight curve corresponds to γ̃ = x0k2 with x0 = 2.1665 calculated from (4.24), showing
an excellent agreement between the asymptotic approach at large Rm and the numerical
results.

941 A66-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.349


Fast and furious anisotropic dynamo

0 100

0.02

0.04

0.06

0.08

Rm

k0/Rm

γ̃0/Rm2

200 300

Figure 5. (a) Plots of k0/Rm and γ̃0/Rm2 vs Rm for μ = 0, σ = 106, α = 0.16π. The horizontal dotted lines
correspond to the asymptotic approach of § 4.3.

Rm = 14.7 Rm = 20 Rm = 30 Rm = 60

Rm = 300Rm = 200Rm = 100Rm = 80

Figure 6. Plots of the magnetic field lines (full) and the electric current lines (dashed) in the horizontal plane
(x, y), for μ = 0, σ = 106, α = 0.16π and different values of Rm.

From figure 4, each maximum is denoted by its coordinates (k0, γ̃0), such that
γ̃0 = maxk γ̃ (k) = γ̃ (k0). In figure 5(a), k0/Rm and γ̃0/Rm2 are then plotted vs Rm.
In the asymptotic limit Rm � 1 the scaling laws k0 ∝ Rm and γ̃0 ∝ Rm2 found in
§ 4.3 are clearly validated. In addition, the horizontal dotted lines corresponding
to ((2/cs(σ − μ))g(x0))

−1 = 1/15.65715 and to x0((2/cs(σ − μ))g(x0))
−2 = 2.1665/

15.657152, confirm the excellent agreement with the asymptotic approach.
It is instructive to plot the geometries of the magnetic field and the current density

for different values of Rm. For that we use the expressions derived in ((4.12) and (4.13))
and (F2) for the magnetic field, and ((E10)–(E15)) for the electrical current density. The
geometries of the horizontal magnetic field lines and electric current lines are plotted in
figure 6. The three components of the magnetic field normalized by BH(r = 1) where

BH is the modulus of the horizontal component BH =
√

B2
r + B2

θ , are given in figure 7.
The three components of the current density, normalized by RmBH(r = 1), are given in
figure 8.
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Figure 7. From left to right, plots of Br, Bθ and −iBz, normalized by BH(r = 1), vs Rm(r − 1), for μ = 0,
σ = 106, α = 0.16π and Rm ∈ {14.7, 20, 30, 60, 100, 200, 300}.

–iRm–1Jθ (r)
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Figure 8. From left to right, plots of −iJr, −iJθ and Jz, normalized by RmBH(r = 1), vs Rm(r − 1), for
μ = 0, σ = 106, α = 0.16π and Rm ∈ {14.7, 20, 30, 60, 100, 200, 300}.

In figure 6, we note that the geometry of the electric current lines in the (x, y)-plane
do not depend on Rm. This is due to the fact that σ � 1. Indeed, from the expressions
of Jr and Jθ given in Appendix E ((E10)–(E14)) it can be shown that, for σ � 1 and
provided that γ̃ /k2 is bounded, we have Jθ = −(c/s)Jr for both r < 1 and r > 1. This
corresponds to having J · q = 0 or, equivalently, the electric current lines perpendicular to
q. In contrast, the geometry of the horizontal magnetic fields lines vary with Rm, in such a
way that a magnetic boundary layer seems to appear at r = 1 for Rm � 1. To quantify such
a boundary layer, in figures 7 and 8 the components of B and J are plotted vs Rm(r − 1),
and it is obvious that the curves merge as Rm increases, suggesting that the thickness of
the boundary layer is of the order of O(Rm−1).

5. Conclusions

We have shown that the anisotropic dynamo in cylindrical geometry is fast if the
differential rotation is smooth, and furious if the shear is infinite. In both cases, the
underlying mechanism is based on the stretching by differential rotation and anisotropic
diffusion. For a smooth velocity profile, the dynamo occurs on a time scale equal to
the turnover time tFast = |Ω(a)|−1, where a is some characteristic radius, indicating for
example the one at which the shear is maximum. If the shear is infinite at r = a, the
dynamo occurs on a time scale tFurious even shorter that |Ω(a)|−1. In dimensional units, it
is equal to

tFurious = (RmΩ(a))−1 = (σ⊥μ⊥a2Ω(a)2)−1. (5.1)
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For Rm � 1 we then have tFurious � tFast. This new characteristic time tFurious arises
because, in the anisotropic dynamo, the mechanism of magnetic generation due to the
anisotropic diffusion is particularly efficient, at least more efficient than the mechanism
due to the isotropic diffusion on which, for example, the Ponomarenko dynamo partially
works. As a result, the magnetic boundary layer in which the generation of the magnetic
field occurs is thinner, leading to a magnetic growth faster than the fast Ponomarenko
dynamo. To illustrate this, it is instructive to rewrite the system of (2.10a,b) in the following
schematical way:

γ Br ∼ −k2Rm−1Br + k2Rm−1Bθ , (5.2a)

γ Bθ ∼ −k2Rm−1Bθ + k2Rm−1Br + rΩ ′(r)Br, (5.2b)

in which each term is a simplified expression of the original terms of (2.10a,b). On the
right-hand side of (5.2a,b), the first term of each equation corresponds to the magnetic
dissipation, acting against the dynamo action, the second terms are source terms for the
dynamo due to the anisotropic diffusion while the third term of (5.2a) is also a source
term, due to the velocity shear. Leaving aside temporarily the velocity term rΩ ′(r)Br, all
other terms of (5.2a,b) are of the same order of magnitude provided that

Br ∼ Bθ , and γ ∼ k2Rm−1. (5.3a,b)

The velocity term can be estimated as rΩ ′(r) ∼ 1 if the shear is smooth and rΩ ′(r) ∼ k if
the shear is infinite. Assuming that in (5.2a,b) the velocity term is also of the same order of
magnitude as the other terms, leads to γ ∼ 1 and k ∼ Rm1/2 for the smooth shear, and to
γ ∼ k ∼ Rm for the infinite shear. The thickness of the magnetic boundary layer that can
be estimated as δ ∼ k−1, then scales as δ ∼ Rm−1/2 in the smooth case, and δ ∼ Rm−1

in the infinite shear case. These orders of magnitude, confirmed by our previous findings,
clearly establish the crucial role of the boundary layers.

In order to capture the difference from the Ponomarenko dynamo we can rewrite, again
schematically, the system of equations given in Gilbert (1988, 2003) as

γ Br ∼ −k2Rm−1Br + kRm−1Bθ , (5.4a)

γ Bθ ∼ −k2Rm−1Bθ + kRm−1Br + rΩ ′(r)Br. (5.4b)

In (5.4a), kRm−1Bθ is again a source term corresponding to the generation of Br from Bθ ,
coming from the isotropic diffusion of Bθ in the r-direction. This term is to contrast with
the anisotropic diffusion term k2Rm−1Bθ in (5.2a). In both cases the diffusion is involved,
but they have different orders of magnitude for k � 1. Assuming that the terms on the
right-hand side of (5.4a) are of the same order of magnitude leads to

Bθ ∼ kBr, and γ ∼ k2Rm−1. (5.5a,b)

Taking the same estimation of the velocity term rΩ ′(r) as above, rΩ ′(r) ∼ 1 if the shear
is smooth and Ω ′(r) ∼ k if the shear is infinite, and assuming that it is of the same order
of magnitude as the other terms of (5.4b), except the term kRm−1Br which is smaller for
k � 1, leads to γ ∼ k−1 ∼ Rm−1/3 for the smooth shear, and to γ ∼ 1 and k ∼ Rm1/2 for
the infinite shear. The thickness of the magnetic boundary layer, δ ∼ k−1, then scales as
δ ∼ Rm−1/3 in the smooth case, and δ ∼ Rm−1/2 in the infinite shear case.

Eventually, a unique characteristic time can be defined, as

t = σ⊥μ⊥δ2, (5.6)

with, for the Ponomarenko dynamo, σ⊥ = σ‖ and μ⊥ = μ‖. In (5.6), t corresponds to the
magnetic diffusion time through a magnetic boundary layer of thickness δ. Replacing δ/a
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Slow (Ponomarenko) Fast (Ponomarenko, Anisotropic) Furious (Anisotropic)

δ/a Rm−1/3 Rm−1/2 Rm−1

tΩ(a) Rm1/3 1 Rm−1

Table 1. The Rm-power scalings of the thickness δ of the magnetic boundary layer, and of the characteristic
time t of the dynamo. These two quantities satisfy the unique formula (5.6).

by either Rm−1/3, Rm−1/2 or Rm−1 leads to a characteristic time equal to Rm−1/3Ω(a)−1,
Ω(a)−1 or Rm−1Ω(a)−1, as summarized in table 1. Therefore, as mentioned above, it
is mainly the thickness of the boundary layer that governs the characteristic time of the
dynamo action, and thus the ability to have a slow, fast or furious dynamo for increasingly
thin boundary layers.

Such an anisotropic dynamo can be designed at the laboratory scale, using appropriate
conducting layers or coils, or high-permeability materials, in order to mimic the
homogeneous anisotropy considered here. According to figure 5, to successfully
demonstrate the furious aspect of such a dynamo, a minimum magnetic Reynolds number
of approximately 30 would be necessary, which is approximately twice the value 14.6 of
the dynamo threshold. From the estimate given in Plunian & Alboussière (2020), assuming
an electrical conductivity equal to that of copper would require an inner cylinder with a
radius of 0.05 m and a rotation frequency of approximately 25 Hz, which is feasible in the
laboratory. In natural objects where the magnetic Reynolds number is much larger, fast or
furious dynamo action should be favoured, provided that the anisotropy of the electrical
conductivity does play a role, as can be expected for example in spiral arm galaxies where
Rm � 1 and for which our anisotropic model might be a good approximation.
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Appendix A. Derivation of (2.10a,b)

The induction equation (2.5) is derived from (2.4d) and (2.4e), such that

∂tB = ∇ × (U × B) − ∇ × [σij]−1J , (A1)

with, from (2.4a) and (2.4c),

J = ∇ × [μij]−1B. (A2)

Assuming axisymmetry (∂θ = 0) and considering the solenoidality of B given by (2.4b),
the curl of the cross-product of U = rΩ(r)eθ by B = (Br, Bθ , Bz) exp(γ t + ikz) takes the
form

∇ × (U × B) = rΩ ′Breθ , (A3)

941 A66-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-4043-057X
https://orcid.org/0000-0002-4043-057X
https://orcid.org/0000-0002-3692-899X
https://orcid.org/0000-0002-3692-899X
https://doi.org/10.1017/jfm.2022.349
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where, from now, the exponential term is dropped for convenience. From the definition
(2.6a) of [σij]−1, we have

[σij]−1J = σ−1
⊥

⎛
⎝(1 + σc2)Jr + σcsJθ

σcsJr + (1 + σ s2)Jθ

Jz

⎞
⎠ . (A4)

Taking the curl leads to

∇ × [σij]−1J = σ−1
⊥

⎛
⎝ −ik[σcsJr + (1 + σ s2)Jθ ]

ik−1[Dk(Jr) + σc2k2Jr + σcsk2Jθ ]
1
r ∂r(r[σcsJr + (1 + σ s2)Jθ ])

⎞
⎠ , (A5)

where, again, Dν(X) = ν2X − ∂r((1/r)∂r(rX)), and with Jz = ik−1(1/r)∂r(rJr) coming
from the solenoidality of the current density.

Similarly, we find that

J = ∇ × [μij]−1B = μ−1
⊥

⎛
⎝ −ik[μcsBr + (1 + μs2)Bθ ]

ik−1[Dk(Br) + μc2k2Br + μcsk2Bθ ]
1
r ∂r(r[μcsBr + (1 + μs2)Bθ ])

⎞
⎠ . (A6)

Combining (A5) and (A6) leads to

∇ × [σij]−1[∇ × [μij]−1B] = (σ⊥μ⊥)−1

⎛
⎜⎝

F
G

ik−1
(

1
r
∂r(rF)

)
⎞
⎟⎠ , (A7)

with

F = μc2k2Br + (1 + σ s2)Dk(Br) − k2cs(σ − μ)Bθ , (A8)

G = −cs(σ − μ)Dk(Br) + σk2c2Bθ + (1 + μs2)Dk(Bθ ). (A9)

Combining (A1), (A2), (A3) and (A7), leads to (2.10a,b).

Appendix B. Derivation of (4.10a,b)

Rewriting (4.1a,b) in the form

Dk(Br) = −[γ̃ Br + μc2k2Br + σ s2Dk(Br) − cs(σ − μ)k2Bθ ], (B1a)

Dk(Bθ ) = −[γ̃ Bθ + σc2k2Bθ + μs2Dk(Bθ ) − cs(σ − μ)Dk(Br)], (B1b)

and considering the linear combination c(B1a)+s(B1b), leads to

(1 + μs2)Dk(cBr + sBθ ) = −(γ̃ + μc2k2)(cBr + sBθ ). (B2)

Then, using the identity

(1 + μs2)Dk(X) = (1 + μs2)Dkμ(X) − (γ̃ + μc2k2)X, (B3)

we find that
Dkμ(cBr + sBθ ) = 0. (B4)
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In a similar way, considering the linear combination sDk((B1a))-ck2(B1b), leads to

(1 + σ s2)Dk(sDk(Br) − ck2Bθ ) = −(γ̃ + σc2k2)(sDk(Br) − ck2Bθ ). (B5)

Then, using the identity

(1 + σ s2)Dk(X) = (1 + σ s2)Dkσ (X) − (γ̃ + σc2k2)X, (B6)

we find that
Dkσ (sDk(Br) − ck2Bθ ) = 0. (B7)

Appendix C. Derivation of (4.13)

To obtain Bθ from Br by replacing (4.12) in (4.9a), we need to calculate Dkσ (Br), given by

Dkσ (Br) =

⎧⎪⎪⎨
⎪⎪⎩

r < 1, −sλμ
Dkσ (I1(kμr))

I1(kμ)

r > 1, −sλμ
Dkσ (K1(kμr))

K1(kμ)

. (C1)

With the help of the identity (4.8) we have

Dkσ (Br) =

⎧⎪⎪⎨
⎪⎪⎩

r < 1, −sλμ(k2
σ − k2

μ)
I1(kμr)
I1(kμ)

r > 1, −sλμ(k2
σ − k2

μ)
K1(kμr)
K1(kμ)

. (C2)

Replacing kσ and kμ by their expressions given in (4.7a,b) and after some additional
algebra this leads to (4.13).

Appendix D. Derivation of the boundary condition (4.14)

To write the continuity of ∂rBr at r = 1 we first need to calculate the expression of ∂rBr at
any r. From the following identities satisfied for any ν

∂r(I1(νr)) = νI0(νr) − 1
r

I1(νr), (D1)

∂r(K1(νr)) = −νK0(νr) − 1
r

K1(νr), (D2)

the expression of ∂rBr is obtained by deriving (4.12)

∂rBr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ≤ 1, −s
λσ

I1(kσ )
[kσ I0(kσ r) − 1

r
I1(kσ r)]

−s
λμ

I1(kμ)
[kμI0(kμr) − 1

r
I1(kμr)]

r ≥ 1, s
λσ

K1(kσ )
[kσ K0(kσ r) + 1

r
K1(kσ r)]

s
λμ

K1(kμ)
[kμK0(kμr) + 1

r
K1(kμr)]

. (D3)

Then, from (D3) writing the continuity of ∂rBr at r = 1 leads to (4.14).
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Appendix E. Derivation of the current density J

The current density J given in (A6) can be written, in its renormalized form, as

J =
⎛
⎝ −ikφ

ik−1[Dk(Br) + μc2k2Br + μcsk2Bθ ]
1
r ∂r(rφ)

⎞
⎠ , (E1)

with φ = μcsBr + (1 + μs2)Bθ .
Replacing Br and Bθ by their expressions (4.12) and (4.13), leads to

φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, c
[
λσ

I1(kσ r)
I1(kσ )

+ s2γ̃

c2k2λμ
I1(kμr)
I1(kμ)

]

r > 1, c
[
λσ

K1(kσ r)
K1(kσ )

+ s2γ̃

c2k2λμ
K1(kμr)
K1(kμ)

] , (E2)

and therefore to Jr.
Using the relations (D1) and (D2) written in the form

1
r
∂r(rI1(νr)) = νI0(νr), (E3)

1
r
∂r(rK1(νr)) = −νK0(νr), (E4)

leads to

1
r
∂r(rφ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, c
[
λσ kσ

I0(kσ r)
I1(kσ )

+ s2γ̃

c2k2λμkμ

I0(kμr)
I1(kμ)

]

r > 1, −c
[
λσ kσ

K0(kσ r)
K1(kσ )

+ s2γ̃

c2k2λμkμ

K0(kμr)
K1(kμ)

] , (E5)

and therefore to Jz.
Using (B3), we find that

Dk(Br) + μc2k2Br + μcsk2Bθ = Dkμ(Br) + μcsk2φ − γ̃ Br

1 + μs2 . (E6)

From the expression of Br given by (4.12), we have

Dkμ(Br) =

⎧⎪⎪⎨
⎪⎪⎩

r < 1, − sλσ
I1(kσ )

Dkμ(I1(kσ r))

r > 1, − sλσ
K1(kσ )

Dkμ(K1(kσ r))
. (E7)

Using (4.8) leads to

Dkμ(Br) =

⎧⎪⎪⎨
⎪⎪⎩

r < 1, − sλσ
I1(kσ )

(k2
μ − k2

σ )I1(kσ r)

r > 1, − sλσ
K1(kσ )

(k2
μ − k2

σ )K1(kσ r)
, (E8)
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where we used the identity Dν(I1(kνr)) = Dν(K1(kνr)) = 0. After some algebra we find
that

Dkμ(Br)+ μcsk2φ−γ̃ Br

1+μs2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r < 1, λσ sk2
(

σc2 + γ̃ /k2

1 + σ s2

)
I1(kσ r)
I1(kσ )

+ sγ̃ λμ
I1(kμr)
I1(kμ)

r>1, λσ sk2
(

σc2+γ̃ /k2

1+σ s2

)
K1(kσ r)
K1(kσ )

+sγ̃ λμ
K1(kμr)
K1(kμ)

,

(E9)
leading to Jθ .

Then the current density takes the following form for r < 1:

Jr = −ikc
[
λσ

I1(kσ r)
I1(kσ )

+ s2γ̃

c2k2λμ
I1(kμr)
I1(kμ)

]
, (E10)

Jθ = ik−1
[
λσ sk2

(
σc2 + γ̃ /k2

1 + σ s2

)
I1(kσ r)
I1(kσ )

+ sγ̃ λμ
I1(kμr)
I1(kμ)

]
, (E11)

Jz = c
[
λσ kσ

I0(kσ r)
I1(kσ )

+ s2γ̃

c2k2λμkμ

I0(kμr)
I1(kμ)

]
, (E12)

for r > 1,

Jr = −ikc
[
λσ

K1(kσ r)
K1(kσ )

+ s2γ̃

c2k2λμ
K1(kμr)
K1(kμ)

]
, (E13)

Jθ = ik−1
[
λσ sk2

(
σc2 + γ̃ /k2

1 + σ s2

)
K1(kσ r)
K1(kσ )

+ sγ̃ λμ
K1(kμr)
K1(kμ)

]
, (E14)

Jz = −c
[
λσ kσ

K0(kσ r)
K1(kσ )

+ s2γ̃

c2k2λμkμ

K0(kμr)
K1(kμ)

]
. (E15)

Appendix F. Derivation of Bz

From (3.6) we have

Bz = ik−1
(

Br

r
+ ∂rBr

)
. (F1)

Then replacing (4.12) and (D3) in (F1), leads to

Bz = ik−1s

⎧⎪⎪⎨
⎪⎪⎩

r < 1, −
[
λσ kσ

I0(kσ r)
I1(kσ )

+ λμkμ

I0(kμr)
I1(kμ)

]

r > 1, λσ kσ

K0(kσ r)
K1(kσ )

+ λμkμ

K0(kμr)
K1(kμ)

. (F2)
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