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Abstract

Flows in rapidly spinning bodies, such as the iconic libration-induced flow, are key
ingredients of the dynamics of stars and planetary interiors. Laboratory experi-
ments of such flows experience a strong centrifugal acceleration, which forbids the
use of classical velocimetry methods relying on particle tracking. Modal Acoustic
Velocimetry was introduced by Triana et al. (2014) as a new particle-free method,
inspired from helioseismology, to alleviate this problem. In this method, acoustic
modes are excited in the fluid and recorded in the spinning container. Rotation
and fluid flow modify the characteristics of these modes, lifting the degener-
acy of non-axisymmetric modes. To date, this method has only been applied to
stationary or statistically stationary flows, by measuring frequency splittings in
the spectral domain. Here, we analyze time-varying libration-induced flows. We
propose and test two data acquisition strategies. The first strategy operates in
the frequency domain and relies on the periodicity of the flow, while the second
strategy involves a high-resolution algorithm applied in the time domain. The
retrieved mode frequency splittings are compared to those computed for a classi-
cal linear libration-induced flow model (Greenspan 1968). A very good agreement
is obtained, but we observe an unexpected time delay, which we attribute to the
buildup time of acoustic modes. We retrieve more that 50 splitting measurements
at 10 successive libration phases. Inverting these data with the SOLA method,
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often used in helioseismology, we derive profiles (1D-inversion) and maps (2D-
inversion) of the azimuthally-averaged fluid rotation rate. The inversions recover
the main characteristics of this time-dependent flow. The 2D-inversion confirms
the invariance of the flow along the rotation axis. Resolution kernels show that
flow can be mapped on patches that spread over approximately 5% of a merid-
ian quarter-plane. Our study paves the way to the investigation of more exotic
regimes of precession- or libration-induced flows.

Keywords: Modal Acoustic Velocimetry, libration, spheroid, acoustics, SOLA,
inversion

1 Introduction

Over time, Particle Image Velocimetry (PIV) has emerged as the predominant method
for examining velocity fields in fluids (e.g., Adrian and Westerweel 2011; Raffel et al.
2018). However, PIV relies on the presence of light and particles. In situations where
light cannot penetrate the fluid, such as in liquid metals, Ultrasonic Doppler Velocime-
try (UDV) serves as an effective alternative (Brito et al. 2001; Eckert and Gerbeth
2002; Brito et al. 2011), though it still requires particles to backscatter ultrasounds.
This is a problem in rapidly spinning experiments, in which it is almost impossible
to prevent particles to settle under the centrifugal acceleration. Such experiments are
central in the exploration of the dynamics of planetary interiors (see Pothérat and
Horn (2024) for a recent review), hence the need for non-intrusive particle-free meth-
ods. Good results have been obtained from ultrasonic time-of-flight in liquid metal
(Burmann et al. 2022), but the integrated data it provides limits its application.

In the mean time and for quite a while, astrophysicists have been inferring flows in
the Sun and other stars from their acoustic signature, developing the new disciplines
of helioseismology (Gough and Toomre 1991; Thompson et al. 2018) and asteroseis-
mology (Aerts et al. 2010), building upon the of fundamentals of seismology. The idea
of applying these approaches to experiments in fluids was pioneered by Triana et al.
(2014) who set the basics of Modal Acoustic Velocimetry (MAV) and provided a proof-
of-concept with data obtained in a spherical Couette flow. MAV was further extended
by Su et al. (2020) who provided the first measurements of the Ledoux coefficients
in a rapidly spinning spheroid. The Ledoux coefficients (Ledoux 1951) quantify the
splitting of acoustic normal modes produced by the Coriolis acceleration in a bounded
fluid, such as a star.

Our study pursues the development of MAV by investigating an iconic time-varying
flow: the flow induced by longitudinal libration. We adapted the ZoRo experiment
(Su et al. 2020) to produce and characterize libration-induced flows. We designed and
tested two different acquisition strategies to apply Modal Acoustic Velocimetry for
flows produced by longitudinal libration in a rapidly spinning gas-filled spheroid. A
brief description of libration-induced flows is given in this introduction, which also
recalls the basics of Modal Acoustic Velocimetry, and presents the ZoRo setup.
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1.1 Libration basics

Libration-induced flows in rapidly spinning spheres and spheroids have received a lot of
attention because of their geophysical and planetary relevance (Aldridge 1967; Tilgner
1999; Comstock and Bills 2003; Noir et al. 2009; Busse 2010; Le Bars et al. 2015;
Cébron et al. 2021). For longitudinal libration, the instantaneous rotation frequency
fshell(t) of a gas-filled shell can be written as:

fshell(t) = fo +∆f sin(2πflibt), (1)

where fo, ∆f , and flib denote the average shell rotation rate, libration amplitude,
and libration frequency, respectively. We will only consider cases with ∆f ≪ fo and
flib ≪ fo, allowing to neglect non-linear effects and the harmonic modulation of the
boundary-layer flow, respectively.

This shell motion can be regarded as a continuous succession of infinitesimal spin-
up and spin-down forcings, which have been studied in detail by Greenspan and co-
workers (Greenspan and Howard 1963; Greenspan 1968).

In the asymptotic regime corresponding to rapid rotation and small libration ampli-
tude, the induced flow obeys Proudman-Taylor constraint, and is thus z-independent
(where z marks the coordinate along the rotation axis) except in a thin viscous
boundary layer beneath the shell, the Ekman layer.

In an axisymmetric shell spinning around its symmetry axis, fluid flow is then a
function of cylindrical radius and time only. Following Deleplace (2005, p.42-46), the
fluid rotation rate ffluid(s, t) in the spinning frame is then obtained as

ffluid(s, t)

∆f
=

ξ√
1 + ξ2

sin

(
2πflib t+ π + arctan

1

ξ

)
, (2)

where the expression of ξ depends on the geometry of the shell. For a sphere of radius
ro, it is given by

ξ =
flib

fEkman
(1− s2)3/4, (3)

where s is the cylindrical radius, normalized by ro and

fEkman

fo
=

√
2πν

for2o
= 2πEk1/2,

where ν is the kinematic viscosity of the fluid, and Ek = ν/(2πfor
2
o) is the Ekman

number. The expression of ξ for an axisymmetric spheroid is derived in Appendix A.
Figure 1 shows the fluid rotation rate ffluid predicted by Eq. 2 with flib/fEkman =

0.266, which corresponds to flib = 0.05 Hz for the ZoRo experiment filled with air at
normal conditions (ν = 1.5×10−5 m2 s−1), spinning at fo = 15 Hz. Dimensionless fluid
flow rotation rate ffluid(s, t)/∆f is contoured in an s-t map, with time t normalized
by Tlib = 1/flib.

As the shell accelerates from fshell = fo at t = 0, the fluid spin rate in the shell
reference frame is small near the equator (s/ro = 1) but reaches a minimum closer to
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Fig. 1 Isocontours of normalized fluid rotation rate ffluid/∆f as a function of time and cylin-
drical radius, as predicted by Greenspan’s theory for libration in a rapidly spinning sphere, with
flib/fEkman = 0.266. Fluid rotation rate is expressed in the spinning shell reference frame. Cylindri-
cal radius and time are normalized by ro and Tlib, respectively.

the spin axis, where the fluid has not felt yet the shell acceleration. This minimum
is reached before fshell reaches its maximum (at t/Tlib = 1/4) and its amplitude is
smaller than ∆f because libration is slow enough to be transmitted all the way to the
core of the fluid.

Another representation is proposed in Fig. 2, where s-profiles of the fluid rotation
rate (in the librating shell frame) are shown at different libration phases every 36◦

from 0◦ to 324◦. Crosses give the same quantities as measured in the equatorial plane
of an axisymmetric numerical simulation performed in the spherical geometry, using
the XSHELLS package (Schaeffer 2013; Kaplan et al. 2017), with ∆f = 1.5 Hz and
Ek = 4 × 10−6. The differences between the finite amplitude numerical simulation
and the analytical asymptotic expression are very small in this parameter range. For
large libration amplitudes ∆f , longitudinal rolls develop in the Ekman boundary layer
during the spin-down phase of the libration cycle (Noir et al. 2009). These rolls are
clearly observed in axisymmetric numerical simulations when increasing ∆f to 3.6 Hz.

In this article, we restrict our attention to the stable regime for which Greenspan’s
asymptotic theory should provide an excellent flow prediction.
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Fig. 2 Same libration flow as in Figure 1, corresponding to fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5
Hz in the ZoRo experiment. Solid lines show fluid rotation rate as a function of cylindrical radius
from Greenspan’s theory, for selected libration phases from 0◦ to 324◦ in 36◦-steps. Crosses are the
corresponding fluid rotation rates measured in the equatorial plane of an axisymmetric numerical
simulation (Ek = 4× 10−6).

1.2 Basics of Modal Acoustic Velocimetry

As we mentioned, Modal Acoustic Velocimetry was introduced by Triana et al. (2014)
as a new method to measure flow velocity in fluid-filled cavities. MAV is inspired by
helioseismology and proves useful in experiments where particles cannot be employed,
such as in rapidly spinning spheres or spheroids (Triana et al. 2014; Mautino 2016; Su
et al. 2020; Su 2020; Vidal et al. 2020). The method consists in exciting the acoustic
normal modes of the fluid in the cavity, and measuring for each mode the frequency
shift induced by solid body rotation and fluid flow. Previous works (Triana et al.
2014; Mautino 2016; Su et al. 2020; Su 2020) focused on stationary or statistically
stationary flows. Acoustic modes can then be excited by long-lasting chirps, covering
a wide frequency range and providing a fine frequency resolution. It is important to
extend MAV to time-dependent flows, which requires devising alternative appropriate
strategies.

1.2.1 Acoustic modes

We briefly recall here a few basic properties of acoustic modes in a gas-filled spheroid.
More details can be found in Ledoux (1951); Moldover et al. (1986); Mehl (2007); Aerts
et al. (2010); Triana et al. (2014); Su et al. (2020); Vidal et al. (2020). Starting from

5



a gas contained in a rigid spherical shell, we recall that acoustic modes are quantized.
The pressure field of a resonant acoustic mode can we written as:

p(r, θ, ϕ) =nRl(r)Y
m
l (θ, ϕ), (4)

where Y m
l (θ, ϕ) is the spherical harmonic of degree l and order m, which describes

the surface variation of the mode’s pressure field. spherical coordinates θ and ϕ are
the usual colatitude and longitude, respectively. Radius r is normalized by the shell
inner radius ro. Index n gives the number of zeroes of function nRl(r), which provides
the radial variation of the mode’s pressure field, and is given by nRl(r) = jl(nkl r),
where jl is the spherical Bessel function of the first kind, of degree l, The radial wave
number nkl is such that, for a rigid shell, nR

′
l|r=1 = 0 (no radial wave displacement

at the solid shell boundary), where the prime represents the r-derivative. Every triplet
of integers (n, l, m) defines an acoustic mode, or singlet, which we denote nS

m
l . Each

mode resonates at a specific frequency nf
m
l . In a sphere of radius ro, frequencies are

m-degenerate: nf
m
l = nfl = nkl c/(2πro) for all m, with c the sound velocity of the

gas.
In a spheroid, this m-degeneracy is partly lifted, but doublets nS

±m
l still have the

same frequency. Global rotation and/or azimuthal flows lift this remaining degeneracy.
MAV thus measures the frequency difference between singlets nS

−m
l and nS

m
l to

retrieve global axisymmetric maps of azimuthal flow velocity.
Following Su et al. (2020), we compute predicted mode frequencies nf

m
l by pertur-

bation theory to the second order in ellipticity, in order to obtain the right ordering
of the doublets. Note that the projection on spherical harmonics is an approximation
in the spheroidal case, and only applies for moderate flattening. See Su et al. (2020)
for details, and Vidal et al. (2020) for a more complete and rigorous presentation.
One limitation of the shape perturbation theory we use (Mehl 2007) is that it does
not provide the eigen function perturbation. However, the flattening of ZoRo is small
enough that using the spherical eigen modes is appropriate. A method for computing
pressure fields at higher-order in ellipticity is presented in Albo et al. (2010). We now
turn to the computation of mode splitting produced by an axisymmetric azimuthal
flow or fluid rotation rate ffluid(r, θ).

1.2.2 2D flow velocity kernels

Following Triana et al. (2014), we express the difference δf
nS

±m
l

between the frequen-

cies of singlets nS
−m
l and nS

m
l as a function of the rotation rate ffluid(r, θ) of the

axisymmetric flow by:

δf
nS

±m
l

= 2m

∫ 1

0

∫ π

0
nK

m
l (r, θ)ffluid(r, θ) rdrdθ, (5)

where sensitivity kernel nK
m
l (r, θ) is given by:

nK
m
l (r, θ) =

r sin θ

nIl

{
ξ2rp

2 + ξ2h

[
q2 +

m2

sin2 θ
p2 − 2

pq

tan θ

]
− 2ξhξrp

2

}
, (6)
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with:

p = Pm
l (cos θ), q =

dPm
l (cos θ)

dθ
, ξr =

d [nRl(r)]

dr
and ξh =

nRl(r)

r
, (7)

where Pm
l (cos θ) is the associated Legendre polynomial and nIl a normalization

integral:

nIl =

∫ 1

0

[
|ξr(r)|2 + l(l + 1)|ξh(r)|2

]
r2 dr. (8)

The 2D sensitivity kernels nK
m
l (r, θ) of the collection of 53 modes discussed in this

article are displayed in Appendix B. Note that all kernels are positive and symmet-
rical with respect to the equator of the reference frame. Although we compute mode
frequencies to the second order in ellipticity, we stick to kernels of the sphere in our
inversions.

1.2.3 1D flow velocity kernels

Since Greenspan’s flow is z-invariant, we integrate (r, θ) mode splitting kernels over
z to get nKm

l (s) sensitivity kernels, in order to recover ffluid(s). We first express the
2D (r, θ) kernels in the (s, z) reference frame:

nKm
l (s, z) = nK

m
l (r =

√
s2 + z2, θ = arctan(s/z)). (9)

We then integrate over z to obtain the 1D nKm
l (s) sensitivity kernels:

nKm
l (s) =

∫ h(s)

−h(s)
nKm

l (s, z) dz with h(s) =
√

1− s2, (10)

which provides the frequency splitting δf
nS

±m
l

of acoustic doublet nS
±m
l through:

δf
nS

±m
l

= 2m

∫ 1

0
nKm

l (s)ffluid(s) ds. (11)

Figure 3 displays the 1D sensitivity kernels nKm
l (s) as a function of dimensionless

cylindrical radius s for the collection of modes analyzed in this article. Note that
kernels are not sharply localized and that sensitivity to fluid flow is obtained for
0.2 ≲ s/ro ≲ 0.9, all kernels dropping to 0 at s/ro = 0 and s/ro = 1.

1.3 The ZoRo experiment

The ZoRo experiment was set-up to investigate convective and mechanically induced
flows in a rapidly spinning gas-filled spheroid. Such flows are observed or expected in
the fluid enveloppes of planets. The experiment consists in an aluminum shell that can
spin around a vertical axis at rates up to 50 rotations per second. The shell can be
filled with different gases (air, nitrogen, argon) kept at pressures between 0.3×105 and
4 × 105 Pa. The axisymmetric cavity has an equatorial radius req = 0.2 m and polar
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Fig. 3 Plot of 1D sensitivity kernels nKm
l (s) as a function of dimensionless cylindrical radius s for

the collection of 53 acoustic doublets nS
±m
l analyzed in this article.

radius rpol = 0.19 m. A sphere of the same volume has radius ro = 3

√
r2eqrpol = 0.1966

m.
The MAV technique was implemented in ZoRo since strong centrifugal effects

disqualify particle-based techniques. The spinning shell is thus equipped with four
loudspeakers and fourteen microphones. Su et al. (2020) describe the methodology
developed to excite, measure, model, and process the acoustic modes of ZoRo. They
also show measurements of acoustic mode splitting caused by the Coriolis force in solid
body rotation, confirming the theory of Ledoux (1951). More details can be found in
Su et al. (2020) and Su (2020).

Libration is produced by varying the instantaneous spin rate of the shell with time
in a sinusoidal fashion. Particular care is given to the synchronization of the various
measurements (see Appendix C for details). In ZoRo, the libration flow shown in
Fig. 1 is obtained with fo = 15 Hz and flib = 0.05 Hz, when it is filled with air at
ambient pressure and temperature (ν = 1.5 × 10−5 m2 s−1). The Ekman number is
then Ek = 4×10−6, yielding fEkman = 0.188 Hz, and the exponential thickness of the
viscous layer beneath the shell, called the Ekman layer, is δEkman =

√
ν/(2πfo) = 0.4

mm.
Two MAV acquisition strategies are presented in section 2. Resulting experimen-

tal results are compared with theoretical predictions in section 3. The next sections
present the inversion of the data to retrieve the fluid spin rate: section 4.2 presents the
results of 1D SOLA inversion, while the ingredients and results of 2D SOLA inversion
are given in section 4.3. Section 5 discusses the limitations and perspectives of our
study, and we conclude in Section 6.
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2 MAV strategies for time-periodic flows

Previous MAV exercises (Triana et al. 2014; Mautino 2016; Su et al. 2020) excited
acoustic modes by playing long chirps covering a large frequency range, and retrieved
mode frequencies from the Fourier transform of the recorded signals. This strategy is
well fit for stationary flows or for retrieving the mean of a moderately fluctuating flow.
For time-varying flows such as those generated by libration, one would like to capture
acoustic signatures in a short time lapse, of the order of a second for the case shown
in Fig. 1. From Nyquist’s theorem, frequency resolution would then be of the order of
one Hertz.

However, we will see that these flows produce mode splittings that typically range
from 0.5 Hz to 15 Hz. This suggests that a frequency resolution of 1 Hz is not sufficient
to properly constrain the flow. Faced to this problem, we developed and tested two
strategies, which we now present.

2.1 Long chirps repeated with a libration phase offset

Our first strategy is to play and record long chirps (typically ∼ 90 seconds) covering
the full frequency range we can access (500 to 5 000 Hz). We thus obtain Fourier power
spectra with a resolution of the order of 0.01 Hz. Of course, flow evolves while the
chirp is played, but a given mode is only excited at a given time, or rather during a
short time lapse (typically less than 0.2 to 1 second). Keeping track of the evolution of
libration phase during the chirp, the measured splitting of a given mode can then be
attributed to a known libration phase. By repeating the same chirp at different initial
libration phase we scan the evolution of each mode splitting with libration phase.

An example is shown in Fig. 4. Libration parameters are fo = 15 Hz, flib = 0.05
Hz and ∆f = 1.5 Hz, and we play an 82s–long chirp spanning from 500 to 5 000 Hz.
This chirp is repeated 10 times. During one chirp, the setup experiences 4.1 libration
periods. Successive chirps thus sample the libration flow with a phase shift of 36◦.
We compute the power spectrum of the signals recorded for each of the ten 82s–long
chirps.

Figure 4a displays a zoom of the ten spectra focused on acoustic doublet 1S
±3
3 .

As in Su et al. (2020), each spectrum is obtained following these steps: (i) since this
doublet is equatorially symmetric (because l−m is even), we first sum the time-records
of pairs of equatorially symmetric microphones; (ii) we compute the power spectrum
of three such summed time-records; (ii) we take the mean of these three power spectra.
The libration phase of each mean power spectrum, as listed in the legend, is deduced
from the time t − t0 at which the central frequency of the doublet is played in the
chirp, t0 corresponding to a nul libration phase.

Figure 4b shows synthetic power spectra computed for the same libration phases,
augmented by a 10◦ delay (for reasons to be discussed later). Each spectrum is built
following these steps: (i) the theoretical frequencies of the 1S

3
3 and 1S

−3
3 singlets

are obtained by convolving the acoustic velocity kernel 1K3
3(s) of Eq. 10 with the

theoretical libration-flow model ffluid(s, t) of Eq. 2 for the considered libration phase
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Fig. 4 Frequency spectra of split acoustic doublet 1S
±3
3 for 10 successive libration phases, 36◦ apart.

Libration parameters : fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. (a) measured power spectra.
The plot is a zoom centered at 2395 Hz of full spectra obtained by playing a 82s–long chirp spanning
from 500 to 5 000 Hz. The legend indicates the libration phase achieved by the setup when the center
frequency is played. (b) synthetic spectra computed from the splitting predicted by the convolution
of the acoustic sensitivity kernel with Greenspan’s libration flow model. Note that a phase delay of
10◦ has been added to the synthetics as compared to the measured data. The two magenta stems
mark the frequencies of the 1S3

3 and 1S
−3
3 singlets for solid body rotation of the fluid with the shell

at spin rate fo.

2πflib(t−t0); (ii) the acoustic power spectrum is computed by convolving each singlet’s
resonance lines with a Lorentzian (Su et al. 2020).

In this figure, the largest splitting is obtained for a libration phase of 59◦. From Fig.
1 and 2, we see that the fluid rotation rate (in the spinning shell frame) is retrograde
and near its minimum at that phase. The splitting decreases as the libration phase
increases, until a phase of 167◦ when a single frequency peak is observed. This occurs
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when the splitting due to the fluid flow exactly cancels the (opposite) splitting due
to the shell spin, which is indicated by the two magenta stems for a fo = 15 Hz spin
rate. As the fluid flow becomes positive (prograde) the two singlets cross each other,
yielding a splitting that increases again to a secondary maximum at a phase of 347◦.

The exact same evolution is observed in Fig. 4a. The main difference is the width
of the resonance peaks, which is larger than expected from theory, some widening
being probably due to the evolution of the flow during the resonance buildup.

Our phase-offset long chirp strategy then consists in measuring the frequency
splitting of as many doublets as possible for ten successive libration phases.

For each doublet, the splitting estimate and its error bar are obtained with the
following steps (Su et al. 2020): (i) ‘plus’ and ‘minus’ time-records are obtained from
the sum and difference of sound recorded by four pairs of equatorially-symmetric
microphones (nS

±m
l doublets with even l −m show up in ‘plus’ records, while those

with odd l−m are seen in ‘minus’ records); (ii) ‘plus’ and ‘minus’ records are Fourier
transformed; (iii) the resulting four ‘plus’ power spectra are averaged yielding ‘mean+’
power spectrum, and ‘mean-’ is obtained similarly; (iv) doublets nS

±m
l are identified in

these spectra with the help of synthetic spectra, and a windowed spectrum is extracted
together with a first estimate of mode splitting; (v) individual synthetic spectra are
built varying four of their constitutive ingredients: doublet’s peak-to-peak splitting,
doublet’s mean frequency, doublet’s amplitude, and singlets’ peak width; (vi) a grid
search on these four elements provides the best splitting and its error bar.

This strategy only applies to time-periodic flows and requires that the played chirp
largely dominates over other noise sources.

2.2 Short chirps and high-resolution frequency analysis

We developed a second strategy: play a short chirp centered on the frequency of a
single acoustic doublet. Fluid rotation splits this doublet into two singlets with slightly
different frequencies. The time-domain record of a given microphone thus consists in
the superposition of two sine signals with slightly different periods. A one second-long
record contains thousands of cycles, enough to detect and measure the two frequencies
with a precision of 0.01 Hz. In other words, while obtaining the full frequency spectrum
is limited by Nyquist theorem, this limit vanishes when the signal consists in the sum
of a small number of sines that we wish to retrieve.

Processing follows a variant of the IRWIN method presented by Roux et al.
(2004) and Philippe et al. (2008). The main ingredients of this method are recalled
in Appendix E. For our application, the following steps are taken: (i) a short chirp
(lasting typically less than 1 second) is repeatedly played on one or two loudspeak-
ers, covering the resonance frequency range of a targeted doublet. (ii) we compute the
auto-correlation of each record. (iii) we choose the number of monochromatic compo-
nents to be searched for, and the frequency interval for the search. (iv) we launch an
ensemble of inversions. (v) we gather the results in histograms that count the number
of times each frequency has been recovered in the ensemble. One or two peaks normally
stand up, yielding the singlets’ frequencies and their error bar. (vi) the procedure is
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Fig. 5 Examples of the high-resolution analysis. Histograms (in red) of frequencies recovered by the
iterative IRWIN algorithm for doublet 1S3

3 at three different libration phases. The dot-dashed blue
line gives the standard Fourier spectrum computed for each 0.82s-long time window.

repeated for the following chirps, probing successive phases of the libration-induced
flow.

Figure 5 illustrates the performance of our high-resolution algorithm for three dif-
ferent libration phases for doublet 1S

±3
3 . While Nyquist theorem limits the frequency

resolution of the standard power spectrum (dot-dash blue line) of our 0.82s-long time
window, the high-resolution algorithm (red) isolates one or two frequencies very pre-
cisely in the time-domain signals. The middle panel shows a case when the algorithm
only marginally recovers the frequencies.

The main limitation of this technique is that only a limited number of doublets can
be targeted at the same time. We obtained good results with up to four simultaneous
doublets, but the examples shown below target a single doublet. A great advantage of
this method is that it can be used to probe non-periodic time-varying flows.

3 Comparing observations and synthetics

We give here examples of measurements obtained with both strategies. The data are
compared with predictions computed by convolving the time-dependent fluid flow
with the kernel of each acoustic mode. Fluid flow ffluid(s, t) is computed using the
linear geostrophic theory of Greenspan and Howard (1963) adapted to libration in a
spheroid, namely from Eq. 2 and A2. Note that we often replace time t by the libration
phase ϕ(t) = 2πflib t (mod 2π). The acoustic kernel nKm

l (s) provides the frequency
splitting δf

nS
±m
l

(t) of acoustic doublet nS
±m
l (see definition and expression in section

1.2.3). Note that although we compute mode frequencies by perturbation theory to
second-order in ellipticity (Su et al. 2020), we use the acoustic kernels of a sphere.

3.1 Mode splitting collection from phase-offset chirps

We could measure the frequency splittings of some 53 doublets with the phase-offset
long chirps strategy. Figure 6 compares results obtained for two chirp durations: 90
and 39 seconds. Libration parameters are: fo = 15 Hz, flib = 0.1 Hz and ∆f = 1.5 Hz.
For each selected acoustic doublet nS

±m
l , the measured splitting δf

nS
±m
l

(frequency

difference between spectral peaks of nS
−m
l and nS

+m
l singlets) is plotted as a function

of libration phase. All splittings are first corrected for the effect of the Coriolis force
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Fig. 6 Peak-to-peak frequency splitting δf
nS±m

l
in Hz as a function of libration phase for six selected

acoustic doublets nS
±m
l . Data points with error bars are measured in the ZoRo experiment librating

with fo = 15 Hz, flib = 0.1 Hz and ∆f = 1.5 Hz. Phase-offset chirps with two different durations were
used: 90s (blue) and 39s (red) Splittings predicted from Greenspan’s theory are drawn for ZoRo’s
spheroid (solid line) and for the sphere (dashed line), which plot on top of each other.

computed at the rotation rate of the shell fshell(t), using the Ledoux coefficients of
Vidal et al. (2020) computed for ZoRo’s flattening, but the difference with the spherical
Ledoux coefficients is negligible except for the lowest frequency fundamental modes.
The measurements are compared to the splittings predicted by the libration flow model
for a spheroid (solid line) and for a sphere (dashed line), which are almost perfectly
superposed. The signature of the time-varying libration flow is very well retrieved
by MAV, but data appear to probe a libration flow that is about 20◦ further, which
corresponds to a delay of about 0.5s. No significant difference is seen between the two
chirp durations. We will get back to the delay problem in section 3.2.

Figure 7 compares two cases with different libration frequencies: flib = 0.1 Hz as in
Fig. 6 versus flib = 0.05 Hz (98 s-long chirp). At smaller libration frequencies, fluid gets
toward better synchronisation with shell’s rotation rate, implying smaller differential
rotation and smaller phase shift between the fluid and the shell. This behaviour is
clearly seen in the synthetic curves, and well recovered by MAV.

The splitting evolution with phase libration is shown in Appendix D for all 53
acoustic modes.

3.2 Short chirps results

We tested the short-chirp technique on acoustic doublet 1S
±3
3 . First tests with chirps

spanning 2 350 to 2 430 Hz in 4 seconds were performed for a uniform shell rotation,
with fo ranging from 1 to 20 Hz, providing splittings from 0.19 to 3.85 Hz, with error
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Fig. 7 Frequency splittings δf
nS±m

l
for two different libration frequencies: flib = 0.1 Hz (blue)

and 0.05 Hz (magenta), both with fo = 15 Hz and ∆f = 1.5 Hz as in Fig. 6. Symbols and error
bars for measurements with 90s- and 98s-long phase-offset chirps. Sine solid lines for corresponding
Greenspan’s predictions for ZoRo’s spheroid.

bars of about 0.01 Hz, in excellent agreement with Ledoux coefficients computed by
3rd order-perturbation in ellipticity and rotation rate by Vidal et al. (2020).

The method was then applied to libration flows. Figure 8 shows an example of 1S
±3
3

doublet’s splitting as a function of libration phase. Libration parameters are fo = 15
Hz, flib = 0.084 Hz and ∆f = 1.5 Hz. A succession of 32 identical signals is played.
Each signal consists of a 0.37 s-long chirp from 2360 to 2398 Hz, followed by a 0.37 s
silence. The signal is played simultaneously by two loudspeakers placed at latitudes
+45◦ and −45◦ along the same meridian, thus favoring equatorially symmetric modes.
The overall sequence covers two libration periods. The resulting record is chopped
to recover the response to each individual chirp, and the high-resolution algorithm is
applied to each of the 32 extracted time records. The algorithm measures the proba-
bility for a given frequency to be present in the record. Figure 8 is a composite plot of
the probability maps of all 32 segments. Two frequencies clearly emerge, which follow
a sine pattern, thus revealing the variation of the 1S

±3
3 doublet’s frequency splitting as

a function of libration phase. Note that the two sine curves cross each-other, because
the splitting produced by the flow exceeds the Coriolis splitting for this doublet, as in
Fig. 4.

We now go deeper into the analysis of these measurements. Figure 9 compiles
several measurements and predictions for this doublet. We first retrieve the frequency
splitting δf

nS
±m
l

for each chirp from the data of Fig. 8, yielding the green solid curve

in Fig. 9. Note that the resulting sine curve is not centered on the zero line but on the
magenta horizontal dash line, which marks the splitting due to solid body rotation
at the fo spin rate (i.e., the Ledoux coefficient times fo). The green dash-dot curve
is a sine fit of the data obtained in another run, playing a succession of 64 chirps
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Fig. 8 Splitting example of the short chirps method. Libration parameters: fo = 15 Hz, flib = 0.084
Hz and ∆f = 1.5 Hz. A succession of 32 short chirps centered around the resonant frequencies of the

1S
±3
3 doublet. Each chirp plays frequencies 2 360 to 2 398 Hz in 0.37s and is followed by a silence of

equal duration.

lasting 0.74s (no silence between chirps), from 2 350 to 2 430 Hz. The two curves almost
coincide.

Let us compare these data with the splitting expected for this libration flow.
The blue solid line gives the time-evolution of the frequency splitting predicted from
Greenspan’s linear theory, after convolution of the time-dependent fluid flow with the
acoustic kernel. The time taken into account for the computation of the flow is the
center-time of the 0.74s-long chirp. The blue dotted line instead considers the start-
time of the chirp, while the blue dash line considers the end-time of the chirp. We
see that the data almost perfectly agree with the latter prediction, both in pattern,
in amplitude, and in phase. We conclude that the mode splitting we measure is per-
fectly consistent with the fluid flow predicted by Greenspan’s linear theory. This is in
line with the results shown in Fig. 2, which show an excellent agreement between that
theory and a finite amplitude axisymmetric simulation. However, our measurements
confirm a delay of the order of 0.3s between the flow and its acoustic modal response,
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Fig. 9 Comparison between predicted and measured frequency splitting of the 1S
±3
3 doublet. Libra-

tion parameters as in Fig. 8: fo = 15 Hz, flib = 0.084 Hz and ∆f = 1.5 Hz. The x-axis is time given
in chirp number. There are exactly 16 chirps in one libration period. The y-axis is the frequency dif-
ference between singlets 1S

−3
3 and 1S

+3
3 . The green solid curve is derived from the data of Fig. 8.

The green dash-dot line is the sine fit of frequencies obtained for another run (see text). The blue
solid line gives the frequency splitting predicted by convolving Greenspan’s libration flow with the
acoustic splitting kernel (for a sphere) of the 1S

±3
3 doublet. The blue dashed and blue dotted lines

are the same prediction shifted by −0.37s and 0.37s respectively. The magenta symbols are from a
computation taking into account the exact spheroidal geometry of the experiment. The magenta hor-
izontal dash line gives the splitting for solid body rotation at fo = 15 Hz.

confirming the observations of section 3.1. We believe that it corresponds to the time
for a mode to build up, as detailed in Appendix F.

We checked for another potential bias. The acoustic kernels we use to compute
the predicted splittings are for a sphere. Since it was shown by Su et al. (2020) that
theory had to be extended to second order perturbations in ellipticity in order to
provide a correct ordering of the frequencies of a given multiplet, our simplification
could introduce a bias. We checked that this was not the case, at least for the 1S

±3
3

doublet presented here. For that, we ran a simulation of the acoustic response of a
ZoRo-like spheroid using the finite-element COMSOL Multiphysics®software, with
fo = 15 Hz, imposing Greenspan’s flow. The magenta symbols in Fig. 9 give the results
we obtain for two different libration phases. They plot exactly on the blue solid line,
which corresponds to the response of a sphere.

3.3 Acoustic mode splitting collection

Using the phase-shifted long chirp strategy, we were able to measure the splitting of
53 identified doublets, with frequencies between 500 and 5 000 Hz, from multiplet 0S1

to multiplets 0S14, 1S10, 2S5 and 3S4, for almost all libration phases.
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Fig. 10 Measured peak-to-peak splitting (in Hz) of 53 doublets, labeled along the x-axis by their
(n, l, |m|) index triplet. Libration-driven flow at a phase of 180◦, with fo = 15 Hz, flib = 0.05 Hz and
∆f = 1.5 Hz.

Figure 10 shows an example of splittings measured for a libration phase of 180◦

(by least-square sine interpolation of the data at 10 libration phases), with fo = 15
Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. Overtone (n > 0) spectral peaks are usually
much more narrow than those of fundamentals (n = 0), yielding smaller splitting error
bars. In the next sections, we invert these splittings to recover the time-evolution of
the fluid flow, and evaluate the resolution power of these data.

4 Flow inversion

4.1 The SOLA inversion method

Given our splitting measurements of a collection of modes, we now want to invert
these data and recover ffluid(t) at selected libration phases, using its relation with
δf

nS
±m
l

given by acoustic kernels nKm
l (s) (Eq. 11) or nK

m
l (r, θ) (Eq. 5). Many inver-

sion methods can be used for solving our linear problem. We will not review the vast
literature on this topic, but only recall a few methods used in previous MAV stud-
ies. Two different methods were used in the seminal paper of Triana et al. (2014):
a Tikhonov regularization and a semi-spectral Bayesian inversion. The former min-
imizes the second spatial derivatives of the flow velocity, while the latter relies on
spherical harmonics to deal with the latitudinal flow variation, a Bayesian approach
being taken for its radial variation. A critical assessment of both methods is given
by Mautino (2016) who reviews several alternatives. He also stresses that, consider-
ing the limited number of modes used in these early studies, the choice of the model
smoothness parameters plays a major role, a concern shared by Su (2020) who used
the semi-spectral Bayesian algorithm.

In order to better assess the intrinsic resolving power of a given data set of acoustic
splittings, it seems appropriate to turn to ‘Optimally Localized Averages’ (OLA) inver-
sion methods, pioneered by Backus and Gilbert (1967). These methods have recently
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gained a renewed interest in seismology (Zaroli 2019), and are widely used in helio-
seismology since the seminal papers of Pijpers and Thompson (1992, 1994). The idea
of this class of methods is to extract from the data the best unbiased value of model
parameters at a given location, or more precisely within a given volume around the
target location. Two variants stand out: ‘Multiplicative Optimally Localized Averages’
(MOLA) and ‘Subtractive Optimally Localized Averages’ (SOLA).

The results of this article are obtained using the SOLA inversion method, closely
following the detailed prescriptions of Zaroli (2019). Appendix G provides a summary
of SOLA’s procedure and notations. In our 2D SOLA inversions, we target disks of
a given radius in the meridional plane, while our targets are s-segments in our 1D
inversions.

The main drawback of OLA inversion methods is that they only target a few
selected spots of model space. Hence, they do not provide a complete continuous ‘best’
model. This prevents computing the resulting best fitting data, to be compared with
the original data with their error bars. In the simple examples we show, we circumvent
this limitation by targeting enough spots in model space. A smooth continuous model
is then built by interpolation/extrapolation, from which synthetic data of the inverted
model can be computed.

Although OLA methods are often presented as ‘parameter-free’, they involve a
‘trade-off’ parameter η, which governs the ratio between resolution misfit and model
variance (see Eq. G7). The choice of η can be made to obtain a normalized misfit close
to 1. Since we observe that Greenspan’s flow provides a very good fit to our splitting
data, we can double check that the chosen ‘trade-off’ parameter provides flows that
respect the smoothness of Greenspan’s flow, given the collection of mode splittings we
retrieve, and the precision of the measurements.

Note that we aim at recovering the libration-induced flow rotation rate in the
frame of the spinning shell. This is why we corrected measured frequency splittings
from the Coriolis splitting computed for the instantaneous spin rate of the shell. We
can then use the kernels presented in sections 1.2.3 and 1.2.2 to obtain ffluid in the
shell reference frame.

4.2 1D SOLA flow inversion

Since we do expect libration flow to be largely z-invariant, we start with 1D SOLA
inversions. We obtained the frequency splitting of a collection of 53 acoustic doublets
for 10 different phases of the periodic libration flow. Due to our acquisition strategy, the
sampled libration phases are different for different modes. For all modes, the variation
of the frequency splitting with libration phase is well fit by a sine. We thus use this
sine pattern to interpolate our measurements to a set of 10 fixed libration phases from
0◦ to 324◦ in 36◦ steps. We attribute to each interpolated splitting an error equal
to the mean of the 10 (or less) estimated errors for the considered measurements for
each mode. An inversion of the 53 acoustic splittings is performed for each of the 10
selected libration phases. Note that although 10 independent inversions are computed,
the data they invert correspond to the phases of a single sinusoidal fit of each mode.
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4.2.1 Fluid rotation rate profiles

Fig. 11 1D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5
Hz): normalized fluid rotation rate as a function of dimensionless cylindrical radius for 10 libration
phases (legend in degrees). The width of the color boxes gives the targets’ width, while their height is
the inversion error. The color dashed lines are the predictions from Greenspan’s flow at each libration
phase delayed by 10◦.

Figure 11 gathers the fluid rotation rate ffluid(s) s-profiles obtained from the
inversions at 10 libration phases. The width of each box gives the target’s width, while
its height is the error estimate of the inverted model for this target. For comparison,
we draw the profiles predicted by Greenspan’s linear theory. We pointed out that the
measured splittings appear to be late by a few tenths of a second, probably because
our acquisition strategy does not account for the time it takes for an acoustic mode
to build up. Therefore, we add a phase-delay of 10◦ (corresponding to 0.56s) to the
synthetics.

For this inversion, we chose η = 40. The amplitudes and trends of the theoretical
profiles are well retrieved in our inversion. However, the gentle decrease of ffluid with
s between s/ro = 0.7 and s/ro = 1 is not correctly retrieved. We will discuss the
reasons for this disagreement in section 5, where we also explore the effect of different
values of η.

4.2.2 Resolution kernels

An advantage of the SOLA inversion method is that it emphasizes the actual resolving
power of the data, in a more objective way than other methods.
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Fig. 12 Resolution kernels A(k)(s) for the 1D SOLA inversion of the splittings of 53 acoustic dou-
blets. For each of the 12 targets, the resolution kernel is plotted as a function of dimensionless
cylindrical radius, on top of a gray-shaded vertical band that gives the position and width of the tar-
get.

Figure 12 plots the resolution kernels A(k)(s) defined in Appendix G for the 12
s-segments we target. All resolution kernels appear well peaked around the target,
except for the target near the center axis (s/ro = 0.4). Low scores in these regions are
expected, since all MAV flow kernels vanish on the axis (see Fig. 3). Negative lobes
present for most kernels indicate that the estimate of the flow rotation rate we retrieve
is not perfectly ‘unbiased’. We also note that the width of the resolution kernels at
mid-height is at least twice as large as the targets’ width.

4.2.3 Data fits

We now examine the fit to the data achieved by our inverted 1D models. Remember
that the SOLA method only provides the best model estimate at targets. We need a
complete s-profile to compute the predicted frequency splittings of the acoustic dou-
blets we inverted. We use MATLAB®’s modified Akima (Akima 1970) interpolation
method to construct a smooth ffluid(s) curve, imposing ffluid = 0 at s/ro = 1. We can
thus compare the measured frequency splittings, with their error bars, to the splittings
predicted by our best model. Figure 13 shows such a comparison for a libration phase
of 180◦. We see that our model can explain almost all measurements within their error
bars, with an average normalized misfit misfit ≃ 0.73, where misfit is defined as:

misfit =

√√√√〈(
δfpred − δfmeas

σ

)2
〉
, (12)
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Fig. 13 Measured peak-to-peak frequency splitting of our collection of 53 acoustic doublets for a
libration phase of 180◦, with their error bars (black symbols). The red symbols are the splittings
predicted from a smoothed s-profile of ffluid of our inverted model (grey-shaded targets in Fig. 12).
The (n, l, |m|) indices of the modes are indicated beneath the x-axis.

in which δfmeas is the measured splitting of a given doublet, σ is its error bar, and
δfpred is the splitting predicted by the inverted model for the same mode. The average
is performed over the 53 doublets of our collection.

4.3 2D SOLA flow inversion

We now turn to a 2D inversion, with the goal of examining how well our mode collection
constrains the z-invariance of fluid flow that characterizes Greenspan’s asymptotic
solution. We thus use the 2D kernels presented in section 1.2.2 to invert the same
collection of 53 splittings and retrieve ffluid(r, θ) at selected (r, θ) targets.

4.3.1 Fluid rotation rate maps

We chose 64 targets that cover most of an (r, θ) quarter-plane, as depicted in Fig. 14.
Remember that one can only retrieve flows that are symmetrical with respect to the
equator. Targets are placed on an (s, z) grid, so that we can draw smoothed s-profiles
of ffluid at different z, as depicted in Fig. 14c. The targets are disks, with radius equal
to 0.025, except for the z-column at s/ro = 0.25, where we chose a radius of 0.075, in
anticipation of a poor spatial resolution near the axis.

Figure 14 displays the results we obtain for a libration phase of 180◦, with η = 40.
Inverted ffluid/∆f at target locations are given in 14a, with an error shown in Fig.
14b. Figure 14c gathers the s-profiles obtained at all 6 z-lines. Value for each target is
given with a horizontal bar giving the target’s radius, and a vertical bar the estimated
error. Smooth s-profiles computed as in section 4.2 are also drawn.

Figure 15 gathers the fluid rotation rate ffluid s-profiles obtained from the inver-
sions at 10 libration phases. The results are very similar to those shown in Fig. 12
from the 1D inversion. The 2D inversion confirms the z-invariance of the flow. The
same deviations from Greenspan’s predictions show up for s/ro between 0.7 and 1.
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Fig. 14 2D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5
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size of the 64 chosen targets, and are colored with the value of the normalized fluid rotation rate
ffluid/∆f obtained by the inversion. (b) the inversion error is colored in a similar representation.
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Fig. 15 2D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5
Hz): normalized fluid rotation rate as a function of cylindrical radius for 10 libration phases (legend
in degrees). For each libration phase, the values obtained at the 6 values of z are drawn. The color
solid lines are the predictions from Greenspan’s flow at each libration phase delayed by 10◦.

4.3.2 Resolution kernels

Resolution kernels A(k)(r, θ) are displayed in Fig. 16. As expected, resolution is very
poor near the vertical axis. The kernels are rather well-peaked at target locations for
most other targets, but their radius at mid-height is at least twice as large as the
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Fig. 16 Resolution kernels A(k)(r, θ) for the 2D SOLA inversion of the splittings of 53 acoustic
doublets. For each of the 64 targets, the amplitude of the resolution kernel is color-mapped in a
meridional quarter-plane. A black circle indicates the position and radius of the target.

chosen target’s radius, like in the 1D s-inversion. However, we observe that the 2D-
inversion can clearly resolve the variation of flow rotation rate with z in most of the
domain. We can thus be confident that the near-coincidence of the 6 s-profiles for
each libration phase in Fig. 15 is a resolved feature of the flow, in agreement with
Greenspan’s theory.

4.3.3 Data fits

As discussed in section 4.2.3, we need a complete model in order to compute the
predicted splittings. We thus constructed a smooth model by first interpolating the
target’s results along s (as shown in Fig. 14), and then interpolating these profiles
in z. Both interpolations are performed with MATLAB®’s modified Akima (Akima
1970) interpolation. Fluid rotation rate is set to zero at the boundary (r/ro = 1).

We can then compute the frequency splitting predicted by our inverted model for
all 53 acoustic doublets. The fit to the data is almost identical to the fit of the 1D
SOLA inversion shown in Fig. 13, with misfit = 0.70.

4.4 Trade-offs

Despite the excellent agreement between measured splittings and their prediction from
Greenspan’s flow model (apart for the observed time-delay), the retrieval of the fluid
flow from these splittings appears somewhat disappointing. There is no problem with
the time-variation, which is already established from the data and its sinusoidal fit.
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However, one might have thought that the 1D s-inversion, with only 12 targets, would
fit Greenspan’s profile. It is not quite the case, as shown in Fig. 12.

OLA inversion methods are often presented as ‘parameter-free’ (e.g. see Zaroli
2019). This is true in the sense that no a priori information on the model smoothness,
for example, is needed. However, there remains a choice to be made on the trade-off
parameter η. All results presented so far were obtained with η = 40, for both the 1D-
and 2D-inversions.
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Fig. 17 Normalized fluid rotation rate as a function of cylindrical radius of target locations, from
the inversion of frequency splittings at a 180◦ libration phase, for different values of the η parameter.
The horizontal bars give the targets’ width, while the vertical bars are the inversion error. The blue
dotted line is Greenspan’s profile at a libration phase of 180◦, while the dashed blue line is the same
at a phase delayed by 10◦. (a) results from the inversions of measured splittings; (b) results from the
inversions of synthetic splittings computed from Greenspan’s model.

In Fig. 17 we illustrate the impact of different choices for η, in the example of a
1D-inversion for a libration phase of 180◦. Figure 17a compares the normalized fluid
rotation rate obtained at our 12 s-targets for four inversions with values of η: 10, 20,
40 and 80. The smoothed profile is also shown for η = 40, together with Greenspan’s
profiles for a libration phase of 180◦ (dotted line) and 190◦ (dashed line). We observe
that all models overestimate fluid velocity around s/ro = 0.5, and underestimate it
between s/ro = 0.6 and 0.9. This is a consequence of the trade-offs between these two
regions, which is also visible in the side lobes of the resolution kernels shown in Fig. 12.
Increasing η reduces the oscillation and widens the resolution kernels. It also reduces
the error on the inverted model, but this error only measures the propagation of the
data error in the ‘weighted average’ (Zaroli 2019). It does not reflect the deviation of
that weighted average from the true model. The average normalized misfit only weakly
depends upon η, with misfit = 0.73, 0.74, 0.73 and 0.83 for η = 10, 20, 40 and 80,
respectively.

Deviations of the inverted models from Greenspan’s flow model could be due to the
ellipticity of the ZoRo shell, which is not taken into account in our sensitivity kernels.
It could also be the sign of flow complexities that show up for strong enough libration
(Noir et al. 2009). They could also be due to limitations of the acquisition strategies,
or to a variation of the observed time-delay with mode numbers. We don’t think that
it is the case, because of the excellent agreement between observed splittings and those
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predicted by convolving Greenspan’s flow with the acoustic sensitivity kernels, and
also because synthetic tests display similar spurious oscillations. This is illustrated
in Fig. 17b, which shows profiles obtained from the inversions of synthetic splittings,
predicted by Greenspan’s flow model, using the same collection of modes, with their
individual error, and adding a random noise within that error range. Oscillations
around the true model (dotted blue line) are observed for the different values of η.
The reason is to be found in the limited spatial resolution allowed by the set of 53
splittings we could measure. Figure 3 shows that individual sensitivity kernels are a
bit wide, and that their complementarity is limited.

5 Limitations and perspectives

To date, Modal Acoustic Velocimetry has been primarily utilized for mapping fluid
flows in gas-filled containers under steady or statistically steady conditions (Triana
et al. 2014; Mautino 2016; Su et al. 2020; Su 2020). This study introduces and evaluates
two distinct strategies for acquiring acoustic data in environments with non-stationary
gas flows.

The first strategy is applicable to time-periodic flows. By employing a series of
long chirps, each offset by an increasing phase lag relative to the periodic flow, we can
extract the frequency splitting of a substantial collection of acoustic doublets (typically
60) from each spectrum in the series. This approach allows us to sample the flow at
various phases, resulting in a comprehensive flow map upon inversion, thanks to the
large number of recovered doublets.

The second strategy involves using a sequence of very short chirps that can track
the evolution of the flow. This method is suitable for monitoring non-periodic flows,
albeit with limited information derived from a small number of acoustic doublets
(typically 1 to 4). The high-resolution algorithm developed for this strategy offers a sig-
nificantly higher resolution of frequency splitting compared to classical measurements
from power spectra.

Conversely, the short chirp strategy offers limited flow information. Preliminary
tests combining both strategies have proven effective in enhancing precision, particu-
larly when the number of intervening frequencies is limited. However, this combined
approach is less successful when multiple modes are present within the considered time
window. Further refinement of this combined strategy could potentially yield better
results.

Both strategies have revealed a time delay of a few tenths of a second between
when an acoustic mode’s eigenfrequency is played and when it samples the flow. This
delay is likely due to the time required for a mode to build up, a phenomenon that
warrants further analysis. Libration-induced flows offer a unique unexpected tool for
investigating the buildup process of a large collection of acoustic modes.

Although data acquisition is relatively fast, post-processing is time-consuming,
requiring visual inspection of spectra for reliable mode identification and splitting
measurement. Currently, we lack splitting measurements for nS

±m
l doublets with

m ≲ l due to overlapping spectral peaks with neighboring doublets. For fundamental
doublets (n = 0), spectral peaks are wide and often ambiguous. However, synthetic
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spectra computed for Greenspan’s flow model fit these unresolved spectra well, indi-
cating the feasibility of extracting more information from the full frequency spectrum
or time-domain analysis. This suggests the potential for more automated or artificial
intelligence-based processing in the future.

Concerning the inversion, the use of spherical sensitivity kernels is an approxi-
mation that is acceptable given the current data precision, but spheroidal sensitivity
kernels (Albo et al. 2010) should be used as data improves.

6 Conclusion

We present measurements of libration-induced flows in a rapidly spinning gas-filled
spheroid. Such experiments are key for exploring the dynamics of rapidly spinning
bodies, such as stars or planetary cores. The strong centrifugal acceleration prevents
the use of classical PIV techniques, calling for a particle-free method. This led us to
adapt the recently proposed Modal Acoustic Velocimetry method (Triana et al. 2014)
to time-varying fluid flows, for which we imagined and tested two acquisition strategies.

The first strategy involves exciting a large collection of acoustic modes by playing
long-duration chirps (typically 100s) spanning a large frequency range (typically from
500 to 5 000 Hz) in order to obtain a good spectral resolution (typically 0.01 Hz) of
the resonance peaks, and thus of the frequency splitting produced by the flow. By
playing such chirps several times (typically 10 times) starting at successive phases of
the libration-induced flow, we can recover the time-evolution of the flow. The key is
to relate the time at which a given acoustic doublet is excited to the libration phase
at that instant.

The second strategy targets individual acoustic doublets, which we excite by a
succession of short chirps (typically spanning 80 Hz in 0.4s). Each chirp probes a
different phase of libration. For such a short chirp, a standard power spectrum is not
efficient at resolving the frequency splitting of the doublet. However, its duration is
long enough for hundreds of cycles to be played and recorded. We thus apply a high-
resolution algorithm that tests for the presence of a limited number of monochromatic
components and yields the two dominant frequencies, corresponding to the individual
singlets.

Both methods yield mode splittings that agree very well with the predictions
derived from Greenspan’s linear theory (see Fig. 6-9 and Fig. D4-D5). However, we
observe a small unexpected delay, which we attribute to the time needed for the acous-
tic mode to build up. A detailed study of this delay could bring interesting constraints
to this buildup process.

We then applied the SOLA inversion method to a set of 53 frequency splittings
of acoustic doublets, acquired for several phases of a libration-driven flow. The inver-
sion yields the fluid flow rotation rate ffluid as a function of cylindrical radius s
(1D-inversion) or in an (r, θ) meridional quarter-plane (2D-inversion). The retrieved
values, shown in Fig. 11 and 15, respectively, are in good agreement with Greenspan’s
solution for this libration flow. The flow amplitudes and time-variation are very well
retrieved, but the exact s-profiles of ffluid are not perfectly recovered. The analysis
of the resolution kernels, shown in Fig.s 12 and 16, indicates that the data offer a
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good (r, θ)-resolution, but over an averaging area of approximately 5% of a meridional
quarter-plane. The resolution vanishes near the vertical spin axis, and some trade-offs
are present, particularly in the equatorial region.

Our study paves the way for broader experimental studies of libration or precession
flows in more exotic regimes.

Supplementary information. Supplementary Material provides the audio file
example HP0111 per spe O15L3T12 3f.wav (30.8 Mo). The file is in the ‘WAV’ for-
mat and contains 11 channels sampled at 44100 Hz on 16 bits. The first eight channels
are the signals recorded by 8 microphones situated at a latitude of ±32◦ and different
longitudes. Channels 9 and 10 record a libration trigger signal, and a chirp start sig-
nal, respectively. Channel 11 records a magnetometer signal used as a rev-counter (see
Appendix C for details). The file contains the acoustic response of the ZoRo experi-
ment to a succession of 32 short signals simultaneously played on two loudspeakers at
latitudes +45◦ and −45◦ along the same meridian. Each of the 32 signals consists in
a short chirp, playing frequencies 2 360 to 2 398 Hz in 0.37s, followed by a silence of
equal duration. This chirp targets acoustic doublet 1S

±3
3 . Libration parameters are:

fo = 15 Hz, flib = 0.0841 Hz, and ∆f = 1.5 Hz.
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Appendix A Libration in a spheroid

Given a longitudinal libration of the spheroid given by Eq. 1, we derive the expression
of the fluid rotation rate ffluid(s, t) in the reference frame of the spinning spheroid.
The spheroid being specified by its equatorial req and polar rpol radii, we define

fEkman

fo
=

√
ν

2πfor2eq
= Ek1/2 and c =

rpol
req

.

The regime of interest is flib/fo ≪ 1 in our case, and the boundary Ekman layers can
then be considered as steady. Greenspan and co-workers (Greenspan and Howard 1963;
Greenspan 1968) have studied the spin-up of a fluid in axisymmetric containers of
geometry −g(s) ≤ z ≤ h(s). Using equation (5.17) of Greenspan and Howard (1963),
we obtain that the expression for ffluid(s, t) is the same as Eq. 2 for the sphere if the
ξ parameter is given by

ξ =
flib

fEkman

g + h

[1 + (g′)2]1/4 + [1 + (h′)2]1/4
, (A1)

where the prime denotes the derivative with respect to the cylindrical radius s. Con-
sidering the spheroid geometry g = h = c (1− s2)1/2, we retrieve that ξ−1 is given by
equation (A10) of Noir and Cébron (2013), i.e.

ξ =
flib

fEkman

h3/2

(h2 + c4s2)1/4
=

flib
fEkman

c

[1− s2(1− c2)]
1/4

(1− s2)3/4, (A2)

where the cylindrical radius s is now normalized by req. Since 1 + (h′)2 = h−2 in the
sphere (c = 1), ξ is easily formulated in function of the normalized semi-column height
h(s). By contrast, Eq. A2 cannot be simply derived from the formula in the sphere
(Eq. 2) where the normalized semi-column height h in the sphere would have been
replaced by that of the spheroid h = c (1− s2)1/2. Note finally that the fluid response
ffluid(s, t) can also be obtained for any values of flib/fo by considering time periodic
boundary layers, but at the price of a more complex expression (Cébron et al. 2021).
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Appendix B 2D sensitivity kernels

Figure B1 shows the 2D sensitivity kernels nK
m
l (r, θ) for the collection of 53 acoustic

doublets nS
±m
l inverted in this study. The ellipticity of ZoRo’s shell is ignored for

these kernels.

Fig. B1 Meridional map (upper half) of 2D sensitivity kernels nKm
l (r, θ) for the collection of 53

nS
±m
l acoustic doublets inverted in this article. Remember that all kernels are positive and symmetric

with respect to the equator.

Appendix C Experimental libration diagnostics

Our strategies require sound playing, sound recording, and mechanical driving of the
spheroid to be synchronized within a few hundredth of a second. We describe here
the steps taken to achieve this goal. The guiding idea is to record synchronization
signals together with the acoustic signals on the same data acquisition card, all writ-
ten is the same wave-format audio file. One typical file thus consists in 11 channels:
signals from 8 microphones, a libration nul-phase trigger, a chirp start trigger sig-
nal, and a magnetometer signal. The latter is used as a rev-counter: 3 magnets are
installed at known longitudes at the equator of the spheroid, yielding a specific signa-
ture as they pass in front of a magnetometer chip fixed in the Lab reference frame. An
Audacity®screenshot of part of a typical audio file is shown in Fig. C2. The complete
file is given as Supplementary Material.

Figure C3 illustrates how we exploit the audio files to check the response of the
motor to the libration instructions, and to synchronize the acoustic records with the
libration record. Time is counted from the start of the audio file. The blue vertical
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Fig. C2 Audacity®screenshot of part of a typical audio file. Only channels 7 to 11 are shown.
Channels 7 and 8 are microphone records. Channel 9 shows one libration nul-phase trigger. Five chirp
start triggers are seen on channel 10. Channel 11 records the magnetometer signal that is used as a
rev-counter.

stems mark times at which the libration phase is an integer multiple of 2π, as read
from channel 9. The red vertical stems mark chirp starts obtained from channel 10.
The blue dots give the instantaneous spin rate of the spheroid computed from the
magnetometer signal of channel 11. It can be compared with the requested spin rate
(green line) constructed from the libration parameters (fo = 15 Hz, flib = 0.084114
Hz, ∆f = 1.5 Hz) timed by channel 9’s trigger.

For this to work, the motor drive should execute the instructions with a minimal
delay. The Kollmorgen AKM73Q®motor drive executes instructions sent by a National
Instruments real-time compactRIO (cRIO) controller via an EtherCAT®network com-
munication protocol. The requested motor spin rate, and the measured torque and spin
rate are exchanged between the cRIO and the servo every 1ms (larger than the 62.5µs
lower limit for this protocol). The measured values are averaged over 10 samples. The
whole experiment is controlled by a home-made program, written in National Instru-
ment LabVIEW®language, and operated through a multi-tabs user interface running
on a Windows®Personal Computer (PC) connected to the cRIO via ethernet. All other
measurements are retrieved through Data Acquisition Cards connected to this PC.

The PID settings of the motor drive result from a compromise: minimize the
time-delay between instructed and achieved spin rate, while keeping the level of instan-
taneous torque fluctuations low enough to limit noise and allow for large libration
amplitudes.

Our acoustic chirps are computed by a Python program and written in a six
channels WAV file. The first four channels are the signals sent to each of the four
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Fig. C3 Example of libration diagnostics. Instantaneous spinning rate of the spheroid as a function
of time. The blue vertical stems mark times at which the libration phase is an integer multiple of
2π. The red vertical stems mark chirp starts. The blue dots give the instantaneous spin rate of the
spheroid computed from the magnetometer signal. It can be compared with the requested spin rate
(green line) constructed from the libration parameters (fo = 15 Hz, flib = 0.084114 Hz, ∆f = 1.5
Hz). ¡

loudspeakers, while the last two only contain a trigger that marks the chirp start. All
six channels are played by an ASUS®Xonar DGX audio card in the main PC. Tests
reveal that the signals sent by the audio card are delayed by 15ms on channels O5
and O6, and by 5ms on channel O4. These delays are corrected for in the synchro-
nization software. We checked that no delay was introduced on all channels of the
TASCAM®US-16x8 Audio/MIDI Interface used to process the microphone signals.

Appendix D Additional frequency splitting plots

Figures D4 and D5 show frequency splitting versus libration phase for our collection
of 53 acoustic doublets nS

±m
l . ZoRo is filled with nitrogen at atmospheric pressure.

Libration parameters are: fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. Chirps
played from 500 to 5 000 Hz in 82s. Measured splittings are plotted with their error
bars. The dashed lines are sine-interpolations of the measurements. The solid lines
are predictions obtained by convolving the geostrophic azimuthal flow of Greenspan’s
theory with the splitting kernel of each acoustic doublet.

Appendix E High-resolution algorithm

Many theoretical, numerical, and experimental works have been performed on the
determination of discrete frequencies in a multi-tone audible signal that can be gener-
alized to a complex spectrum search (Kay and Marple 1981). High-resolution methods
were developed such as the multiple signal classification (MUSIC) technique (Rajan
and Bhatta 1993; Candy and Sullivan 1989; Chouhan and Anand 1993; Krasny and
Antonyuk 1997), the Prony method (Shang et al. 1988), and the more sophisticated
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ESPRIT algorithm (Roy and Kailath 1989; Roy et al. 2003). This latter approach
is similar to the more general matrix-pencil method (Hua and Sarkar 1990; Laroche
1993).

The originality of IRWIN (Roux et al. 2004; Philippe et al. 2008) is to combine a
modified Prony method (Scharf and Demeure 1991) with an iterative approach that
looks for the frequency occurrence when different sets of data points are chosen within
the time record.

We present here the main steps of the algorithm. We assume that the acoustic
pressure field recorded at a given microphone is dominated by M monochromatic
signals. Naming δt the sampling time step of the record, we can express the time-record
P (n) over a time-window nδt as:

P (n) =
M∑

m=1

ãm [exp (iωmδt)]
n
=

M∑
m=1

ãmznm, (E3)

where ωm is the angular frequency of the m monochromatic component, and ãm its
amplitude. Our goal is to identify the components zm of largest amplitude from a col-
lection of time-windows with increasing number of points n, i.e. solving the following
set of equations:

P (0) = ã1 + ã2 + ...+ ãM
P (1) = ã1z1 + ã2z2 + ...+ ãMzM
...

P (M − 1) = ã1z
M−1
1 + ã2z

M−1
2 + ...+ ãMzM−1

M

...

P (2M − 1) = ã1z
2M−1
1 + ã2z

2M−1
2 + ...+ ãMz2M−1

M

(E4)

The first step is to symbolically invert the first M equations of this system to
express amplitudes ã1 to ãM as a function of the data P (0) to P (M − 1) and of the
phases z1 to zM . Replacing ã1 to ãM in the last M equations, one obtains a system
that is strongly non-linear in the variables zm but linear in the Elementary Symmetric
Polynomials (ESP) Em of the zm unknowns, given by:

E1 =

M∑
i=1

zi, E2 =

M∑
i=1

M∑
j=i+1

zizj , ..., EM = πM
i=1zi. (E5)

One thus recovers the following set of linear equations:
P (M) = P (M − 1)E1 − P (M − 2)E2 + ...+ (−1)M−1P (0)EM

P (M + 1) = P (M)E1 − P (M − 1)E2 + ...+ (−1)M−1P (1)EM

...
P (2M − 1) = P (2M − 2)E1 − P (2M − 3)E2 + ...+ (−1)M−1P (M − 1)EM

(E6)

The ESP are then easily obtained. The unknowns zm are obtained as the roots of a
polynomial of degree M whose coefficients are the ESP E1 to EM .
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Appendix F Acoustic mode buildup

Both strategies we developed rely on the capture of the flow by a given acoustic mode.
When the flow is time-dependent, the question is: when does the mode capture the
flow? The results presented in sections 3.1 and 3.2 both indicate that this capture
occurs a few tenths of a second after the resonance peak frequency of the mode is
played. Here, we show that this is comparable to the time it takes for a mode to build
up or to fade away.

We tested mode buildup by first identifying the resonant frequency of a few modes,
playing 10s-long monochromatic sounds, with a step-by-step frequency increase of 1
Hz. The frequency yielding the largest amplitude is the resonant frequency. We then
played a sine signal at this frequency for 10s, and observed the raise of the response
on our microphone array.

Figure F6 shows the growth and decay of mode 1S
3
3 at one microphone. The enve-

lope of the signals can be fit by 1−exp (−t/τ) and exp (−t/τ) functions (Trusler 1991,
p.219), defining buildup time τ . In the ZoRo experiment at rest, our measurements
yield buildup times τ = 0.30, 0.22, and 0.20s for modes 0S

2
2 , 1S

3
3 and 2S

0
1 , respec-

tively. We have not conducted a systematic survey of these buildup times, and the
effect of the rotation, of playing a chirp, and of the convolution with the time-varying
flow remain to be explored. However, this analysis supports our interpretation of the
observed time-delay of our observation with respect to Greenspan’s prediction as being
due to mode buildup.

Appendix G SOLA inversion

We recall here the SOLA algorithm, closely following the rules and notations given
by Zaroli (2019). The SOLA method aims at finding the optimal unbiased weighted
average m̂(k) of the true model m(r) over a given target k, defined by a function
T (k)(r), typically a ball centered on r(k). For that, it minimizes a cost function:

C(k) =

∫ [
A(k)(r)− T (k)(r)

]2
d3r+ η2σ2

m̂(k) (G7)

subject to the unimodular condition:∫
A(k)(r) d3r = 1. (G8)

The first term of C(k) measures the deviation of the averaging kernel from the target
kernel, while the second term measures the model variance, weighted by the square
of the trade-off parameter η. Note that, following Zaroli (2019), we choose the same
value of η for all targets k.
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Because of the linear relationship between the model parameters and the measured
data, one can express the optimal model we are looking for as:

m̂(k) =

N∑
i=1

x
(k)
i di, (G9)

with N the number of measurements di. The inversion consists in finding the coeffi-

cients x
(k)
i that minimize the cost function C(k). One can then recover the weighted

average m̂(k) from Eq. G9, and the averaging kernel (resolution kernel) by:

A(k)(r) =
N∑
i=1

x
(k)
i Ki(r), (G10)

where Ki(r) is the sensitivity kernel of the ith data. The propagated model error is
obtained from:

σ2
m̂(k) =

N∑
i=1

(
x
(k)
i

)2

. (G11)

Note that σm̂(k) only measures the error brought by propagating the data errors to
the model space. It is not an estimate of the ‘true’ error, as defined as the weighted
average m̂(k) estimate minus the ‘true’ model m(r(k)).

We refer the reader to section 2 of Zaroli (2019) for a detailed description of the

SOLA inversion procedure that yields the requested x
(k)
i coefficients.

In our application, the data vector di is the set of peak-to-peak frequency split-
tings, corrected for the Coriolis splitting of the spinning shell, and normalized by their
measurement error. The weighted average m̂(k) is the inverted rotation rate ffluid of
the fluid flow in the spinning shell reference frame, at a given target k. The target
function T (r)(k) is defined on an s-segment between s(k) − w(k) and s(k) + w(k) in
the 1D-inversion, and on a disk of radius w(k) centered on an (r, θ)(k) point in the
2D-inversion. In both cases, its uniform amplitude a(k) is set in order for T (r)(k) to
satisfy the unimodular condition (Eq. G8).
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Fig. D4 Frequency splitting (in Hertz) versus libration phase (in degrees) for 27 equatorially sym-

metric nS
|m|
l doublets. Libration parameters: fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. From

ten phase-offset 82s-long chirps. Solid line: splitting prediction from Greenspan’s theory. Dashed line:
least-square sine fit to measured splittings.
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Fig. D5 Same as Fig. D4 for 26 equatorially anti-symmetric nS
|m|
l doublets.
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Fig. F6 An example of mode buildup and decay. Doublet 1S3
3 was excited, by playing a 10s-long

monochromatic sound at its resonance frequency of 2362 Hz. The record at one of the microphones
is displayed. (a) Zoom on the growth of the acoustic mode. (b) Zoom on its decay. The envelopes
are well fit by 1 − exp (−t/τ) and exp (−t/τ) (magenta dashed lines) with τ = 0.22s and τ = 0.24s,
respectively.
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