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ABSTRACT

This paper presents an original data mining approach for

extracting pixel evolutions and sub-evolutions from Satellite

Image Time Series. Those evolutions, namely the frequent

grouped sequential patterns, are required to cover a minimum

surface and to affect pixels that are sufficiently connected.

These spatial constraints are actively used to face large data

volumes and to select evolutions making sense for end-users.

Successful experiments on an optical and a radar SITS are

presented.

Index Terms— satellite image times series, data min-

ing, optical images, radar images, frequent grouped sequen-

tial patterns.

1. INTRODUCTION

Remote sensing techniques provide end-users with ever grow-

ing volumes of data. Indeed, the resolution of acquisitions

is continually improved while the number of available chan-

nels also increases. In addition, acquisition rates have been

boosted during the last few years. It is thus possible to gather

large series of images concerning a given geographical zone.

This kind of dataset is termed as a Satellite Image Time Series
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(SITS). The analysis of SITS raises new challenges as data

volumes to be processed are huge and as both the temporal

and the spatial dimensions have to be taken into account. Var-

ious techniques allowing to characterize evolutions in SITS

have been proposed. Some of those techniques explore the

data at the region level, more precisely, they extract regions

from all the images so as to provide end-users with the evo-

lutions of these regions (e.g., [1]). Other techniques link de-

scriptors to each image of the SITS. A time sequence of de-

scriptors is thus build and sub-evolutions that match temporal

and frequency constraints are retained as the result (e.g., [2]).

Pixel-based techniques have also been proposed, focusing ei-

ther on specific evolution occurring at some time stamp, i.e.,

pixel change detection techniques (e.g., [3], [4]) or on the

characterization of the whole sequence of pixel values and

not of the sub-evolutions (e.g., synthetic channels-based tech-

niques as proposed in [5] or clustering techniques as detailed

in [6]). It is to notice that change detection techniques also

work at the object/region level (but still needing assumptions

about the type evolutions). Though similar to our approach,

in the sense that generally both temporal and spatial dimen-

sions are taken into account, none of these techniques can

extract sets of grouped pixels sharing a same evolution or

sub-evolution without first extracting objects/regions (e.g., [1,

2]) and/or without making any assumption about the type of

evolution. For example, change detection techniques look

for specific change classes while other pixel-based techniques

only consider full evolutions and not sub-evolutions (e.g., [5,

6]). Furthermore, when searching for sub-evolutions, we aim

at extracting them without giving any priority to any date of

acquisition, which prevents us from using clustering tech-



niques. In [7], we presented a frequent sequential pattern-

based approach that is preliminary to the one of this paper.

It did not take into account the spatial grouping tendencies

of the pixels that share a given evolution. It was thus possi-

ble to extract an evolution that holds for a lot of pixels that

are not connected to each other. As a consequence, the evo-

lutions provided to the end-user were sometimes difficult to

interpret. Other works (e.g., [8, 9]) also rely on frequent se-

quential patterns to analyze spatio-temporal datasets. In [8],

frequent sub-trajectories of objects, i.e. sequences of spatial

locations sampled at consecutive timestamps, are mined. Tra-

jectory mining can be performed only if trajectories are given

as prior information, which requires objects to be identified.

In [9], frequent sequential patterns are used to express spatio-

temporal relations. Nevertheless, this requires end-users to set

both temporal and spatial constraints. In this paper, no prior

assumption about temporal information is made. This paper

is organized as follows: Section2 introduces the concept of

frequent grouped sequential pattern which is designed to ex-

tract meaningful pixel evolutions. It also details the manner

in which such patterns can be efficiently extracted. Section 3

reports successful experiments on two different real datasets

while Section 4 ends this paper.

2. FGS-PATTERNS

This paper presents an alternative and complementary ap-

proach, relying on evolution and sub-evolution extraction at

the pixel level. A pixel evolution or sub-evolution is described

using a sequential pattern, denoted A1 → A2 → . . . →
An, where A1, A2, . . . , An are symbols representing discrete

pixel states at n different dates which are not necessarily con-

secutive. Those patterns were initially proposed in [10] to

mine sequences of commercial transactions. We intend to

use those pixel evolutions and sub-evolutions, to find, in an

unsupervised way, groups of pixels that could be of inter-

est for end-users. In order to output pixel sets making sense

both spatially and temporally, sets having at least σ pixels

(i.e. a minimum surface) sharing the same temporal evo-

lution α are selected. Pixels sharing α are said to be cov-

ered by α and are denoted cov(α). Furthermore, those same

pixels are also required to exceed a minimum connectivity

threshold κ. The connectivity measure that is used is called

the average connectivity. It gives, for the pixels sharing α,

the average number of neighbor pixels also sharing α. The

8 nearest neighbors (8-NN) are taken into account. Let us

consider a local connectivity function LC((x, y), α) that re-

turns, for a pixel (x, y), the number of neighbors covered by

α. The average connectivity of α is then defined as follows:

AC(α) =
P

(x,y)∈cov(α) LC((x,y),α)

|cov(α)| . Formally, an evolution

(or sub-evolution) α is thus retained if |cov(α)| ≥ σ and if

AC(α) ≥ κ. In this case, it is called a Frequent Grouped

Sequential Pattern (FGS-pattern). FGS-patterns are a type of

frequent sequential patterns. Indeed, a sequential pattern is

frequent only if the constraint |cov(α)| ≥ σ applies.

There are several algorithms for extracting frequent se-

quential patterns in a sound and complete way (e.g., [10, 11]).

The main idea, used to reduce the execution times, is to take

advantage of the anti-monotonicity property of the support.

For an evolution/sub-evolution α, support(α) = |cov(α)|.
This anti-monotonicity property can be informally stated

as follows: if a sequential pattern α has a support λ then

any pattern that contains at least the labels in α (also called

super-pattern), in the same order, has a support equal to λ or

lesser than λ. For example, if support(D → A) = λ then

support(D → B → A) ≤ λ. This property is commonly

used by the sequential pattern extraction algorithms to limit

the number of patterns to consider. For instance, if D → A

has already been checked and found to be not frequent, then

there is no need to test pattern D → B → A since it cannot

be frequent. Thanks to that property, a drastic reduction of

the search space is made possible when looking for frequent

sequential patterns.

The average connectivity constraint used to define FGS-

patterns is not anti-monotonic, but it can be observed that for

any frequent sequential pattern α since |cov(α)| ≥ σ, then

AC(α) =
P

(x,y)∈cov(α) LC((x,y),α)

|cov(α)| ≤
P

(x,y)∈cov(α) LC((x,y),α)

σ

Thus a frequent pattern α that does not satisfy
P

(x,y)∈cov(α) LC((x,y),α)

σ
≥ κ cannot be a FGS-pattern.

And, if we consider the conjunction of constraints C =

support(α) ≥ σ ∧
P

(x,y)∈cov(α) LC((x,y),α)

σ
≥ κ, this con-

junction is anti-monotonic, since the value∑
(x,y)∈cov(α) LC((x, y), α) cannot increase for super-pa-

tterns of α. This conjunction can be thus actively used to

prune the search space. We integrated the anti-monotonic

conjunction C into the PrefixGrowth algorithm [11], that is a

recent and efficient algorithm for sequential pattern mining

under constraints. Beside checking C to prune the search

space, the only required modification is to verify before out-

putting a pattern α that AC(α) ≥ κ, since satisfying C does

not implies satisfying the average connectivity constraint.

The implementation of the whole algorithm has been done in

C using our own data structures.

3. EXPERIMENTS

All experiments have been run on a standard PC (Intel Core

2 @3GHz, 4 GB RAM, Linux kernel 2.6). Experiments on

the ADAM (Data Assimilation by Agro-Modeling) [12] SITS

are first reported. It is a SPOT SITS covering a rural zone

in South Romania, near Bucharest which dedicated to the as-

sessment of spatial data assimilation techniques within agro-

nomic models. We selected 20 images between October 2000

and July 2001 containing 1000*1000 pixels each. They have

been captured via three bands by SPOT satellites: B1 in green

(0.5 - 0.59 µm), B2 in red (0.61 - 0.68 µm) and B3 in near in-



frared (NIR 0.78 - 0.89 µm). Their resolution is 20mx20m.

For each pixel, and for each date, we consider a synthetic

band B4. B4 is established by calculating the Normalized

Difference Vegetation Index (NDVI) [13] using bands B2 and

B3. B4 is thus defined as B4 = B3−B2
B3+B2 . The NDVI index is

widely used for detecting live green plant canopies in multi-

spectral remote sensing data. An image quantization is per-

formed by splitting the B4 value domain in 3 intervals that are

equally populated. In order to minimize the influence of pos-

sible calibration defaults, quantization is separately done for

each image. For a given acquisition date, a pixel is described

by a single label that indicates which interval this pixel value

belongs to. Label 1 relates to low NDVI values, label 2 repre-

sents mid NDVI values and label 3 denotes high NDVI values.

Having at disposal the ground truth for the fields that belong

to the Romanian National Agricultural Research and Devel-

opment Institute (5.9% of the scene), we were able to evaluate

our results. Parameter κ is to 6 to get pixels highly connected

to each others and σ is set to 1% in order to ask for FGS-

patterns relating to areas covering at least 4 km2 (the whole

image covers 400 km2), i.e. relating to the main cultures of

the scene. Extraction times do not exceed 600 seconds. In

order to focus on the most specific evolution, maximal FGS-

patterns are focused on, i.e. FGS-patterns in the output having

no super-pattern also present in the output. We obtain 32 max-

imal patterns out of the 474 FGS-patterns that are extracted.

One of these maximal patterns is 2 → 3 → 3 → 3 → 3 →
3 → 3 → 3 → 3 → 3 → 3 → 1 → 1 → 1 → 1. The pixels

covered by that pattern are represented in Figure 1b. Accord-

ing to the ground truth, it covers 61.4% of the pixels of the

ground truth that relate to wheat culture, and 96.3% of the

pixels it covers in the area where the ground truth is available,

correspond to wheat culture. Interesting information can be

drawn from such patterns. For instance, as it can be observed,

some holes (small black areas) appear within the fields (large

polygon almost completely filled in white) in Figure 1. The

pixels of those holes are not covered by the pattern covering

the ones in the white areas. Their temporal behavior is thus

different from their surrounding pixels though they should

be related to the same cultures. Some of those holes match

pedological differences that have been reported by the experts

while other holes are likely to be due to different fertilization

and/or irrigation conditions. Such information is particularly

interesting as it can be used to adapt locally soil fertilization

or irrigation. Similar results are obtained for the other FGS-

patterns. If occurrence dates are taken into account it is even

possible to distinguish between the various species of a same

type of culture. If shorter FGS-patterns, i.e. more general

evolutions are considered, evolutions such as the one char-

acterizing paths, fallows, cities and field borders or the one

matching cultivated fields can be extracted.

The second dataset corresponds to interferograms and

cover the lake Mead area, where the soil surface around the

lake is affected by a subsidence/uplift motion that is corre-

Fig. 1: Localization of pattern 2 → 3 → 3 → 3 → 3 → 3 →
3 → 3 → 3 → 3 → 3 → 1 → 1 → 1 → 1.

lated with water level fluctuations. We selected a subset of

20 interferograms obtained from images acquired between

1996 and 2008 and which have been computed using Syn-

thetic Aperture Radar (SAR) images provided by the ERS

satellites. Each interferogram gives the interferometric phase

difference of its acquisition date relative to the master date

1995-10-08. The atmospheric phase screen of the master

image is assigned to the master date. The analyzed images

(759x716 pixels, 130m×130m resolution) contain phase de-

lays due to both atmospheric and deformation patterns. Phase

delays were also quantized using 3 intervals. A strong posi-

tive value is interpreted as subsidence while a strong negative

value relates to uplift. Setting σ to 10000 (σrel ≈ 2%) and

κ to 6 provides 10173 FGS-patterns. In order to consider

precise information, FGS-patterns having as many events

as possible have been selected. We thus found 5 patterns

having 15 events. The first labels of 4 patterns indicate im-

portant positive phase differences w.r.t. the master image

and their last labels indicate important negative phase differ-

ences w.r.t. the same master image. Such patterns, called

water level-related patterns, appear as correlated with water

level fluctuations. The water level indeed increased between

1995-10-08 and 1998, while it decreased after 2000. In other

words, those patterns suggest that there should be pixels for

which subsidence (resp., uplift) is observed when the water

level increases (resp., decreases). Such a behavior should be

confirmed by a positive regression coefficient between phase

delays and water level fluctuations. To check this assumption,

we computed that regression coefficient using the whole inter-

ferometric dataset. Large positive regression coefficients are

obtained on the localization of the water level-related patterns

(see Figure 2). The regression coefficient is represented with

a wrapped color scale (red/yellow/green/blue/violet). A posi-

tive (resp., negative) color cycle, from stable areas (i.e., image

borders) to deformation zones, corresponds to a subsidence

(resp., uplift) of 0.7 mm when the water level increases by 1

m. The remaining pattern relates to an evolution stating that



Fig. 2: Superposition of the joint localization of the water

level-related patterns (enlightened) and regression coefficient

(between phase delays and water level fluctuations).

pixels are affected by a continuous uplift. One of the largest

area affected by this pattern is the Las Vegas one which is

probably due to decreased water pumping in this part of Las

Vegas aquifers. The localization of those five patterns well

corresponds to zones where ground deformation is identified.

Moreover, though atmospheric perturbations were present,

none of these patterns report them, which demonstrates the

ability of FGS-patterns to discard such random phenomena.

4. CONCLUSION

The original method presented in this paper is complemen-

tary to the existing techniques. In practice, it turns out to

be effective in finding interesting groups of pixels, sharing

meaningful common temporal evolutions, and that would not

be exhibited by other approaches. The proposed approach

is scalable and quite generic as successful experiments had

been run on two real and large datasets: an optical and a radar

SITS. Future work directions include using FGS-patterns to

provide a single clustering of the whole SITS.
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