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ABSTRACT

In this paper, an original approach for analyzing InSAR time

series is presented. The interferograms forming such time se-

ries allow ground deformation occurring between acquisition

dates to be measured with high precision. Nevertheless, they

can be affected by variations in atmospheric conditions. The

proposed approach is designed to handle these varying atmo-

spheric conditions. The stratified atmosphere is first removed

and the phase evolution is built using a Small BAseline Sub-

sets (SBAS) strategy. Then, frequent grouped sequential pat-

terns are extracted. These patterns allow InSAR time series to

be described spatially and temporally while discarding atmo-

spheric perturbations. Experimental results on an ENVISAT

InSAR time series covering the Haiyuan fault in the north-

eastern boundary of the Tibetan plateau are presented.

Index Terms— InSAR, time series, data mining, frequent

grouped sequential patterns, SBAS

1. INTRODUCTION

Repeat pass SAR Interferometry (InSAR) measures phase

differences between SAR images acquired at different dates.
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The resulting interferograms allow ground deformation oc-

curring between the acquisition dates to be measured over

large areas with a high precision: a fraction of the wave-

length (5.6 cm in C band). The two main limitations of this

technique are surface changes, which reduce the coherence

between SAR images, and variations in atmospheric condi-

tions between the different acquisitions. The loss of phase

information is easy to detect by thresholding coherence im-

ages whereas the atmospheric perturbations are difficult to

discriminate from the displacement signal. The contribution

due to the stratified atmosphere can be roughly estimated

by using digital elevation models (DEM) and meteorolog-

ical data, but the effects of the turbulent atmosphere still

degrade the interferograms. Different approaches have been

developed to reduce these difficulties by using interferogram

time series: the permanent scatterer (PS) technique [1] which

analyses the temporal signal on specific targets, the Small

BAseline Subsets (SBAS) strategy [2] which selects the most

reliable pairs according to temporal and spatial baselines

or the STAMPS method [3] which incorporates both ap-

proaches. They are used by geophysicists to monitor ground

surface deformations and their temporal evolutions.

In this paper, the data are first prepared by removing con-

tributions from the variations of the stratified troposphere [4].

An SBAS-based technique is then applied to compute the

phase evolution throughout time. This data preparation step

is described in Section 2. The application of such a method

to large Satellite Image Time Series (SITS) creates huge

amounts of data to be analyzed. Furthermore, these data



can still be affected by the turbulent atmosphere. Powerful

techniques are required to extract the relevant spatiotemporal

information carried by InSAR images. A recent data mining

technique [5] allowing the characterization of SITS spatially

and temporally is used. It extracts so-called frequent grouped

sequential patterns. As reported in [5], this technique can

discard atmospheric perturbations while extracting ground

deformation. These patterns are presented in Section 3. Fi-

nally, experimental results on a ENVISAT InSAR time series

covering the Haiyuan fault in the north-eastern boundary of

the Tibetan plateau are described in Section 4.

2. DATA PREPARATION

The data are first prepared using a refined version of the SBAS

approach [6]. The goal of this InSAR multitemporal process-

ing stage is to derive displacement measurements by taking

data characteristics into account without introducing any spe-

cific user knowledge to the studied ground deformation. The

processing chain includes the following steps:

1. SAR image coregistration to a single master and inter-

ferogram generation with local adaptive range filtering,

2. joint inversion of residual orbital and atmospheric de-

lays,

3. validation of atmospheric corrections using the ERA40

global atmospheric model (ECMWF) and correction of

each unwrapped interferogram [7],

4. inversion of the interferogram series on a given track

to obtain the increments of LOS radar delays between

acquisition dates, adapting the SBAS time series anal-

ysis technique [8, 9]. As no smoothing is applied, both

ground deformation and atmospheric turbulence con-

tribute to the phase evolution.

This processing chain has been applied to an ENVISAT

InSAR time series covering the Haiyuan fault in the north-

eastern boundary of the Tibetan plateau. This areas was af-

fected by several major earthquakes in the early 20th century.

The InSAR technique is applied to locate and measure pos-

sible continuous crustal deformations. A set of 24 raw SAR

images from an ascending track, acquired over the 2003-2009

period, has been used to generate 130 interferograms [10].

The 24 Line of Sight (LOS) displacement images resulting

from the temporal inversion are illustrated on 3 different dates

in Figure 1.

3. FGS-PATTERNS

Once the data have been prepared, they can be mined to un-

cover the relevant spatiotemporal structures that are present

in InSAR time series. This data mining stage is an automatic

screening technique which explores the huge amount of mea-

surements which are still affected by noise, processing and at-

mospheric artefacts. The goal is to extract FGS-patterns and

to present them to the end-user to draw attention to possible

unknown displacements or displacement evolutions.

This approach relies on evolution and sub-evolution ex-

traction at the pixel level. A pixel evolution or sub-evolution

is described using a sequential pattern, denoted A1 → A2 →
. . . → An, where A1, A2, . . . , An are symbols representing

discrete pixel states at n different dates which are not neces-

sarily consecutive. These pixel evolutions and sub-evolutions

are used to find, in an unsupervised way, groups of pixels that

could be of interest to end-users. In order to output pixel sets

making sense spatially and temporally, sets having at least σ

pixels (i.e. a minimum surface) sharing the same temporal

evolution α are selected. Pixels sharing α are said to be cov-

ered by α and are denoted cov(α). The size |cov(α)| is called

the support of α and is denoted support(α). The pixels cov-

ered by a pattern are also required to exceed a minimum con-

nectivity threshold κ. The connectivity measure used is called

the average connectivity. It gives, for the pixels sharing α, the

average number of neighboring pixels also sharing α. The 8

nearest neighbors (8-NN) are taken into consideration. Let us

consider a local connectivity function LC((x, y), α) that re-

turns, for a pixel (x, y), the number of neighbors covered by

α. The average connectivity of α is then defined as follows:

AC(α) =
∑

(x,y)∈cov(α) LC((x,y),α)

|cov(α)| . Formally, an evolution

(or sub-evolution) α is thus retained if |cov(α)| ≥ σ and if

AC(α) ≥ κ. In this case, it is called a Frequent Grouped

Sequential Pattern (FGS-pattern). These constraints can be

actively pushed into data mining algorithms (e.g., [11, 12])

to prune the search space and to make extractions tractable.

These operative aspects are detailed in [13]. Our prototype,

based on the PrefixGrowth [12] algorithm, has been written in

C using our own data structures.

4. INSAR TIME SERIES MINING: RESULTS

The 24 Line of Sight (LOS) displacement images (781× 501
pixels) resulting from the temporal inversion (see Section 1)

have been mined to extract FGS-patterns (see Section 3. Neg-

ative values correspond to motion away from the satellite,

along the Line-Of-Sight. The whole displacement time series

was considered and the input values were strongly quantified

using 3 symbols (’1’, ’2’ and ’3’) by using the 33rd and the

66th centiles. Symbol ’1’ represents large negative values,

symbol ’2’ corresponds to low negative values and symbol

’3’ is linked to positive values. The FGS-pattern extraction

was run on a standard laptop (Intel Core i5 CPU M 520 @

2.40 GHz, 4 GB of RAM, Linux 2.6.37 kernel) by setting the

minimum surface threshold σ to 100000 pixels and the av-

erage connectivity threshold κ to 6. Within less than 1 hour

and 8 minutes, using 2 GB of RAM, 3413 FGS-patterns were



extracted along with their respective surface and average con-

nectivity measurements. In order to focus on the most specific

patterns, the longest FGS-patterns were selected. This leads

to 18 patterns with ten symbols and one pattern having eleven

symbols. For each longest FGS-pattern, an image was built

to observe the pixels that are affected by the evolution given

by the pattern. Color coding was used to indicate the date at

which the evolution has been fully observed. The dates of the

time series are linearly linked to a color palette which can be

found in 2. The red colors relate to the early dates while the

violet colors correspond to late dates.

The results obtained for 2 different FGS-patterns, 1,1,1,1,-

1,1,1,1,1,1 and 3,3,3,3,3,3,3,3,3,3, are illustrated in Figure 2.

In the near field, creep is revealed by both patterns, coherent

with left-lateral motion. For both patterns, rainbows can be

observed: these pixels evolutions thus propagate throughout

space and time. The propagation that is observed for pattern

1,1,1,1,1,1,1,1,1,1 is not radial w.r.t. to the creeping zone, and

creep migration along the fault could explain such patterns.

5. CONCLUSION

These results illustrate the potential of a combined use of

advanced InSAR multitemporal processing for deriving dis-

placement time series and a data mining technique for ex-

tracting, in an unsupervised way, spatiotemporal features cor-

responding to slow ground deformations. The refined SBAS

approach is intended to reduce, as far as possible, systemic

uncertainty, whereas the data mining technique offers end-

users the possibility of exploring huge time series and discov-

ering temporal evolutions which could be hidden by random

uncertainty.
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(a) 2006/09/21 (first acquisition date, radar geometry)

(b) 2008/02/28

(c) 2009/08/06 (last acquistion date)

Fig. 1. LOS displacement at 3 different dates.

(a) FGS-pattern 1,1,1,1,1,1,1,1,1,1

(b) FGS-pattern 3,3,3,3,3,3,3,3,3,3

(c) Color palette

Fig. 2. Spatiotemporal localization of 2 FGS-patterns along

with the used color palette.


