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Outline

- Brief overview of passive seismic imaging
* “Noise correlation theorem” and the seismic imaging

« Signal pre-processing to correct for inhomogeneity of the
wavefield

 Using seismic arrays to characterize the wavefield spatial
coherence

A large-scale example: seismic wavefield seen by USArray



Seismological observations

records of ground motion (displacement, velocity, or accelerations) by seismographs
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*Thousands of permanent seismometers
are operating continuously

Some temporary networks regroup tens
and hundreds of thousands of instruments

sInstalled on or close to the Earth’s surface

*Recorded frequencies: 0.001 — 100 Hz




Seismological observations

records of ground motion (displacement, velocity, or accelerations) by seismographs

one day of seismic record

i

I

| I

T

X 10+4



Seismological observations

records of ground motion (displacement, velocity, or accelerations) by seismographs

one day of seismic record
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ballistic waves used in traditional tomography




Seismic waves emitted by an earthquake
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Body waves

sample deep parts of the
Earth

PandS

multiplicity of phases because
of internal reflections

Surface waves

sample the crust and upper
mantle

Rayleigh and Love



Traditional passive seismic imaging uses earthquakes

Strong signals
Sources localized in space and time
Many methods developed since 2-nd half of the 20" century

Inversion of:
- travel times
- amplitudes
- full waveforms

For:
- Vp
- Vs
- Q (attenuation)
P
- anisotropy

Body-wave tomography

Surface-wave tomography




Seismological Inverse problem

earthquake record
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D = SeM

D - seismic data
S - seismic source earthquakes
M - media (Earth) S - location, focal mechanism, time function

we need to know S to find M




Shortcomings of the earthquakes-based methods

 earthquakes do not occur everywhere: limited resolution of resulted images
 earthquakes do not occur continuously: no continuous monitoring possible

 earthquakes rarely occur at the same place: difficult to make repeatable measurements

Preliminary Determination of Epicenters
358,214 Events, 1963 - 1998

Figure 1.2-2: Comparison of frequency, magnitude, and energy release.
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Seismological Inverse problem Advantage of seismic noise:
Can be recorded anywhere and at any time

earthquake record noise
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Noise Correlation Theorem

For a random wavefield with sources distributed homogeneously
everywhere in the medium it can been shown that:

a ., ~ f = =) . 2 -
- Ca(7) = o (Ga(T.74,7B) — Go(—T7,74,78))

aT

noise cross-correlation Green function

Computing noise cross-correlations between A and B
is equivalent to an event occurred at A and recorded at B

D=SeM = C(D)=M

D - seismic data
S - seismic source
M - media (Earth)

correlation eliminates source complexity




Application of the ‘noise correlation theorem’ to
seismological data
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Every receiver acts as a virtual source
recorded by all other receivers

N(N-1)/2 virtual seismograms
Imaging methods developed for

earthquake-generated signals can be
applied to virtual seismograms




Global noise-based surface wave tomography
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Noise-based surface wave tomography of the

subsurface above an oil reservoir
Seismic anisotropy

1

10t

Northward (km)

10

o)

orthward (km)

Eastward (km)

~. N

Eastward (km)

P : 450
10-( "? : : -
o Eiig# \ X " \ 440
! \ [V
N & \$ e e 430
| ] 20@
£ 7 w . : E
- :
Z sp {a00 3
5 |8
2 4 390 &
30 380
2-
a70
1.
360
0
0
Eastward (kn
Valhall
Network

2400 receivers

Mordret et al., 2013



Noise based anisotropic tomography
of the Toba Volcano in Indonesia
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Noise-based monitoring

« When media changes its Green functions change

 Green functions can be reconstructed from noise
cross-correlations

* Noise cross-correlations can be computed in a
nearly-continuous way providing a mean for a
monitoring of the Earth’s interior



Monitoring Piton de la Fournaise volcano (La Reunion Island)

9 days before eruption of June 2000 4 days before eruption of June 2000
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Detected velocity variations are localized in the vicinity of the main crater: consistent
with a shallow source of deformation

Brenguier et al., 2008




Application of the ‘noise correlation theorem’ to

seismological data

*Synthesis of virtual seismograms: ~N? — where N is number of used
receivers

*Previously developed imaging methods applied to virtual seismograms
*Proliferation of applications at different scales since 2005

*Noise-based surface wave tomography become a ‘standard’ and very
broadly used method

«Attenuation tomography

*First demonstrations of the feasibility of the noise-based body wave
imaging

*Noise-based monitoring of volcanic and seismogenic areas and of
industrial objects

*Empirical prediction of the ground motion from possible future
earthquakes for the seismic hazard evaluation



For a

Noise Correlation Theorem

random wavefield with sources distributed homogeneously

everywhere in the medium it can been shown that:

]
= Cup(r)?
dT .

noise cross-correlation

4a

(Ga(T.74,78) — Go(—7,74.7B))

Green function

Computing noise cross-correlations between A and B
is equivalent to an event occurred at A and recorded at B

To what extend the noise correlation theorem
can be applied to real seismological data?

To what extend the real seismic records can
be considered as a random diffuse noise?



Examples of seismic records
2 days of continuous record by a seismic station in a subduction zone
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Examples of seismic records
2 days of continuous record by a seismic station in a subduction zone
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Spectrum of the seismic noise

Fourier spectrum from one day of seismic noise (August 21, 2003; station OBN)

atmosphere oceanic oceanic
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Generation of microseisms

theory from Longuet-Higgins (1950)

incident wave

oceanic gravity waves

flected
g e elicctcaliaie

coastal area

coupling between gravity
waves and sea floor

generation of microseisms

deep ocean
no wave-floor interaction

primary microseism is excited at frequencies corresponding to the
spectrum of incoming oceanic gravity waves (periods of 10-20 s)

secondary microseism is exited at doubled frequencies due to the
nonlinear interaction between incident and reflected waves
(periods of 5-10 s)




Need for the seismic records preprocessing

Seismic records are not stationary in time

Seismic noise is dominated by strong spectral peaks

Before computing cross-correlations individual seismic
records must be preprocessed

- identification of windows containing strong events
- rejection of strong events

- equalization of amplitudes in time and spectral domains

Preprocessing is a complex and often nonlinear set of
operations



Examples of seismic records
2 days of continuous record by a seismic station in a subduction zone
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Noise records pre-processing: time normalization

seismograms
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Noise records pre-processing:
spectral normalization (whitening)
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Noise Correlation Theorem

For a random wavefield with sources distributed homogeneously
everywhere in the medium it can been shown that:

2
correlation =0 4 — 4 - = A
of preprocessed ? 1a (C’a (7.74,7B) — Gal—T, T4, "B‘.')

n records n Green function

Computing noise cross-correlations between A and B
is equivalent to an event occurred at A and recorded at B

To what extend the preprocessing corrects for
the noise time and spectral inhomogeneity?

How can we characterize the structure of the
correlated wavefield?



Network Covariance Matrix

Cross-correlation between records u;i(t) and u;j(t) at receivers i and j:
CCy(1) = [ ultyu,(t+D)dz = iFFT|U (@)U, (@)]
t - time, w - frequency, Ui(w) and Uj(w) - Fourier transforms of u;(t) and u;(t)

Covariance matrix:
CM (@) = (U (@)U, (@))

< > - time average

more details in poster by Léonard Seydoux



Network Covariance Matrix

Synthetic wavefield: Distribution of eigenvalues
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Network Covariance Matrix
Example with real data: records of an earthquake by a network of 21 seismometers

55°36' 55°42' 55°48' 55° 54!
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1000 2000 3000
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more details in poster by Léonard Seydoux



Network Covariance Matrix
Example with real data: records of an earthquake by a network of 21 seismometers
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more details in poster by Léonard Seydoux



Network Covariance Matrix
Subwindow i Averaging window i
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Covariance matrix
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Beamforming of multiple body wave phases with USArray

Figure 3.5-2: Selection of body phases and

their ray paths.
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more details in poster by Lise Retailleau



Beamforming of multiple body wave phases with USArray
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Beamforming of multiple body wave phases with USArray
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more details in poster by Lise Retailleau



Frequency (Hz)

Beamforming of multiple body wave phases with USArray
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26 s microseism

b)

discovered by Oliver in 1962
source located by Holcomb in 1980
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a)

26 s microseism

b)

discovered by Oliver in 1962
source located by Holcomb in 1980
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discovered by Oliver in 1962

26 s microseism source located by Holcomb in 1980
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26 s microseism

discovered by Oliver in 1962
source located by Holcomb in 1980
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‘localized in space and very monochromatic
nearly permanent source

‘located in Gulf of Guinea at ~ (0S,0W)

-antipode image (or independent source) at ~

(0S, 180W)

‘unknown generating mechanism (special
resonance in the ocean? volcanic activity?)
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Some conclusions

Seismic wavefield in the Earth is not fully random
and diffuse

Seismic records must be pre-processed before
cross-correlation to obtain a reasonable
approximation of Green functions

Seismic arrays can be used to characaterize the
structure of the correlated wavefield

We should think about array-based signal
(wavefield) pre-processing

Some sources of seismic noise remain enigmatic
and their understanding is a strong scientific
challenge
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