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e General topic: correlation-based imaging with noise sources.
e What about intensity only measurements 7
e What about the role of scattering 7

e Particular application: Ghost imaging.
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Scalar wave equation and Green’s function

e In this talk, we consider the scalar wave model in R®:

1 O%u
c?(x) Ot?

— Agu = n(t, &)

n(t,a): source.
c(@): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

In the Fourier domain:

we have

where the time-harmonic Green’s function G(w, &, %) is the solution of the Helmholtz

equation

with the Sommerfeld radiation condition (¢(&) = co at infinity):
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Green’s function estimation with ambient noise sources (1/3)

1 d*u
c2 (&) ot?

e Sources n(t,®): Gaussian random process, stationary in time, with mean zero and

covariance
(n(t1, g1)n(t2, g2)) = F(ta — t1)K(41)d(g1 — Go)
(-): statistical average.

The function F is the power spectral density of the sources.
The function K characterizes the spatial support of the sources.

e The empirical cross correlation:

1 [T
1 / w(t, @)t + 7., &) dt
T Jo
converges in probability as T — oo to the statistical cross correlation C'Y) given by
CW(r, &, &) = (u(0,&)u(r,&>))
1
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Green’s function estimation with ambient noise sources (2/3)
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Cross correlation with noise sources distributed on a closed surface 0B(0, L):
CO(r, &, &

1 — A — —\ A — -\ — T
To) = —/dw/ do(Y)G(w, T1,Y)G(w, T2, §) F(w)e
2m dB(0,L)
By Helmholtz-Kirchhoff identity,

oL 21w
CB1,CB2> T G(w7 ) —

/ dg(g)é(wyilag)é((*}?iQ)g)
€0 JoB(o,L)
we have
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Green’s function

8.CV (7, &1, B2

estimation with ambient noise sources (3/3)
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e The cross correlation of noise signals recorded by two passive sensors is related to
the Green’s function between the sensors.

— the passive sensors can be transformed into virtual sources.

e This result requires rather strong conditions on the noise sources (uniform
distribution) [Schuster, CUP (2009), Wapenaar et al., Geophysics, 75 (2010)].
e Weaker results (for travel time estimation) can be obtained with weaker

conditions [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



Reflector imaging with a passive receiver array

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,&,))r=1,... n, are recorded by the receivers (&,),=1,... N, (A).
e The reflector (¢) is imaged by migration of the cross correlation matrix [1]:

— w’r‘/ - w’l"_ — —
I(§°) = Z Cr (| gl | Coy |,wr,ww)

1 T
with  Cr (7, &y, &) = = / u(t + 7, &, )u(t, &, )dt
0
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Good image provided the ambient noise illumination is long (in time) and diversified
(in angle) [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009).



A successful application: seismic exploration below an overburden

Data: {u(t,@r;&s),t e R,r=1,...,Ny,s=1,...
Correlations: {C’(t Tr, L), teRr,r' =1,...,N;}
C(t, &, @) =0 [
Imaging by migration of correlations [Bakulin

and Calvert, Geophysics, 71 (2006)]
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Inverse Problems 28, 075002 (2012): SIIMS 7, 1210 (2014); SIIMS 8, 248 (2014).



What about intensity only measurements ?

e The analysis so far assumes that the recorded signals (u(t)).er are time-resolved.

This is OK in seismology and in acoustics (sampling rate > operating frequency).

e In optics, only intensities can be measured (time averages of the square of the wave

field):

I(t) = 2;6 /OO H(Tle)u(t+7)2d7'

where T¢ is the integration time of the sensor and II is such that [II(s)ds = 1.
Assume that the wave field is:

u(t) = exp ( — iwot)v(t) + c.c.,

where c.c. stands for complex conjugate, wo is the carrier frequency, and v(t) is the
complex-valued “slowly varying envelope”, whose Fourier transform has a typical
width B that is much smaller than wyg.
If woTe > 1> BT, then
2
I(t) ~ Ju(t)]".
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Ghost imaging

Beam splitter
Source P

4>

N

o

Object (mask) Bucket detecto

VNN High-resolution detector |
e T Correlator

e Noise source (laser light passed through a rotating glass diffuser).

e without object in path 1; a high-resolution detector measures the spatially-resolved
intensity I (¢, x).

e with object (mask) in path 2; a single-pixel detector measures the
spatially-integrated intensity I2(%).

Experimental result: the correlation of I; (-, ) and I3(-) is an image of the object [1,2].

[1] A. Valenciaet al., PRL 94, 063601 (2005): [2] J. H. Shapiro et al., Quantum Inf. Process1 949 (2012).



Ghost imaging

e Wave equation in paths 1 and 2:
1 (92Uj
c;(€) Ot

— Azuj =e “'n(t,x)d(z) + c.c., = (x,2) € R® xR,

e Noise source:

<n(t, w)m> — F(t —t')exp ( _ —)5(:13 — )

7
with the width of F'(w) much smaller than wo.
e Wave fields:
w;(t, &) = v, (t,&)e " + c.c., j=1,2

e Intensity measurements:

Li(t,2) = |vi(t, (2, L))|” in the plane of the high-resolution detector

I>(t) = / lva(t, (&', L + Lo))|?da’ in the plane of the bucket detector
R2

e Correlation:

1

Cr(x) = T/OT L (L, 2) I (1) dt — (% /OT (¢, )d (% /OT L (1)dt)
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e Resolution analysis in homogeneous media:

— 2
<n(t, 2)n(t :13’)> — F(t —t')exp ( _ @)5(3; —2),
T'o
Paraxial Green’s function (valid when Ao < 79 < L, with Ao = 2mwco/wo):
A 1 -wo ‘wo | —y|?
G 3 7L ) 70 — T ( —L )
o(wo, (@, L), (y,0) = g exp (i "L 1 =7

Model for the object: Mask 7 (x) in the plane z = L.

e Result:
cW(x) = / h(z — )T (r)|*dr
R2
with . , -
T0 Ed 2 coL
o=t (- D). - 25
() 98722 P 4,0210 Pgi0 2w2r?

Resolution: pgio ~ AoL/r0 (Rayleigh resolution formula).

Sketch of ideal proof. Use the Gaussian summation rule (the fourth-order
moments of Gaussian random fields can be expressed in terms of sums of products of
second-order moments).

If v(ax) is a complex symmetric circular Gaussian random field, then

Cov(ju(@)|*, [v(@")|*) = |Cov (v(@), v(@))|"
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e Extension for partially coherent source (Gauss-Schell model):

S , z+a  |z—af
<n(t, )t a:’)> — F(t — ') exp ( - 4 )
e Result:
cWx)= [ H(x,»)|T)|dr
RQ
with
2 2 2 2 2
T0PoCo |z — 7| | + 7|
(e o )
64wy g Rz 40z 4Ry,
2 272 272 2
2 2 Po 2 coL 2 coL To
pgll pglO + 4 ) IOgIO 2&)87"(2)7 gil 20)80(2) 4

- Loss of resolution due to the partial coherence of the source: pgi1 > pgio-

- Fully incoherent case pg — 0: cf previous case pgi1 = Pgio-

4 2 2 2
. C
- Fully coherent case ro = po: the kernel is H(x,r) = —-0r%— 4p 00— exp ( — 2'“’2' — 2|r2| ),
woPgi1 Pgi1 P

which means there is no resolution at all.
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Wave propagation in a random medium

e Random medium model: 10l .‘ o TR -
1 1 g\ NEY S )
_ = 5
CQ(CE)—C—Q(l—i-ILL(CU)) » ‘O\. ." -
0 > 0 ) ® .. - -

co is a reference speed, 12 2T Ty

-9, o . ‘- |
((&) is a zero-mean random process. ol S5 P

10, .- t L-T

0 -5 0 5 10

AsGo(w, &, 4) + =5 Co(w, &, §) = —3(& - 9)
0

The physical Green’s function (random and unknown):

2
A — = w — A — = — —
AzG(w, &, 9) + — (1+ p(&))G(w, &, §) = —6(Z - §)
0

e A detailed stochastic analysis is possible in different regimes of separation of scales

(small wavelength, large propagation distance, large bandwidth, ...).
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Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, z))

2

(0% + AL )i+ °CJ—2 (1+ p(z, 2))0 = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

W 3 , & Z
w= g, pl@) = e n(S ),
the function ¢° defined by
iR . w T
u(w,zc,z)—e 0¢(€—4,62,2’)
satisfies
402 e 21 2N\ Je
e2920° + (20£0,6° + AL d° —|———,u(£13,—2)qb = 0.
Co c§ € £

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, z))

2

(0% + AL )i+ °CJ—2 (1+ p(z, 2))0 = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

w— 2 u(x, z) — 63,u(

r =z
64’ )3

g2’ g2

the function ¢° defined by

N 15— A wWw &
i (w,@,2) = € 0 (5, 5 2)

satisfies ,
= . = NG 1 NG
e*920° + (2@2(9245 + A0 + w—Q—,u(a:, %)qb ) = 0.

Co cy € £
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid
and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation [1]

2
20,0+ AL+ = B(w,2)d =0

with B(x, z) white noise E[B(x, 2)B(x’, 2')] = y(x — ') §(z — 2/),
v(x) = [T E[u(0,0)p(w, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

e Consider the time-harmonic form of the scalar wave equation (& = (x, 2))

2

(02 + AL)a + ‘Z—Q(Hu(m 2))i = 0.
0

Consider the paraxial regime A < [. < L. More precisely, in the scaled regime

W s T Z
w= g, al@) = (S 5),
the function ¢° defined by
W (w,x,2) = e’ =1co (ﬁg(i hd 2)

satisfies

*1
0267 + (2z— 0:0° + ALg +°"—gu(az,€%)¢e) = 0.

Co CO
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation [1]

ZC()

dd = —Aqudz — 2—(/5 odB(x, z)

with B(«, z) Brownian field E[B(x, 2)B(x',2')] = v(x — x') 2 A 2/,
— [ E[(0,0)u(w, 2)]d=.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19 318 (2009).



Moment calculations in the random paraxial regime

Consider
’LCO

dd = —Amdz + 2—¢o dB(x, z)

starting from ¢(zx, z = 0) = f(x).

e By Ito’s formula,
’LC() w2 ( )

d A

E[]

and therefore
2

E[d(z.2)] = do(a. z) exp ( — 1LY

8¢h

where y(x) = [7_E[u(0,0)u(x, 2)]dz and o is the solution in the homogeneous
medium.

— Strong damping of the coherent wave, with the scattering mean free path

lsca — 86(2)/(’7/(0)(’02)
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e The mean Wigner transform defined by
Wize,q) = [exp (g v)E [d(z e+ D)i(ze - Y|y

is the angularly-resolved mean wave energy density. By Ito’s formula,

%_V: + C—Oq VW = m /&(k) [W(q — k) — W(q)}dk,

starting from W(z =0, x q) Wo(x, q), the Wigner transform of the initial field f.

Wi(z,x,q) =

exp 26 (z — q—) — iy’ - q)Wo (&)
X exp ( i / v(y' + 5%) - V(O)dz’)dgdy’,
where Wy is defined in terms of the initial field f as:
W& y) = [exp (i€ 2)f(@+ )T (@~ ¥)do

e When L > ls.,: diffusion in g-space; one can identify the transport mean free path
lir = lscalo,wi /g It is > lsea (strongly forward scattering).

Here the correlation radius of the medium [.., is defined by:

’Y(w) /Y( )[1 R |CL'| /lcor (|CL'| /lcor)]
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e In a random medium, by Itd’s formula, one can write a closed-form equation for the

n-th order moment.
Depending on the regime (l. < ro or l. > ro, where rg is the beam width), the wave

fluctuations may have Gaussian statistics (scintillation regime) or not (spot-dancing

regime) [1].

[1] J. Garnier and K. Sglna, Comm. Part. Differ. Equat. 39, 626 (2014). preprint (2015).



e Let us consider the fourth-order moment:

My(z,71,72,q1,q2) = E[é(z, 1 —I—’I“Q—;Ch —|—Q2)$(Z, T1 —’rg—;—ql — q2)
Xg(z, 1 —I—’PQ;Ql — qQ)g<Z’ 1 — T2 ; qi _|_q2)}

Take Fourier transform

M4(Z7€17€27C17C2) — / M4(z,q1,q2,’l°1,’l°2)
X exp ( — iql . €1 — i’l"l . Cl — ’ti . €2 — i’l"g . C2)dr1d’r2dq1dq2
M, satisfies

O i A S PP
824 + %(51 G+ & C2)M4 = 4(#)203 /7(’4) {M4(£1 —k, & — kK, (1, ¢y)

FMy(&, — k€0, &y o — k) Mu(& + k€5 — K, ¢, Co)
FMa(&) + K, €0, CryCo — k) — 2Mu(€1,€5,¢1,Co)

_M4(£17£2 T ka ClaCQ T k) o M4(£17£2 - ka ClaCQ o k)] dk

[1] J. Garnier and K. Sglna, Comm. Part. Differ. Equat. 39, 626 (2014). preprint (2015).



Ghost imaging in heterogeneous media

Beam splitter
Source P |
—» — |
4> ‘ 2 ‘
—» = I
i .

Object (mask) Bucket detecto

High-resolution detector
Correlator

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent atmosphere).

They are two independent realizations of the same distribution.
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e If the correlation function of the noise sources is

|

(n(t, 2y, @) = F(t =) exp (- S )o(a — o).

To

if we denote the integrated correlation function of the medium fluctuations by

@) = [ Blu(0,0)u(x.2))d:

e then
Cc () = H(z - )| T (v)|"dy,
R
with , ; ;
_ T 1BI° r(roB)wil | .worex - 3
H(x) = 2973 L4 /Rg dﬁexp( 2 2c3 T coL )
and v2(x) = [ ( v(xs)ds.
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e If the medium is strongly scattering, in the sense that the propagation distance is

larger than the scattering mean free path L/lsca > 1, with

- 8ci
=500
e then
4 2 2
T'0Pgio !iB|
H(x) = exp (= 15 ),
28772[/4/);12 4/)212
with
2 2 4 40(%[43 2 CgLQ
pg12 - pglO nglscalgor, pglO — 2&)3,’%

and the correlation radius of the medium [.o, is defined by:
v(@) = Y(0)[1 — |z|* /e + o(|z|* /1eor)]-

— Scattering only slightly reduces the resolution !
This imaging method is robust with respect to medium noise. It gives an image even
when L /lsca > 1. The image resolution is reduced when L/l > 1.
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Ghost imaging in heterogeneous identical media

Beam splitter

Source |

> - |
— > 9

> 2 !

i .

Object (mask) Bucket detecto

High-resolution detector
Correlator

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent atmosphere).

Imagine that they are the same realization (just for the beauty of the analysis).
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e If the correlation function of the noise sources is

(n(t, @)@ = Ft — )exp (— 25 - o),

7o
if we denote the integrated correlation function of the medium fluctuations by
v(@) = [ Elu(0,0)u(e, 2))dz

— o0

if L/lsca > 1, with
o 8ci
T (00

if y(x) = v(0)[1 — |2|* /lcor + ol||*/lcor )],

e then
V@) = [ Ha—y)ITw) dy,
with ) e
H(x) = o8 274 P ( - 4[)213)7
with the radius
1 _ 1 n 16 L

Pgig Pgio lscalZor
— the radius of the convolution kernel is reduced by scattering and can even be
smaller than the Rayleigh resolution formula: enhanced resolution compared to the

homogeneous case (similar phenomenon observed in time-reversal experiments) !
Cargese May 2015



Ghost imaging in heterogeneous/homogeneous media

Beam splitter
Source P I
4» | 2 |
— R<) I
i I

Object (mask) Bucket detecto

High-resolution detector o /
Correlator

The medium in path 2 is heterogeneous. The medium in path 1 is homogeneous.
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Ghost imaging with a virtual high-resolution detector

Source I
- - |
|

4>

I
Object (mask) Bucket detecto

~Numerical wave
solver

» Correlator

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than the integrated transmitted intensity I2(t).

- The realization of the source is known (use of a Spatial Light Modulator) and the
medium is taken to be homogeneous in the “virtual path 1”7 — one can compute the
field (and therefore its intensity I1(t,«)) in the “virtual” output plane of path 1
[J.H. Shapiro, Phys. Rev. A, 78 (2008)].
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e If the correlation function of the noise sources is

. 2
<n(t, 2)n( a:’)> — F(t —t')exp ( _ |‘7'f—2|)5(w —2),
0
if we denote the integrated correlation function of the medium fluctuations by
v(@) = [ Elu(0,0)u(e, 2))dz

— 0

if L/lsca > 1, with

I 8ch
Y(0)wg’
if v(x) = 7(0)[1 — |z|? /12, + o(|x|?/I2..)],
e then
C () = H(z - )| T (v)|"dy,
R
with 4 o
T0Pgio |33|2
7—[ €Tr) = eXp ( _ )7
(@) 2872 L4p2,, 4pgia
with the radius
2 2 2C(2)L3
Pgia = Pgio T+ nglscalgor.

—» a one-pixel camera can give a high-resolution image of the object in scattering

media!
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Conclusion

e Imaging with noise sources and/or through scattering media is possible using

correlation-based techniques.
e First application (with time-resolved measurements): seismic interferometry.
e Second application (with intensity only measurements): ghost imaging.

e Many other applications !
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