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• General topic: correlation-based imaging with noise sources.

• What about intensity only measurements ?

• What about the role of scattering ?

• Particular application: Ghost imaging.
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Scalar wave equation and Green’s function

• In this talk, we consider the scalar wave model in R
3:

1

c2(~x)

∂2u

∂t2
−∆~xu = n(t, ~x)

n(t, ~x): source.

c(~x): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

In the Fourier domain:

û(ω, ~x) =

∫

u(t, ~x)eiωtdt

we have

û(ω, ~x) =

∫

Ĝ(ω, ~x, ~y)n̂(ω, ~y)d~y

where the time-harmonic Green’s function Ĝ(ω, ~x, ~y) is the solution of the Helmholtz

equation

∆~xĜ+
ω2

c2(~x)
Ĝ = −δ(~x− ~y),

with the Sommerfeld radiation condition (c(~x) = c0 at infinity):

lim
|~x|→∞

|~x|
( ~x

|~x|
· ∇~x − i

ω

c0

)

Ĝ(ω, ~x, ~y) = 0
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Green’s function estimation with ambient noise sources (1/3)

1

c2(~x)

∂2u

∂t2
−∆~xu = n(t, ~x)

• Sources n(t, ~x): Gaussian random process, stationary in time, with mean zero and

covariance
〈

n(t1, ~y1)n(t2, ~y2)
〉

= F (t2 − t1)K(~y1)δ(~y1 − ~y2)

〈·〉: statistical average.

The function F̂ is the power spectral density of the sources.

The function K characterizes the spatial support of the sources.

• The empirical cross correlation:

CT (τ, ~x1, ~x2) =
1

T

∫ T

0

u(t, ~x1)u(t+ τ, ~x2)dt

converges in probability as T → ∞ to the statistical cross correlation C(1) given by

C(1)(τ, ~x1, ~x2) =
〈

u(0, ~x1)u(τ, ~x2)
〉

=
1

2π

∫

d~y

∫

dωĜ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ (ω)e−iωτ
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Green’s function estimation with ambient noise sources (2/3)

x
x

B(0,L)

1
2

Cross correlation with noise sources distributed on a closed surface ∂B(0, L):

C(1)(τ, ~x1, ~x2) =
1

2π

∫

dω

∫

∂B(0,L)

dσ(~y)Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)F̂ (ω)e−iωτ

By Helmholtz-Kirchhoff identity,

Ĝ(ω, ~x1, ~x2)− Ĝ(ω, ~x1, ~x2) =
2iω

c0

∫

∂B(0,L)

dσ(~y)Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)

we have

C(1)(τ, ~x1, ~x2) =
c0
4π

∫

F̂ (ω)

ω
Im

(

Ĝ(ω, ~x1, ~x2)
)

e−iωτdω
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Green’s function estimation with ambient noise sources (3/3)

x
x

B(0,L)

1
2

∂τC
(1)(τ, ~x1, ~x2) = −

ic0
4π

∫

F̂ (ω)Im
(

Ĝ(ω, ~x1, ~x2)
)

e−iωτdω

= −
c0
2

(

F ∗τ G(τ, ~x1, ~x2)− F ∗τ G(−τ, ~x1, ~x2)
)

• The cross correlation of noise signals recorded by two passive sensors is related to

the Green’s function between the sensors.

→֒ the passive sensors can be transformed into virtual sources.

• This result requires rather strong conditions on the noise sources (uniform

distribution) [Schuster, CUP (2009), Wapenaar et al., Geophysics, 75 (2010)].

• Weaker results (for travel time estimation) can be obtained with weaker

conditions [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



Reflector imaging with a passive receiver array

• Ambient noise sources (◦) emit stationary random signals.

• The signals (u(t, ~xr))r=1,...,Nr are recorded by the receivers (~xr)r=1,...,Nr (N).

• The reflector (�) is imaged by migration of the cross correlation matrix [1]:

I(~yS) =

Nr
∑

r,r′=1

CT

( |~xr′ − ~yS |

c0
+

|~xr − ~yS |

c0
, ~xr, ~xr′

)

with CT (τ, ~xr, ~xr′) =
1

T

∫ T

0

u(t+ τ, ~xr′)u(t, ~xr)dt
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Good image provided the ambient noise illumination is long (in time) and diversified

(in angle) [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



A successful application: seismic exploration below an overburden

Data: {u(t, ~xr; ~xs), t ∈ R, r = 1, . . . , Nr, s = 1, . . . , Ns}

Correlations: {C(t, ~xr, ~xr′), t ∈ R, r, r′ = 1, . . . , Nr}

C(t, ~xr, ~xr′) =
∑Ns

s=1

∫∞

−∞
u(t′ + t, ~xr; ~xs)u(t

′, ~xr′ ; ~xs)dt
′

Imaging by migration of correlations [Bakulin

and Calvert, Geophysics, 71 (2006)]
From Bakulin and Calvert

geometric set-up data migration correlation migration [1]

[1] J. Garnier et al., Inverse Problems 28, 075002 (2012); SIIMS 7, 1210 (2014); SIIMS 8, 248 (2014).



What about intensity only measurements ?

• The analysis so far assumes that the recorded signals (u(t))t∈R are time-resolved.

This is OK in seismology and in acoustics (sampling rate > operating frequency).

• In optics, only intensities can be measured (time averages of the square of the wave

field):

I(t) =
1

2Te

∫ ∞

−∞

Π
( τ

Te

)

u(t+ τ)2dτ

where Te is the integration time of the sensor and Π is such that
∫

Π(s)ds = 1.

Assume that the wave field is:

u(t) = exp
(

− iω0t
)

v(t) + c.c.,

where c.c. stands for complex conjugate, ω0 is the carrier frequency, and v(t) is the

complex-valued “slowly varying envelope”, whose Fourier transform has a typical

width B that is much smaller than ω0.

If ω0Te ≫ 1 ≫ BTe, then

I(t) ≃ |v(t)|2.
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Ghost imaging

• Noise source (laser light passed through a rotating glass diffuser).

• without object in path 1; a high-resolution detector measures the spatially-resolved

intensity I1(t,x).

• with object (mask) in path 2; a single-pixel detector measures the

spatially-integrated intensity I2(t).

Experimental result: the correlation of I1(·,x) and I2(·) is an image of the object [1,2].

[1] A. Valencia et al., PRL 94, 063601 (2005); [2] J. H. Shapiro et al., Quantum Inf. Process 1 949 (2012).



Ghost imaging

• Wave equation in paths 1 and 2:

1

c2j (~x)

∂2uj

∂t2
−∆~xuj = e−iω0tn(t,x)δ(z) + c.c., ~x = (x, z) ∈ R

2 × R, j = 1, 2

• Noise source:
〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x|2

r20

)

δ(x− x
′)

with the width of F̂ (ω) much smaller than ω0.

• Wave fields:

uj(t, ~x) = vj(t, ~x)e
−iω0t + c.c., j = 1, 2

• Intensity measurements:

I1(t,x) = |v1(t, (x, L))|
2 in the plane of the high-resolution detector

I2(t) =

∫

R2

|v2(t, (x
′, L+ L0))|

2dx′ in the plane of the bucket detector

• Correlation:

CT (x) =
1

T

∫ T

0

I1(t,x)I2(t)dt−
( 1

T

∫ T

0

I1(t,x)dt
)( 1

T

∫ T

0

I2(t)dt
)
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• Resolution analysis in homogeneous media:

〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x|2

r20

)

δ(x− x
′),

Paraxial Green’s function (valid when λ0 ≪ r0 ≪ L, with λ0 = 2πc0/ω0):

Ĝ0

(

ω0, (x, L), (y, 0)
)

=
1

4πL
exp

(

i
ω0

c0
L+ i

ω0

c0

|x− y|2

2L

)

Model for the object: Mask T (x) in the plane z = L.

• Result:

C(1)(x) =

∫

R2

h(x− r)|T (r)|2dr

with

h(x) =
r40

28π2L2
exp

(

−
|x|2

4ρ2gi0

)

, ρ2gi0 =
c20L

2

2ω2
0r

2
0

Resolution: ρgi0 ∼ λ0L/r0 (Rayleigh resolution formula).

Sketch of ideal proof. Use the Gaussian summation rule (the fourth-order

moments of Gaussian random fields can be expressed in terms of sums of products of

second-order moments).

If v(x) is a complex symmetric circular Gaussian random field, then

Cov
(

|v(x)|2, |v(x′)|2
)

=
∣

∣Cov
(

v(x), v(x′)
)∣

∣

2
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• Extension for partially coherent source (Gauss-Schell model):

〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x+ x′|2

4r20
−

|x− x′|2

4ρ20

)

• Result:

C(1)(x) =

∫

R2

H(x, r)|T (r)|2dr

with

H(x, r) =
r20ρ

2
0c

2
0

64ω4
0ρ

2
gi1R

2
gi1

exp
(

−
|x− r|2

4ρ2gi1
−

|x+ r|2

4R2
gi1

)

,

ρ2gi1 = ρ2gi0 +
ρ20
4
, ρ2gi0 =

c20L
2

2ω2
0r

2
0

, R2
gi1 =

c20L
2

2ω2
0ρ

2
0

+
r20
4

- Loss of resolution due to the partial coherence of the source: ρgi1 > ρgi0.

- Fully incoherent case ρ0 → 0: cf previous case ρgi1 = ρgi0.

- Fully coherent case r0 = ρ0: the kernel is H(x, r) =
ρ40c

2
0

64ω4
0
ρ2
gi1

exp
(

− |x|2

2ρ2
gi1

− |r|2

2ρ2
gi1

)

,

which means there is no resolution at all.
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Wave propagation in a random medium

• Random medium model:

1

c2(~x)
=

1

c20

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.

• The background Green’s function (deterministic and known):

∆~xĜ0(ω, ~x, ~y) +
ω2

c20
Ĝ0(ω, ~x, ~y) = −δ(~x− ~y)

The physical Green’s function (random and unknown):

∆~xĜ(ω, ~x, ~y) +
ω2

c20

(

1 + µ(~x)
)

Ĝ(ω, ~x, ~y) = −δ(~x− ~y)

• A detailed stochastic analysis is possible in different regimes of separation of scales

(small wavelength, large propagation distance, large bandwidth, ...).
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Wave propagation in a random medium: the paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime λ ≪ lc ≪ L. More precisely, in the scaled regime

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

,

the function φ̂ε defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(

ω

ε4
,
x

ε2
, z)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime λ ≪ lc ≪ L. More precisely, in the scaled regime

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

,

the function φ̂ε defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(

ω

ε4
,
x

ε2
, z)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

2i
ω

c0
∂zφ̂+∆⊥φ̂+

ω2

c20
Ḃ(x, z)φ̂ = 0

with Ḃ(x, z) white noise E[B(x, z)B(x′, z′)] = γ(x− x′) δ(z − z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19 318 (2009).



Wave propagation in a random medium: the paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime λ ≪ lc ≪ L. More precisely, in the scaled regime

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

,

the function φ̂ε defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(

ω

ε4
,
x

ε2
, z)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x′) z ∧ z′,

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19 318 (2009).



Moment calculations in the random paraxial regime

Consider

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• By Itô’s formula,

d

dz
E[φ̂] =

ic0
2ω

∆⊥E[φ̂]−
ω2γ(0)

8c20
E[φ̂]

and therefore

E
[

φ̂(x, z)
]

= φ̂0(x, z) exp
(

−
γ(0)ω2z

8c20

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz and φ̂0 is the solution in the homogeneous

medium.

→֒ Strong damping of the coherent wave, with the scattering mean free path

lsca = 8c20/(γ(0)ω
2).
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• The mean Wigner transform defined by

W (z,x, q) =

∫

exp
(

− iq · y
)

E

[

φ̂
(

z,x+
y

2

)

φ̂
(

z,x−
y

2

)

]

dy,

is the angularly-resolved mean wave energy density. By Itô’s formula,

∂W

∂z
+

c0
ω
q · ∇xW =

ω2

4(2π)2c20

∫

γ̂(k)
[

W (q − k)−W (q)
]

dk,

starting from W (z = 0,x, q) = W0(x, q), the Wigner transform of the initial field f .

W (z,x, q) =
1

(2π)2

∫∫

exp
(

iξ ·
(

x− q
c0z

ω

)

− iy′ · q
)

Ŵ0

(

ξ,y′)

× exp
( ω2

4c20

∫ z

0

γ
(

y
′ + ξ

c0z
′

ω

)

− γ(0)dz′
)

dξdy′,

where Ŵ0 is defined in terms of the initial field f as:

Ŵ0(ξ,y) =

∫

exp
(

− iξ · x
)

f
(

x+
y

2

)

f
(

x−
y

2

)

dx.

• When L ≫ lsca: diffusion in q-space; one can identify the transport mean free path

ltr = lscal
2
corω

2
0/c

2
0. It is ≫ lsca (strongly forward scattering).

Here the correlation radius of the medium lcor is defined by:

γ(x) = γ(0)[1− |x|2/l2cor + o(|x|2/l2cor)].
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• In a random medium, by Itô’s formula, one can write a closed-form equation for the

n-th order moment.

Depending on the regime (lc ≪ r0 or lc ≫ r0, where r0 is the beam width), the wave

fluctuations may have Gaussian statistics (scintillation regime) or not (spot-dancing

regime) [1].

[1] J. Garnier and K. Sølna, Comm. Part. Differ. Equat. 39, 626 (2014), preprint (2015).



• Let us consider the fourth-order moment:

M4(z, r1, r2, q1,q2) = E

[

φ̂
(

z,
r1 + r2 + q1 + q2

2

)

φ̂
(

z,
r1 − r2 + q1 − q2

2

)

×φ̂
(

z,
r1 + r2 − q1 − q2

2

)

φ̂
(

z,
r1 − r2 − q1 + q2

2

)

]

Take Fourier transform

M̂4(z, ξ1, ξ2, ζ1, ζ2) =

∫∫

M4(z, q1, q2, r1, r2)

× exp
(

− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)

dr1dr2dq1dq2

M̂4 satisfies

∂M̂4

∂z
+

ic0
ω

(

ξ1 · ζ1 + ξ2 · ζ2

)

M̂4 =
ω2

4(2π)2c20

∫

γ̂(k)

[

M̂4(ξ1 − k, ξ2 − k, ζ1, ζ2)

+M̂4(ξ1 − k, ξ2, ζ1, ζ2 − k) + M̂4(ξ1 + k, ξ2 − k, ζ1, ζ2)

+M̂4(ξ1 + k, ξ2, ζ1, ζ2 − k)− 2M̂4(ξ1, ξ2, ζ1, ζ2)

−M̂4(ξ1, ξ2 − k, ζ1, ζ2 − k)− M̂4(ξ1, ξ2 + k, ζ1, ζ2 − k)

]

dk

[1] J. Garnier and K. Sølna, Comm. Part. Differ. Equat. 39, 626 (2014), preprint (2015).



Ghost imaging in heterogeneous media

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent atmosphere).

They are two independent realizations of the same distribution.
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• If the correlation function of the noise sources is

〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x|2

r20

)

δ(x− x
′),

if we denote the integrated correlation function of the medium fluctuations by

γ(x) =

∫ ∞

−∞

E[µ(0, 0)µ(x, z)]dz

• then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r40

29π3L4

∫

R2

dβ exp
(

−
|β|2

2
−

γ2(r0β)ω
2
0L

2c20
+ i

ω0r0x · β

c0L

)

.

and γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds.
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• If the medium is strongly scattering, in the sense that the propagation distance is

larger than the scattering mean free path L/lsca ≫ 1, with

lsca =
8c20

γ(0)ω2
0

,

• then

H(x) =
r40ρ

2
gi0

28π2L4ρ2gi2
exp

(

−
|x|2

4ρ2gi2

)

,

with

ρ2gi2 = ρ2gi0 +
4c20L

3

3ω2
0lscal

2
cor

, ρ2gi0 =
c20L

2

2ω2
0r

2
0

and the correlation radius of the medium lcor is defined by:

γ(x) = γ(0)[1− |x|2/l2cor + o(|x|2/l2cor)].

→֒ Scattering only slightly reduces the resolution !

This imaging method is robust with respect to medium noise. It gives an image even

when L/lsca ≫ 1. The image resolution is reduced when L/ltr > 1.
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Ghost imaging in heterogeneous identical media

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent atmosphere).

Imagine that they are the same realization (just for the beauty of the analysis).
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• If the correlation function of the noise sources is
〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x|2

r20

)

δ(x− x
′),

if we denote the integrated correlation function of the medium fluctuations by

γ(x) =

∫ ∞

−∞

E[µ(0, 0)µ(x, z)]dz,

if L/lsca ≫ 1, with

lsca =
8c20

γ(0)ω2
0

,

if γ(x) = γ(0)[1− |x|2/l2cor + o(|x|2/l2cor)],

• then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r40

28π2L4
exp

(

−
|x|2

4ρ2gi3

)

,

with the radius
1

ρ2gi3
=

1

ρ2gi0
+

16L

lscal2cor

→֒ the radius of the convolution kernel is reduced by scattering and can even be

smaller than the Rayleigh resolution formula: enhanced resolution compared to the

homogeneous case (similar phenomenon observed in time-reversal experiments) !
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Ghost imaging in heterogeneous/homogeneous media

The medium in path 2 is heterogeneous. The medium in path 1 is homogeneous.

Cargèse May 2015



Ghost imaging with a virtual high-resolution detector

- The medium in path 2 is randomly heterogeneous.

- There is no other measurement than the integrated transmitted intensity I2(t).

- The realization of the source is known (use of a Spatial Light Modulator) and the

medium is taken to be homogeneous in the “virtual path 1” → one can compute the

field (and therefore its intensity I1(t,x)) in the “virtual” output plane of path 1

[J.H. Shapiro, Phys. Rev. A, 78 (2008)].

Cargèse May 2015



• If the correlation function of the noise sources is
〈

n(t,x)n(t′,x′)
〉

= F (t− t′) exp
(

−
|x|2

r20

)

δ(x− x
′),

if we denote the integrated correlation function of the medium fluctuations by

γ(x) =

∫ ∞

−∞

E[µ(0, 0)µ(x, z)]dz,

if L/lsca ≫ 1, with

lsca =
8c20

γ(0)ω2
0

,

if γ(x) = γ(0)[1− |x|2/l2cor + o(|x|2/l2cor)],

• then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r40ρ

2
gi0

28π2L4ρ2gi4
exp

(

−
|x|2

4ρ2gi4

)

,

with the radius

ρ2gi4 = ρ2gi0 +
2c20L

3

3ω2
0lscal

2
cor

.

→֒ a one-pixel camera can give a high-resolution image of the object in scattering

media!

Cargèse May 2015



Conclusion

• Imaging with noise sources and/or through scattering media is possible using

correlation-based techniques.

• First application (with time-resolved measurements): seismic interferometry.

• Second application (with intensity only measurements): ghost imaging.

• Many other applications !

Cargèse May 2015


