Ambient Seismic Vibrations

in Seismology and Earthquake Engineering: Some Energy Considerations

Francisco J. Sánchez-Sesma

Instituto de Ingeniería, National University of Mexico (UNAM)

Cargèse, Corsica, France, 11-15 May 2015

Outline of Presentation

Introduction \rightarrow Motivation, Site effects, Site Characterization Diffuse Fields \longleftrightarrow Multiple Diffraction **Equipartition of Energy in Dynamic Elasticity** Full Space, Half-Space \rightarrow Experimental Verification **Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations Deterministic Partition of Energy Ambient Seismic Noise and H/V Spectral Ratios** Fast Calculation of H/V and Inversion (1D, 3D) Conclusions

Introduction

The last decade witnessed the specular advent of **ambient seismic vibrations** as a powerful tool for imaging Earth structure at many different scales.

All this lead to improvements of methods that utilize ambient noise. They are now applied to more data sets with better theoretical understanding and are useful for a wide range of applications in **Seismology** including time-dependent imaging for sundry physical processes like underwater acoustics, helioseismology, and structural health monitoring, to cite a few.

These advances powered many applications in **Earthquake Engineering** as well. In addition to improved performance of noise-based imaging, innovative applications emerged to establish both the dominant period and the velocity structure in order to compute seismic response.

Loma-Prieta (U.S.A.) Earthquake M = 7.1 October 17th, 1989

North / South Velocity Component S-wave: 4 Hz Low-Pass Filtered

Cargese, May 2015

Fig. 2. Velocity waveforms at K-net stations from Erimo to Tomakomai during the 2003 Tokachi-oki earthquake

Time(s)

2003年 十勝沖地震により苫小牧市の製油所で発生したナフサタンクの全面火災 Full-surface fire in an oil refinery's naphtha tank in Tomakomai after the 2003 Tokachi-oki earthquake

2003 TOKACHI-OKI EARTHQUAKE Mw 8.3

Significant long-period ground motions of very long duration were recorded in the Yufutsu basin. Oil storage tanks suffered great damage at Tomakomai because of sloshing associated with ground motions.

The deep extent of the sedimentary basin generated long-period ground motions with a duration of several hundred seconds.

Cargese, May 2015

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations Deterministic Partition of Energy Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation of H/V and Inversion (1D, 3D) Conclusions

Radiative Transfer Theory

Originated in astrophysics by **Chandrasheckar** & others (40's & 50's). Introduced to sesmology by **R.S. Wu** (1985) and developend by **K. Aki** and **Y. Zeng**, **H. Sato**, **K. Mayeda**, **M. Campillo**, **L. Margerin**, **A. Gusev** and others.

Sato H. & M. Fehler (1998). Wave propagation and scattering in the heterogeneous Earth, Academic Press, Cambridge, Mass. 2nd Edition..!
 Dmowska R., H. Sato & M. Fehler (2008) (Eds) Vol. 50 of Advances in Geophysics, Academic Press, Cambridge, Mass.

$$\frac{E_S}{E_P} = \frac{\alpha^2}{\beta^2} \quad \text{in 2D;} \quad \frac{E_S}{E_P} = \frac{2\alpha^3}{\beta^3} \quad \text{in 3D} \quad \frac{\text{Predictions for}}{\text{Elastic Diffuse}}$$

Multiple Scattering \rightarrow Energy Equipartition

$$\left\langle u_i(\mathbf{x}_{\mathbf{A}},\omega)u_j^*(\mathbf{x}_{\mathbf{B}},\omega)\right\rangle = -2\pi E_S k^{-3} \mathrm{Im}\left[G_{ij}(\mathbf{x}_{\mathbf{A}},\mathbf{x}_{\mathbf{B}},\omega)\right]$$

Sánchez-Sesma and Campillo (2006) BSSA

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations Deterministic Partition of Energy Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation of H/V and Inversion (1D, 3D) Conclusions

Energy Equipartition Principle Infinite Space, Volume modes

Assume stationary P waves inside a finite region (e.g. A cube of side L >> the wave lenght) and Dirichlet boundary conditions:

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{\alpha^2} \frac{\partial^2 \Phi}{\partial t^2} \qquad \Phi = 0$$

Then we can admit a modal solution of the form,

$$\Phi = A \sin\left(\frac{n_x \pi x}{L}\right) \sin\left(\frac{n_y \pi y}{L}\right) \sin\left(\frac{n_z \pi z}{L}\right) \sin(\omega t)$$

with

$$n_x^2 + n_y^2 + n_z^2 = \left[\frac{L\omega}{\pi\alpha}\right]^2$$

Modal

Sphere

n_x

According to the Principle of Equipartition of Energy, the energy associated to every state is proportional to the density of modes at a given frequency.

$$n_{P} = \frac{1}{8} \times \frac{4\pi}{3} \left(\frac{L\omega}{\pi\alpha}\right)^{3} = \frac{\pi}{6} (n_{x}^{2} + n_{x}^{2} + n_{x}^{2})^{3/2}$$

$$dn_P = (1/2\pi^2)\omega^2 \alpha^{-3} V d\omega$$

$$dn_{S} = 2(1/2\pi^{2})\omega^{2}\beta^{-3}Vd\omega,$$

In a diffuse field the energy associated to elastic waves in a volume is arranged according to the **Principle of Equipartition**. The energy of each state is proportional to the density of modes in a given frequency band.

The ratio of the S and P wave energy is:

$$\frac{E_S}{E_P} = \frac{q \times dn_S}{q \times dn_P} = 2\alpha^3 / \beta^3 = 2R^3$$

$$n_{P} = \frac{1}{8} \times \frac{4\pi}{3} \left(\frac{L\omega}{\pi\alpha}\right)^{3} = \frac{\pi}{6} (n_{x}^{2} + n_{x}^{2} + n_{x}^{2})^{3/2}$$

$$dn_P = (1/2\pi^2)\omega^2 \alpha^{-3} V d\omega$$

$$dn_{S} = 2(1/2\pi^{2})\omega^{2}\beta^{-3}Vd\omega,$$

In a diffuse field the energy associated to elastic waves in a volume is arranged according to the **Principle of Equipartition**. The energy of each state is proportional to the density of modes in a given frequency band.

The ratio of the S and P wave energy is:

Proportionality constant

$$\frac{E_S}{E_P} = \frac{q \times dn_S}{q \times dn_P} = 2\alpha^3 / \beta^3 = 2R^3$$

$$n^{1D}\frac{\lambda}{2} = L \quad \implies n^{1D} = \frac{L\omega}{\pi c} \quad \implies dn^{1D} = \frac{1}{\pi c}Ld\omega,$$

$$n^{2D} = \frac{1}{4}\pi \left(\frac{L\omega}{\pi c}\right)^2 \quad \implies dn^{2D} = \frac{1}{2\pi c^2}\omega Ad\omega, \ A = L^2$$

$$n^{3D} = \frac{1}{8}\frac{4\pi}{3}\left(\frac{L\omega}{\pi c}\right)^3 \quad \implies dn^{3D} = \frac{1}{2\pi^2 c^3}\omega^2 V d\omega, \ V = L^3$$

Cargese, May 2015

ξ ξ_P 1+ R^3 ٤ $\xi_{\scriptscriptstyle SH}$ 1 + 2k R^3 ξ_{SV} ع って

$$\xi_{1} = \frac{1}{3}\xi_{P} + \frac{1}{6}\xi_{SV} + \frac{1}{2}\xi_{SH} = \frac{1}{3}\xi$$
$$\xi_{2} = \frac{1}{3}\xi_{P} + \frac{1}{6}\xi_{SV} + \frac{1}{2}\xi_{SH} = \frac{1}{3}\xi$$
$$\xi_{3} = \frac{1}{3}\xi_{P} + \frac{2}{3}\xi_{SV} = \frac{1}{3}\xi$$

Weaver (1982)

Sánchez-Sesma & Campillo (2006)

$$\xi_P + \xi_{SH} + \xi_{SV} = \xi = \xi_1 + \xi_2 + \xi_3$$

Half-Space, Rayleigh's Modes

Assume now stationary Rayleigh waves associated to the freesurface (for instance, a square with side L >> wave length).

Consider also Dirichlet boundary conditions (w=0 en |x|=|y|=0,L)

$$n_{R} = \frac{\pi}{4} (n_{x}^{2} + n_{x}^{2}) = \frac{\pi}{4} \left(\frac{L\omega}{\pi c_{R}}\right)^{2} = \frac{1}{4\pi} \frac{\omega^{2} A}{c_{R}^{2}}$$

$$dn_{R} = \frac{1}{2\pi} \frac{\omega A}{c_{R}^{2}} d\omega$$

$$E_{S} = 2\frac{\alpha^{3}}{\beta^{3}}E_{P} = 2R^{3}E_{P}$$
$$E_{R} = q \times dn_{R} = \frac{q}{2\pi} \times \frac{\omega A}{c_{R}^{2}}d\omega$$

$$E = E_P + E_S = (1 + 2R^3)E_P \qquad q = \xi_P \times 2\pi^2 \frac{\alpha^3}{\omega^2} \times \frac{1}{d\omega}$$

$$\boldsymbol{\xi} = \boldsymbol{E}/\boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{P}} = \boldsymbol{E}_{\boldsymbol{P}}/\boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{S}} = \boldsymbol{E}_{\boldsymbol{S}}/\boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{R}} = \boldsymbol{E}_{\boldsymbol{R}}/\boldsymbol{A}$$

$$\begin{split} \xi_P &= \frac{1}{1+2R^3} \xi \\ \xi_S &= \frac{2R^3}{1+2R^3} \xi \\ \xi_R &= \frac{\pi\beta}{\omega} \left(\frac{\beta}{c_R}\right)^2 \frac{R^3}{1+2R^3} \xi \end{split}$$

Weaver (1985) Perton *et al.* (2009)

3D

18

$$E_{S} = 2\frac{\alpha^{3}}{\beta^{3}}E_{P} = 2R^{3}E_{P}$$

$$E_{R} = q \times dn_{R} = \frac{q}{2\pi} \times \frac{\omega A}{c_{R}^{2}} d\omega$$

$$E = E_{P} + E_{S} = (1 + 2R^{3})E_{P}$$

$$q = \xi_{P} \times 2\pi^{2} \frac{\alpha^{3}}{\omega^{2}} \times \frac{1}{d\omega}$$

$$C$$

Proportionality constant

$$\boldsymbol{\xi} = \boldsymbol{E} / \boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{P}} = \boldsymbol{E}_{\boldsymbol{P}} / \boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{S}} = \boldsymbol{E}_{\boldsymbol{S}} / \boldsymbol{V}, \boldsymbol{\xi}_{\boldsymbol{R}} = \boldsymbol{E}_{\boldsymbol{R}} / \boldsymbol{A}$$

$$\begin{split} \boldsymbol{\xi}_{P} &= \frac{1}{1+2R^{3}}\boldsymbol{\xi} \\ \boldsymbol{\xi}_{S} &= \frac{2R^{3}}{1+2R^{3}}\boldsymbol{\xi} \\ \boldsymbol{\xi}_{R} &= \frac{\pi\beta}{\omega} \left(\frac{\beta}{c_{R}}\right)^{2} \frac{R^{3}}{1+2R^{3}}\boldsymbol{\xi} \end{split}$$

Weaver (1985) Perton *et al.* (2009)

3D

Elastic Half-space (3D)

Energy ratio	Data $z = 0$	Theory $z = 0$	Theory $z = \infty$	Theory Rayleigh only z = 0	Theory Bulk only z = 0
S/P	7.30 ± 0.72	7.19	10.39	6.460	9.76
K/(S + P)	0.65 ± 0.08	0.534	1	0.268	1.19
I/(S + P)	-0.62 ± 0.03	-0.167	0	-1.464	-0.336
H^{2}/V^{2}	2.56 ± 0.36	1.774	2	0.464	4.49
X^{2}/Y^{2}	0.60 ± 0.20	1	1	1	1

Hennino et al. (2001)

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification

Correlation Type Representation Theorem

Green's Function from the Average of Correlations

Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations

Deterministic Partition of Energy

Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation and Inversion (1D, 3D)

Conclusions

Correlation type Representation Theorem

$$2i \operatorname{Im} \left[G_{ij}(\mathbf{r}_{A}, \mathbf{r}_{B}) \right] = - \int \left\{ G_{il}(\mathbf{r}_{A}, \mathbf{r}) T_{lj}^{*}(\mathbf{r}, \mathbf{r}_{B}) - G_{jl}^{*}(\mathbf{r}_{B}, \mathbf{r}) T_{li}(\mathbf{r}, \mathbf{r}_{A}) \right\} dS$$

Weaver & Lobkis (2004), Wapenaar (2004), Van Manen, Curtis & Robertson (2006)

¡ Equipartition !

$$\langle u_i(\mathbf{x}_{\mathbf{A}},\omega)u_j^*(\mathbf{x}_{\mathbf{B}},\omega)\rangle = -2\pi E_S k^{-3} \mathrm{Im} \Big[G_{ij}(\mathbf{x}_{\mathbf{A}},\mathbf{x}_{\mathbf{B}},\omega)\Big]$$

Outline of Presentation

Introduction
→ Motivation, Site effects, Site Characterization Diffuse Fields

Multiple Diffraction **Equipartition of Energy in Dynamic Elasticity** Full Space, Half-Space \rightarrow Experimental Verification **Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations Deterministic Partition of Energy** Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation and Inversion (1D, 3D) Conclusions

SURFACE WAVE TOMOGRAPHY

→ Mexico Valley

3 WAYS FOR RETRIEVING THE GREEN'S FUNCTION

Plane waves: An equipartitioned cocktail of P,SV and Rayleigh waves

Independent distant seismic sources and lots of randomly placed difractors

GREEN'S FUNCTION G₂₂ (SH CASE)

Cargese, May 2015

GREEN'S FUNCTION G_{ii} (P-SV CASE)

LOVE WAVES DISPERSION CURVES

RAYLEIGH WAVES DISPERSION CURVES

Green's function from the average of correlations

$$\langle u_i(\mathbf{x}_{\mathbf{A}},\omega)u_j^*(\mathbf{x}_{\mathbf{B}},\omega)\rangle = -2\pi E_S k^{-3} \mathrm{Im} \Big[G_{ij}(\mathbf{x}_{\mathbf{A}},\mathbf{x}_{\mathbf{B}},\omega)\Big]$$

$$\operatorname{Im}\left[G_{ij}(\mathbf{X}_{A},\mathbf{X}_{B},\omega)\right] = -\frac{\omega}{2\pi\rho\beta^{3}S^{2}} \langle u_{i}(\mathbf{X}_{A},\omega)u_{j}^{*}(\mathbf{X}_{B},\omega) \rangle$$

3D

GREEN'S FUNCTION G_{ij} (LAMB, 1904; CHAO 1960)

Cargese, May 2015

GREEN'S FUNCTION G_{ij} (LAMB, 1904; CHAO 1960)

GREEN'S FUNCTION G_{22} (2D, STRATIFIED MEDIUM)

The density of SH states per unit area around a frecuency band centered in ω can be written as $dn\downarrow S = 1/2\pi \omega/\beta \uparrow 2 d\omega$. Thus, energy density per unit area is $\zeta = qdn\downarrow S = q1/2\pi \omega/\beta \uparrow 2 d\omega$. Then the proporcionality constant is $q = \zeta 2\pi\beta \uparrow 2/\omega 1/d\omega$. For stratified médium the number of states of Love waves in mode *m* per unit lenght is

$$n\downarrow L\downarrow m = 1/\pi \,\omega/C\downarrow m = 1/\pi \,k\downarrow m$$

The density of states in a frequency band $d\omega$ around ω is

$$dn\downarrow L\downarrow m = 1/\pi \,\partial k\downarrow m/\partial \omega \,d\omega = 1/\pi \,1/U\downarrow m \,d\omega,$$

where $U \downarrow m$ = group velocity of mode *m*. Then, the energy density per unit length of mode *m* is given by

 $\begin{aligned} \zeta \downarrow L \downarrow m = q dn \downarrow L \downarrow m = q 1/\pi 1/U \downarrow m \ d\omega = (\zeta 2\pi\beta 1 2 \ /\omega 1/d\omega) 1/\pi \\ 1/U \downarrow m \ d\omega = 2\beta 1 2 \ /\omega U \downarrow m \ \zeta \end{aligned}$

В

Α

Perton and Sánchez-Sesma (2015)

Perton and Sánchez-Sesma (2015)

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations Deterministic Partition of Energy Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation of H/V and Inversion (1D, 3D)

Conclusions

$$E(\mathbf{x}) = \rho \omega^2 \langle u_m(\mathbf{x}) u_m^*(\mathbf{x}) \rangle = -4\pi \mu E_S k^{-1} \times \mathrm{Im}[G_{mm}(\mathbf{x},\mathbf{x})]$$

Directional Energy Density (DED). It is the Imaginary part of Green's function at source

$$\operatorname{Re}[G_{11}(\mathbf{x},\mathbf{x};\omega) \times i\omega | e^{i\omega t} |] = \omega \operatorname{Im}[G_{11}(\mathbf{x},\mathbf{x};\omega)]$$

Proportional to the power transmited to the medium by the unit harmonic force

Sánchez-Sesma et al. (2008)

AS A CONSEQUENCE OF THE IDENTITY *Energy Green's Function*

 $E_1 + E_2 + E_3 = A \times \operatorname{Im}[G_{kk}(\mathbf{x}, \mathbf{x})] = E_P + E_S$

$$E_{1} = \rho \omega^{2} \langle u_{1}^{2} \rangle \propto \operatorname{Im}[G_{11}(\mathbf{x}, \mathbf{x})]$$
$$E_{2} = \rho \omega^{2} \langle u_{2}^{2} \rangle \propto \operatorname{Im}[G_{22}(\mathbf{x}, \mathbf{x})]$$
$$E_{3} = \rho \omega^{2} \langle u_{3}^{2} \rangle \propto \operatorname{Im}[G_{33}(\mathbf{x}, \mathbf{x})]$$

Directional Energy Densities (DEDs)

Perton et al. (2009)

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification Correlation Type Representation Theorem Green's Function from the Average of Correlations

Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations

Deterministic Partition of Energy

Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation and Inversion (1D, 3D)

Conclusions

Deterministic Partition of Energy

Lamb(1904)

Miller & Pursey (1955)

Weaver (1985)

SH=0 % R=67% SV=26% P=7%

Deterministic Partition of Energy

Sánchez-Sesma et al (2011) BSSA

Sánchez-Sesma et al. (2011) BSSA

Outline of Presentation

Introduction → Motivation, Site effects, Site Characterization Diffuse Fields ← Multiple Diffraction

Equipartition of Energy in Dynamic Elasticity

Full Space, Half-Space → Experimental Verification Correlation Type Representation Theorem Green's Function from the Average of Correlations Dispersion Curves for Tomography of Alluvial Valleys Energy Densities from Average of Auto-Correlations

Deterministic Partition of Energy

Ambient Seismic Noise and H/V Spectral Ratios, Fast Calculation and Inversion (1D, 3D)

Conclusions

A Theory for H/V

With **Directional Energy Densities** one can compute the H/V ratio as:

$$[H/V](\mathbf{x};\omega) = \sqrt{\frac{E_1(\mathbf{x};\omega) + E_2(\mathbf{x};\omega)}{E_3(\mathbf{x};\omega)}}$$

measurements $\leftarrow \rightarrow$ system properties

$$[H/V](\mathbf{x};\omega) = \sqrt{\frac{\operatorname{Im}[G_{11}(\mathbf{x},\mathbf{x};\omega)] + \operatorname{Im}[G_{22}(\mathbf{x},\mathbf{x};\omega)]}{\operatorname{Im}[G_{33}(\mathbf{x},\mathbf{x};\omega)]}}$$

Sánchez-Sesma et al. (2011) 3D problem (BW & SW) Kawase et al. (2011) 1D problem (BW)

$$\nabla^{2}G + k^{2}G = -\frac{\delta(|\mathbf{x} - \boldsymbol{\xi}|)}{\rho c^{2}}$$

$$G = \frac{1}{iH\rho c^{2}} \sum_{m=0}^{\infty} K_{m}^{-1} \exp(-iK_{m}r) \cos\frac{\Omega_{m}z_{0}}{c} \cos\frac{\Omega_{m}z}{c}, 2D$$

$$G = \frac{1}{i2H\rho c^{2}} \sum_{m=0}^{\infty} H_{0}^{(2)}(K_{m}r) \cos\frac{\Omega_{m}z_{0}}{c} \cos\frac{\Omega_{m}z}{c}, 3D$$

$$K_{m} = c^{-1}\sqrt{\omega^{2} - \Omega_{m}^{2}}, \quad \Omega_{m} = \frac{(2m+1)\pi c}{2H}, \quad r = |\mathbf{x} - \mathbf{x}_{0}|$$

$$Im[G(0,0;\omega)] = \frac{1}{2H\rho c} \sum_{m=0}^{\infty} \frac{H(\omega - \Omega_{m})}{\sqrt{\omega^{2} - \Omega_{m}^{2}}}, \quad 2D$$

$$Im[G(0,0;\omega)] = \frac{1}{2H\rho c^{2}} \sum_{m=0}^{\infty} H(\omega - \Omega_{m}), \quad 3D$$

 $\nabla^2 G + k^2 G = -\frac{\delta(|\mathbf{x} - \boldsymbol{\xi}|)}{\rho c^2}$

Computation of ImG_{11} and ImG_{33} by an integral on the radial wavenumber

$$\operatorname{Im}\left[G_{11}(r,0,0;0;\omega)\right] = \operatorname{Im}\left[\underbrace{\frac{i}{4\pi}\int_{0}^{+\infty}f_{SH}(k)\left[J_{0}(kr) + J_{2}(kr)\right]dk}_{SH} + \underbrace{\frac{i}{4\pi}\int_{0}^{+\infty}f_{PSV}^{H}(k)\left[J_{0}(kr) - J_{2}(kr)\right]dk}_{PSV}\right]$$

$$\operatorname{Im}[G_{33}(r,0,0;0;\omega)] = \operatorname{Im}\left[\frac{i}{2\pi}\int_{0}^{+\infty}f_{PSV}^{\nu}(k)J_{0}(kr)dk\right]$$

$$f_{PSV}^{V}(k) = -\frac{[GN - LH]}{[NK - LM]}, \ f_{PSV}^{H}(k) = \frac{[RM - SK]}{[NK - LM]}, \ f_{SH}(k) = \frac{(J_{L})_{12} - (J_{L})_{22}}{(J_{L})_{21} - (J_{L})_{11}}$$

Harkrider (1964)

Layer over Half-space Im[$G_{11}(0,0,\omega)$], Im[$G_{33}(0,0,\omega)$] 3D Solution

The Texcoco Experiment

See poster by Piña et al...!!!

$$\operatorname{Im}[G_{11}^{PSV}(0;0;\omega)] = \operatorname{Im}[G_{22}^{PSV}(0;0;\omega)] = -\frac{1}{4} \sum_{m \in \operatorname{RAYLEIGH}} A_{Rm} \chi_m^2 + \frac{1}{4\pi} \int_{0}^{\omega/\beta_N} \operatorname{Re}\left[f_{PSV}^H(k)\right]_{4^{th}qu} dk$$

$$\mathrm{Im}[G_{11}^{SH}(0;0;\omega)] = \mathrm{Im}[G_{22}^{SH}(0;0;\omega)] = -\frac{1}{4} \sum_{m \in \mathrm{LOVE}} A_{Lm} + \frac{1}{4\pi} \int_{0}^{\omega/\beta_{N}} \mathrm{Re}[f_{SH}(k)]_{4^{h}qu} dk$$

$$\operatorname{Im}[G_{33}(0;0;\omega)] = -\frac{1}{2} \sum_{m \in \operatorname{RAYLEIGH}} A_{\operatorname{Rm}} + \frac{1}{2\pi} \int_{0}^{\omega/\beta_{N}} \operatorname{Re}\left[f_{PSV}^{V}(k)\right]_{4^{th}qu} dk ,$$

Fast computation of $\text{Im}[G_{ij}(0,0,\omega)]$ with Cauchy Residue Theorem An oportunity to speed up inversion

García-Jerez et al (2013)

 $v_{\beta_N} = \sqrt{k^2 - (\omega/\beta_N)^2}$

 $v_{\alpha_N} = \sqrt{k^2 - (\omega/\alpha_N)^2}$

- Branch cut
- Integration contour

Poles localization – Dispersion Curves (Piña et al. 2015)

Inversion using Simulated Annealing (Piña et al., 2015)

Global optimization using simulated annealing

Inversion using Simulated Annealing (Piña et al., 2015)

Application to site effect characterization at Almería, Andarax River, Spain

Carmona)

Application to site effect characterization at Almería, Andarax River, Spain

SPAC - 5 vertex, Rmax 450m

Theory for H/V(f, z)

Assumption: Diffuse wavefield

$$\frac{H}{V}(f,z) = \sqrt{\frac{Im[G_{11}(\mathbf{x},\mathbf{x};f)] + Im[G_{22}(\mathbf{x},\mathbf{x};f)]}{Im[G_{33}(\mathbf{x},\mathbf{x};f)]}}$$
(Sanchez-Sesma et al., 2011)

Theory for H/V(f, z)

Lontsi et al. (2015)

h(m)	Vp(m/s)	Vs(m/s)	$ ho(kg/m^3)$
25	500	200	1900
∞	2000	1000	2500

Theory for H/V(f, z)

Figure: Synth. full H/V(f,z=0)+H/V(f,z=25m) inversion

H/V with lateral irregularity Verification of 1D results with numerical modeling

- Imaginary Parts of Green's function
 - Good agreement between theory and SEM for G11 y G33
- Spectral Ratio H/V
 - Excellent agreement between theory and SEM

Matsushima et al. (2014)

H/V with lateral irregularity

500m

200

420m

- Spectral ratios H/V
 - The efects of lateral irregularity are clear in NS/UD and EW/UD
 - Peak Amplitudes
 - NS/UD > EW/UD
 - Peak Frequency
 - NS/UD < EW/UD
 - Qualitative Agreement

Matsushima et al. (2014)

Comments and Conclusions (1)

The Principle of Equipartition of Energy allows characterization of diffuse fields. In seismology a key issue is Multiple Scattering.

We examined the Properties of the Equipartition in a full-space, a half-space and we mentioned the experimental verification.

We reviewed retrieval of the Green's function from the average of correlations in a diffuse field (coda, noise) or for earthquakes with dominance of body waves. Generalized diffuse field.

Deterministic G_{ii} with equipartitioned plane wave cocktails.

Comments and Conclusions (2)

Directional Energy Densities from autocorrelation averages.

- Deterministic partition of Energy
- H/V ratios for site charaterization \rightarrow Site Effects
 - Noise (microtremors)→ fast calculation of H/V → inversion
 - Incoming body waves (EQ) \rightarrow fast calculation \rightarrow inversion
 - Measurement at depth (MT)→ fast calculation → inversion
 - H/V near lateral irregularities → Dipping Layers
 - With appropriate data processing H/V may be used to assess Site Effects in Strong Ground Motion.

Thanks are given to M Campillo, M Perton, J Piña, M Baena, F Luzón, A García-Jerez, S Matsushima, H Kawase and A M Lontsi for their comments and suggestions and

Thank you ③..! For your Attention