Ambient noise Cross-Correlations : convergence rate & monitoring...

Eric LAROSE ISTerre – Grenoble CNRS & Université J. Fourier

1. Convergence rate

- 2. Coda Wave Interferometry
- 3. Coda Wave Decorrelation

E. Larose

Convergence toward the Green function

D= 3 λ

Convergence toward the Green function

D= 3 λ

Convergence toward the Green function

 $\Sigma \sim N$

Σ~Ν

 $\Sigma \sim N$

 $\Sigma \sim \sqrt{N}$

Chr

Larose, Ann. Phys. Fr (2006)

Definition of coherent zone and SNR

Amplitude of the signal

Definition of coherent zone and SNR

Amplitude of the noise

 $\mathsf{C}_{\mathsf{A}\mathsf{B}}(\tau) \text{=} \partial_{\mathsf{t}}\mathsf{G}_{\mathsf{A}\mathsf{B}}(\tau) \text{+} \mathsf{F}(\tau)$

« refocusing » energy in A at τ =0 \Leftrightarrow autocorrelation

$$C_{AA}(\tau = 0) = \int_0^T h_A^2(t) dt$$
$$= \int_0^T \sigma^2(t) dt \ e(t) \otimes e(-t)$$

Envelope : σ(t)

Derode et al, J. Appl. Phys 1999

Propagation of the energy from A at τ =0 \Leftrightarrow correlation in B at τ

$$C_{AB}(\tau) = \int_{0}^{T} h_{A}(t)h_{B}(t+\tau)dt$$
$$= \int_{0}^{T} \sigma^{2}(t)dt \ G_{AB}(\tau) \otimes e(t) \otimes e(-t)$$

Propagation of the energy from A at $\tau=0 \iff$ correlation in B at τ

Propagation of the energy from A at $\tau=0 \iff$ correlation in B at τ

Amplitude of the signal

time τ (in period T₀)

0.5 r=0 Numerical validation 0 -0.50.05 r=3 λ₀ Amplitude of the signal 0 $\int_0^t \sigma(t) \sigma(t+\tau) dt$ -0.050.02 r=5 λ₀ $\times G_{AR}(\tau) \otimes e(t) \otimes e(-t)$ 0 -0.02 → Geometrical spreading 0.02 r=7 λ₀ 0 -0.02 0.02 r=10 λ₀ -0.02-10 -5 0 5 10

Larose et al, J. Appl. Phys (2008)

 \rightarrow

→

Numerical validation

Amplitude of the signal

$$\int_{0}^{T} \sigma(t) \sigma(t+\tau) dt$$
$$\times G_{AB}(\tau) \otimes e(t) \otimes e(-t)$$

→ Geometrical spreading
→ Scattered waves
→

Numerical validation

Amplitude of the signal

Fluctuations of correlations:

$$var\left\{C_{AB}\right\} = \left\langle C_{AB}^{2}(\tau)\right\rangle - \left\langle C_{AB}(\tau)\right\rangle^{2}$$

We assume:

Coda = succession of independent information grain = « shot noise » model AND independent sources

$$var_{theo} \approx \int_{0}^{T} \sigma^{2}(\theta) \sigma^{2}(\theta + \tau) d\theta \int \rho^{2}(q) dq$$

Envelope : $\sigma(t)$
$$\int_{0}^{0} \frac{0.02}{10} \int_{0}^{0.02} \frac{1}{100} \int_{10}^{0.02} \frac{1}{100} \int_{10}^{0} \frac{1}{100} \int_{$$

Fluctuations of correlations:

$$var\left\{C_{AB}\right\} = \left\langle C_{AB}^{2}(\tau)\right\rangle - \left\langle C_{AB}(\tau)\right\rangle^{2}$$

We assume:

Coda = succession of independent information grain = « shot noise » model AND independent sources

$$var_{theo} \approx \int_0^T \sigma^2(\theta) \sigma^2(\theta + \tau) d\theta \int \rho^2(q) dq$$

$$SNR_{theo} = \frac{S_{theo}}{\sqrt{var_{theo}}} \qquad SNR_{num} = \frac{S_{num}}{\sqrt{var_{num}}}$$

$$SNR_{theo}(\tau, d) = \frac{\left[\rho \otimes G_{AB}\right](\tau)}{\sqrt{\int \rho^2(t)dt}} \times \frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}}$$

 $\frac{\left[\rho \otimes G_{AB}\right](\tau)}{\sqrt{\int \rho^2(t)dt}} \times \frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}}$ $SNR_{theo}(\tau, d)$

→ The Green function (geometrical spreading, attenuation...)

$$\sqrt{\frac{1}{\left(kr\right)^{d-1}}}$$

$$SNR_{theo}(\tau, d) = \frac{\left[\rho \otimes G_{AB}\right](\tau)}{\sqrt{\int \rho^2(t)dt}} \times \frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}}$$

- → The Green function (geometrical spreading, attenuation...)
- ➔ Source Bandwidth

$$\sqrt{\int \rho^2(t) dt} = \sqrt{\frac{1}{\Delta \omega}}$$

$$SNR_{theo}(\tau, d) = \frac{\left[\rho \otimes G_{AB}\right](\tau)}{\sqrt{\int \rho^2(t)dt}} \times \frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}}$$

- → The Green function (geometrical spreading, attenuation...)
- ➔ Source Bandwidth
- → Duration and envelope of the record

In the case of stable noise...

$$\frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}} \approx \frac{T}{\sqrt{T}}$$

$$SNR_{theo}(\tau, d) = \frac{\left[\rho \otimes G_{AB}\right](\tau)}{\sqrt{\int \rho^2(t)dt}} \times \frac{\int_0^T \sigma(t)\sigma(t+\tau)dt}{\sqrt{\int_0^T \sigma^2(t)\sigma^2(t+\tau)dt}}$$

→ The Green function (geometrical spreading, attenuation...)

- ➔ Source Bandwidth
- → Duration and envelope of the record

In the case of stable noise...

$$SNR_{theo} \propto \sqrt{T.\Delta\omega} \sqrt{\frac{1}{(kr)^{d-1}}}$$

Larose et al, J. Appl. Phys (2008)

Cf also: Sabra et al. JASA 2005 & Richard Weaver's papers

1. Convergence rate

2. Coda Wave Interferometry

3. Coda Wave Decorrelation

Coda Wave Interferometry

- Poupinet et al 1984
- Snieder et al 2002
- ...

E. Larose

Larose & Hall, J. Acoust. Soc. Am (2009)

Larose et al., Geophys. Res. Lett. (2005)

Sens-schönfelder & Larose, Phys. Rev. E (2008)

The role of Moisture

Water content change

Seismic velocity change

Apparent time delay in the records

The role of Moisture

Utiku - NZ

Courtesy of Voisin & Garambois

Les Diablerets (Suisse)

1998

2004

2007

Fluctuations +/- 2%

Drying during summer

Winter : Moisture / freezing / snow...

Large decrease => Liquefaction?

5 days precursory signal

Environmental SEISMOLOGY

Larose et al, J. Appl. Geophys. (2015)

Gravity Damage Tectonics volcanology

Larose et al, J. Appl. Geophys. (2015)

Change of seismic waveforms

Learn on the environment	Discriminate internal/external forcing	Learn on the susceptibility	Discriminate Reversible/irreversible changes
Hydrology 	Active fault, landslide, volcanology	To humidity, temperature	Active fault, landslide, volcanology
Water ressources	Natural Hazards	Non-linearities, Damage	Natural Hazards
		Larose et a	l, J. Appl. Geophys. (2015)

- 1. Convergence rate
- 2. Coda Wave Interferometry
- 3. Coda Wave Decorrelation

3D CARTOGRAPHIES

- Damage & cracks [m2/m3]
 - Relative velocity changes[%]

Simple scattering 1 change

Multiple scattering 800 scatterers+ 1 change

classical imaging

Simple scattering 1 change

Multiple scattering 800 scatterers+ 1 change

Locadiff :

Signature of a change in the coda

Very sensitive to weak changes

Decorrelation:
$$DC(t) = 1 - \frac{\langle \phi_0(t).\phi_1(t) \rangle_T}{\sqrt{\langle \phi_0(t)^2 \rangle_T \langle \phi_1(t)^2 \rangle_T}}$$

Stretching factor : $\epsilon(t) = \epsilon$ that maximises

 $\langle \phi_0(t).\phi_1(t(1-\epsilon))\rangle_T$

THE INTENSITY = PROBABILITY OF TRANSPORT

Diffusion (heat)

Decorrelation induced by an extra scatterer : Theoretical model

$\begin{aligned} \text{Theoretical decorrelation} \\ DC^{th}(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{r}, t) &= \frac{c\sigma}{2} \frac{\int_{0}^{t} I(\boldsymbol{S}, \boldsymbol{r}, u) I(\boldsymbol{r}, \boldsymbol{R}, t-u) du}{I(\boldsymbol{S}, \boldsymbol{R}, t)} \end{aligned}$

Rossetto et al. [J. Appl. Phys. 2011]

I : Intensity propagator (Diffusion solution, Radiative Transfer)

 $\sigma\,$: Scattering cross section of the new defect

Local relative velocity change dV/V : Theoretical model

Pacheco & Snieder [2005]

Theoretical relative velocity change

$$\varepsilon^{\text{app}}(S,R,r,t) = \frac{dv}{v} \frac{\Delta V}{t} \frac{\int_0^t I(S,r,u)I(r,R,t-u)du}{I(S,R,t)}$$

I : Intensity propagator (Diffusion solution, Radiative Transfer) dv/v : Scattering cross section of the new defect

Sensitivity kernel

decorrelation $DC^{th}(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{r}, t) = \frac{c\sigma}{2}K(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{r}, t) \qquad K(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{r}, t) = \frac{\int_0^t I(\boldsymbol{S}, \boldsymbol{r}, u)I(\boldsymbol{r}, \boldsymbol{R}, t - u)du}{I(\boldsymbol{S}, \boldsymbol{R}, t)}$

 $I(\boldsymbol{S}, \boldsymbol{R}, t) = \text{Diffusion solution}$

0.2

0.1

0

0

100

200

300

time(μs)

400

500

E. Larose

Forward problem validation

$$I(s, r, t) = \frac{I_0}{(4\pi Dt)} e^{\frac{\|s - r\|^2}{4Dt}}$$

T. Planes et al, 2014 & 2015

Radiative Transfert Sato 1993, Passchens 1997...

T. Planes et al, 2014 & 2015

T. Planes et al, 2014 & 2015

Forward problem validation

Application to ACTIVE data

Larose et al, J. Acoust. Soc. Am. (2015)

Larose et al, J. Acoust. Soc. Am. (2015)

Larose et al, J. Acoust. Soc. Am. (2015)

Stress map (3D) In Situ & non-destructive

Damage/crack localisation

Application to PASSIVE data

Eruption #2

A. Obermann et al. J. Geophys. Res. (2013)

A. Obermann et al. J. Geophys. Res. (2013)

30(

Eruption #2

days

250

Eruption #1

30(

Eruption #2

days

A. Obermann et al. J. Geophys. Res. (2013)

2006 Basel geothermal injection experiment

Obermann et al, 2014

At large scale :

x 10⁻³

0

dV/V

Wenchuan Earthquake @ 1-3 s

50 days Before // 50 days after

Obermann et al, 2014