

Passive acoustic thermometry of the deep water sound channel using ambient noise .

Karim G. Sabra School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA

Sponsored by the Office of Naval Research code 32

Presentation Outline

- 1. Deep water acoustics & low-frequency noise sources
- 2. Monitoring with ambient noise: Background.
- 3. Passive acoustic thermometry of the deep water sound channel using low-frequency ambient noise
- 4. Monitoring with ambient noise: Optimization.

Shane Lani

In collaboration with Bill Kuperman & Philippe Roux

Katherine Woolfe

Oceans are heat sinks

Average Ocean Temperature Distribution with Depth

NOAA

Oceans are Heat sinks

Measuring deep ocean temperatures

Sound Propagation Around the Globe

(Collins et al., JASA 97(3), p. 1567)

Basis for Acoustic measurements of ocean temperatures: "Acoustic thermometry & Acoustic tomography.."

Generic Sound Speed Structure

Deep sound channel propagation

Acoustic Thermometry

Different paths have different (group) speeds....

HLF-5 acoustic source (250 Hz) courtesy of Scripps Institution of Oceanography.

Munk et al., SCRIPPS- UCSD

Presentation Outline

- 1. Deep water acoustics & low-frequency noise sources
- 2. Monitoring with ambient noise: Background.
- 3. Passive acoustic thermometry of the deep water sound channel using low-frequency ambient noise
- 4. Monitoring with ambient noise: Optimization.

Theory: Free space

Isotropic distribution of uncorrelated random noise sources

Georgialnstitute of Technology

Practical Limitations...

Passive Ocean monitoring ?

Georgia Institute of Technology

Due to "non-reciprocal" environmental changes OR clock-drift between receivers 1 and 2

Presentation Outline

- 1. Deep water acoustics & low-frequency noise sources
- 2. Monitoring with ambient noise: Background.
- 3. Passive acoustic thermometry of the deep water sound channel using low-frequency ambient noise
- 4. Monitoring with ambient noise: Optimization.

Ambient noise measured by hydroacoustic station

Global Sound Speed Structure

North-South Atlantic along 30.5 °N

- •Variability of the upper-ocean (<1km) sound speed structure.
- Stability of the deep isothermal layer.
- •Axis of the deep sound channel becomes shallower towards both poles and eventually reaches the surface. 17

Ice-noise long-range propagation

Chapp et al. 2005, G3

SOFAR arrival between Triads

Polar origin of the coherent noise

Polar origin of the coherent noise

Coherent Sofar Arrivals

Goal: Increase SNR of cross-correlations using sensor arrays

Beamforming Noise Correlations for monitoring

Georgialnstitute

Spatio-temporal filter for Coherent Arrivals

inverse Fourier transform of the first principal component $\sigma_1(f)W_1(f)W_2(f)^H$

d

Georgialnstitute of Technology

Original 1 year average Correlations

1 year averaging, 1Hz<f<40Hz

Passive thermometry of the deep ocean

Result: Trackishifts in arrival time of beamformed cross-correlations (1 week average) over multiple years

Georgialnstitute of Technology

Passive thermometry of the deep ocean

Georgia

ກສໃຫ້ໃຫ້ເສັດ

Presentation Outline

- 1. Deep water acoustics & low-frequency noise sources
- 2. Monitoring with ambient noise: Background.
- 3. Passive acoustic thermometry of the deep water sound channel using low-frequency ambient noise
- 4. Monitoring with ambient noise: Optimization.

Enhancing the emergence rate of coherent arrivals using optimization

How can the amount of time needed to extract a coherent arrival be minimized?

Principles of Genetic Algorithm.

1Hz<f<40Hz

Optimization –"delay search": Experimental results

- Track arrival time of Beamformer Noise correlations (on SOFAR arrivals) over 40days
- 1Hz<f<40Hz

Georgialnstitute

Conclusions

Emergence rate of coherent arrivals from ambient noise correlations can be enhanced using:

- Array beamforming (Increase Spatial diversity -> Reduce Averaging time)
- Optimization/Search Algorithm ("Unravel" medium fluctuations)

Applications to various domains...

- "Faster" passive monitoring (on shorter time scales)
- "Selective" monitoring (select spatial regions)
- Mitigate environmental variations (e.g. for passive target detection)

Requires a good understanding of..

- noise sources characteristics /physics
- spatial & temporal scales of medium variations

Questions?

Thank you