

Seismic Anisotropy and Passive Monitoring of Seismogenic Zones

Jean-Paul Montagner, Maria Saade, Philippe Roux, Florent Brenguier, Stéphanie Durand, Paul Cupillard, Lucia Zaccarelli, ...

IPG-Paris, ISTerre-Grenoble, ENS-Lyon, INGV-Bologna

Frequency	Mhz-kHz	10000-100Hz	100-10Hz	10Hz-1Hz	1-0.001H2
Domain	Laboratory acoustics	Underwater acoustics	Shallow seismic imaging	Seismic imaging	Seismology- large scale
Applications	NDT	Tomography Source detection	Structure of shallow layers Geotechnical applications, land slides	Natural resources Natural hazards	Structure of the Earth, Earthquake risk zonation,
	Monitoring		Monitoring	Monitoring	Monitoring
Wave type	Acoustic/ elastic waves	Acoustic waves	Elastic waves	Elastic waves	Elastic waves

OUTLINE

- Data: Seismic noise (microseismic noise; seismic Hum)
- Cross-correlation tensor: Seismic Anisotropy?
- Scientific Issues:
- Structure of the Earth from Seismic Hum
- Seismic monitoring:

Temporal changes of anisotropy in seismogenic zones Numerical modeling

Interpretation of observed anisotropy

ZZ: Co-seismic and post-seismic relative velocity change (Brenguier et al., 2008)

Example of cross-correlation tensor

Parkfield HRSN – Stack (30days)

TZ, TR, ZT, $RT \neq 0$

of the cross-correlation tensor?

TZ, TR, ZT, $RT \neq 0$

-Non uniform distribution of seismic noise sources?
-Lateral heterogeneities of Velocities?

-Seismic anisotropy?

- -From microscopic scale up to macroscopic scale
- -Efficient mechanisms of alignment of minerals in the crust and upper mantle:
 - (L.P.O.: Lattice preferred orientation; S.P.O.: Shape preferred orientation; Fine Layering)
 - ANISOTROPY is the Rule not the Exception

Apparent (observed) anisotropy: NON UNIQUE INTERPRETATION in different depth ranges of the Earth

L.P.O. : Lattice Preferred Orientation (strain field)

Christensen and Lundquist, 1982

STRAINMETER
Mapping of mantle convection

S.P.O.: Cracks, fluid inclusions, ... (Stress field)

Crust (+lithosphere)

Inner core

(Babuska and Cara, 1991) STRESSMETER Temporal variations of anisotropy? Monitoring of cracked, fractured zones (seismogenic zones: Durand et al. 2011; Saade et al., 2013)

FINE LAYERING: Stratification Anisotropy Mille-feuilles model (partial melting)

Radial anisotropy (Kawakatsu et al. 2009) V.T.I. Vertical Transverse Isotropy medium: 5 parameters $(A=\rho V_{PH}^2, C=\rho V_{PV}^2, F, L=V_{SV}^2, N=V_{SH}^2)$

Different processes in different layers -S.P.O. (stress) -L.P.O.(strain) Fine Layering

Mineralogy, Water and fluid content
Present day tectonic, geodynamic processes
Past processes (frozen anisotropy)

Monitoring of stress and strain fields

Stratification of anisotropy in the crust & mantle Separation of the different kinds of anisotropy in different layers => Different interpretations

Interpretation of observed (apparent) anisotropy: Intrinsic versus extrinsic anisotropy (L.P.O., C.P.O. versus SPO, fine layering)

Case of VTI model (such as PREM): 1D-case

Alternative interpretations of PREM radial seismic anisotropy?

Seismic Anisotropy: Cracks, fluid inclusions

stress field rotations in the crust ⇒temporal variations of velocity and anisotropy during seismic cycle?

Different kinds of anisotropy effects on seismic waves

•Body waves: Shear wave splitting (birefringence)

Courtesy of Ed. Garnero

Different kinds of anisotropy effects on seismic waves

•Body waves: Shear wave splitting (birefringence)

•Surface waves (Rayleigh and Love):

-Rayleigh-Love discrepancy (VTI model)

-Azimuthal variations of phase (or group) velocities, radial anisotropy

-Amplitude effects: Quasi-Rayleigh, Quasi-Love polarization anomalies

Courtesy of Ed. Garnero

+ Regional BB seismic arrays: US-array, Vebsn, Hi-net,

Broadband Seismic Noise

TAM (Tamanrasset, Algeria)

http://geoscope.ipgp.fr

Broadband Seismic Noise

Different kinds of anisotropy effects on seismic waves

•Body waves: Shear wave splitting (birefringence)

•Surface waves (Rayleigh and Love):

- Rayleigh-Love discrepancy

-Azimuthal variations of phase (or group) velocities, radial anisotropy

-Quasi-Rayleigh, Quasi-Love polarization anomalies

Courtesy of Ed. Garnero

Effect of anisotropy on the phase of surface waves

Effect on eigenfrequency ω_k (Rayleigh's principle)

$$\frac{\delta \omega_{k}}{\omega_{k}} = \frac{\int_{\Omega} \varepsilon_{ij}^{*} \delta C_{ijkl} \varepsilon_{kl} d\Omega}{\int_{\Omega} \rho_{0} u_{r}^{*} u_{r} d\Omega} = \frac{\delta V}{V} \Big|_{k}$$

 ϵ strain tensor, u displacement, δC_{ijkl} elastic tensor perturbation (21 elastic moduli), V phase velocity

Phase velocity pertubation $\delta V(T, \theta, \phi, \Psi)$ at point r (θ, ϕ)

(Smith & Dahlen, 1973; Montagner & Nataf, 1986) Ψ Azimuth (angle between North and wave vector)

 $\begin{aligned} \delta V(\mathsf{T},\theta,\phi,\Psi)/_{V} &= \alpha_{0}(\mathsf{T},\theta,\phi) + \alpha_{1}(\mathsf{T},\theta,\phi) \cos 2\Psi + \alpha_{2}(\mathsf{T},\theta,\phi) \sin 2\Psi \\ &+ \alpha_{3}(\mathsf{T},\theta,\phi) \cos 4\Psi + \alpha_{4}(\mathsf{T},\theta,\phi) \sin 4\Psi \end{aligned}$

•Cijkl 21 elastic moduli

•VTI Model (transversely isotropy with vertical symmetry axis)

0- ψ term: 5 parameters A, C, F, L, N (PREM)

•Best resolved parameters from surface waves (among 13 parameters when including azimuthal anisotropy 2ψ , 4ψ)

 $L = \rho V_{SV}^2$ Isotropic part of V_{SV}

 $\xi = N/L = (V_{SH}/V_{SV})^2$ Radial Anisotropy

 G, Ψ_G Azimuthal Anisotropy of V_{sv} , also related to SKS splitting (when horizontal symmetry axis, vertical propagation, Montagner et al., 2000)

Body waves (Crampin, 1984)

$$\rho V_{sv}^2 = L + G_c \cos 2\Psi + G_s \sin 2\Psi$$

 $\rho V_{SH}^2 = N - E_c \cos 4\Psi - E_s \sin 4\Psi$

Effect of anisotropy on the phase of surface waves

Effect on eigenfrequency ω_k (Rayleigh's principle)

$$\frac{\delta \omega_{k}}{\omega_{k}} = \frac{\int_{\Omega} \varepsilon_{ij}^{*} \delta C_{ijkl} \varepsilon_{kl} d\Omega}{\int_{\Omega} \rho_{0} u_{r}^{*} u_{r} d\Omega} = \frac{\delta V}{V} \Big|_{k}$$

 ϵ strain tensor, u displacement, δC_{ijkl} elastic tensor perturbation (21 elastic moduli), V phase velocity

Phase velocity pertubation $\delta V(T, \theta, \phi, \Psi)$ at point r (θ, ϕ)

(Smith & Dahlen, 1973; Montagner & Nataf, 1986) Ψ Azimuth (angle between North and wave vector)

$$\begin{split} \delta V(\mathsf{T},\!\theta,\!\phi,\!\Psi)/_{\mathsf{V}} &= \alpha_0(\mathsf{T},\!\theta,\!\phi)\!+ \alpha_1(\mathsf{T},\!\theta,\!\phi)\mathsf{cos}2\Psi\!+ \alpha_2(\mathsf{T},\!\theta,\!\phi)\mathsf{sin}2\Psi \\ &+ \alpha_3(\mathsf{T},\!\theta,\!\phi)\mathsf{cos}4\Psi\!+ \alpha_4(\mathsf{T},\!\theta,\!\phi)\mathsf{sin}4\Psi \end{split}$$

Global, regional, local scales

Rayleigh wave (seismic noise): Azimuthal variation on ZZ-component

Mordret et al., 2013 (poster)

Rayleigh wave: Azimuthal variation on ZZ-component (1-2-4- Ψ terms

At T=0.8s

Valhall LoFS: 2-Ψ term

Mordret et al., 2013

Different kinds of anisotropy effects on seismic waves

•Body waves: Shear wave splitting (birefringence)

Surface waves:

-Azimuthal variations of phase (or group)

velocities, radial anisotropy

-Quasi-Rayleigh, Quasi-Love polarization anomalies

ISOTROPIC MEDIUM INCOMING POLARIZATION ANISOTROPIC MEDIUM

Courtesy of Ed. Garnero

Polarization of surface waves

Surface waves recovered by ambient noise cross-correlation

Surface waves instead of body waves
Independent of seismicity

Continuous noise = continuous monitoring

Application to the Parkfield area
3Component HRSN
28 Sept. 2004: Parkfield event, Mw=6.0
2005: No significant local earthquake (>4)

HRSN : High ResolutionSeismic Network

THEORY

Cross-correlation for 2 stations i, j and 3 components k, l

$$[C_{ij}(t)]_{kl} = \frac{\int_0^T S_{ik}(\tau) S_{jl}(t+\tau) d\tau}{\sqrt{\int_0^T S_{ik}^2(\tau) d\tau \int_0^T S_{jl}^2(\tau) d\tau}}$$

Cross-Correlation Tensor

ZZ	ZR	ZT
RZ	RR	RT
TZ	TR	TT

Random sources:
 ➤ Related to Green's tensor i,j
 Medium response

Ti

ISOTROPIC MEDIUM Rayleigh wave Love wave

Quasi-Rayleigh wave Quasi-Love wave

Example of cross-correlation tensor

TZ, TR, ZT, $RT \neq 0$

Stability of stack: 15-30days

Station pair: 1 3 Pair azimuth: 131.4514

Temporal changes of Cross-correlations (polarization angle Ψ)

2 effects:

- Non-random distribution of seismic sources

seasonal variations (beamforming analysis)

Stress field temporal variations

Seasonal Changes

Origin of seismic sources: Beamforming (Roux, 2009)

Time variations of Ψ angle after noise removal

Significant co-seismic jumps for station pairs containing station 12

Tentative (reasonable) interpretation: stress rotation => rotation of the crack distribution

NUMERICAL MODELING: regional and local scales Wave propagation in fully anisotropic medium

HTI medium

Source: explosion

Cross-correlations

Variations of the horizontal polarization anomaly Ψ_w angle as a function of the incidence Ψ_R of the receiver pairs, for different frequency bands

Displacement of the maximum of polarisation anomaly $\Psi_{\rm w}$ when increasing the bandwidth

Polarization angle Ψ_w Azimuth of path Ψ_R

19

 $\begin{array}{ll} \mbox{Reinterpretation of observations} & \Psi_{\rm R} \mbox{(degrees)} \\ \mbox{(anisotropy } \Psi_{\rm A} \mbox{ fixed, but variable path azimuths } \Psi_{\rm R} \mbox{)} \end{array}$

- Rotation of the stress field before and after the event

- Approximate EW orientation of crack-induced anisotropy

Conclusions

Future

Application to other tectonic contexts (Japan, Chile...)
Application to fractured-cracked zones (oil/gas reservoirs)

Iwate – Miyagi earthquake (14/06/08) Tohoku earthquake (11/03/11)

CX Network –North Chile

Tocopilla, Chile (14/11/07;7.7; 16/12/07, Mw=6.8)

Maule, Chile, 27/02/10?

Conclusions

•New Method to: Continuously monitor stress field

•Significant co-seismic signal observed in specific parts of the faults:

crack-induced anisotropy?

New developments

•Application in other tectonic contexts

To fractured reservoirsQuantitative interpretation of apparent anisotropy

